Life can only be understood backwards; but it must be lived forwards.

Soren Kierkegaard
Dynamic programming

- It has nothing to do with “programming languages”
• Problem: Input \(w_1 \ w_2 \ \ldots \ w_n \), \(t \) each \(0 \leq w_i \leq k \)

• Output: Number of inputs \(x \in \{0,1\}^n \): \(\sum w_i x_i = t \)

• Let's try a recursive approach...
Problem: Input \(w_1, w_2, \ldots, w_n \), \(t \) each \(0 \leq w_i \leq k \)

Output: Number of inputs \(x \in \{0,1\}^n : \sum w_i x_i = t \)

\(S(i,s) := \) number of inputs \(x \in \{0,1\}^i \) such that \(\sum_{j \leq i} w_j x_j = s \)

Structure of solutions: \(S(i,s) = S(i-1,s) + S(i-1,s-w_i) \) \(i = n, \ldots \)

Gives recursive approach: \(T(n) = \) ?
Problem: Input \(w_1 \ w_2 \ldots \ w_n \) , \(t \) each \(0 \leq w_i \leq k \)

Output: Number of inputs \(x \in \{0,1\}^n : \sum w_i x_i = t \)

\(S(i,s) := \) number of inputs \(x \in \{0,1\}^i \) such that \(\sum_{j \leq i} w_j x_j = s \)

Structure of solutions: \(S(i,s) = S(i-1,s) + S(i-1,s–w_i) \) \(i = n, \ldots \)

Gives recursive approach: \(T(n) = 2 \ T(n-1) \Rightarrow T(n) \geq 2^n \)

How can we do faster when \(k = n \) ?
Problem: Input $w_1 \ w_2 \ \ldots \ \ w_n , \ t$ each $0 \leq w_i \leq k$

Output: Number of inputs $x \in \{0,1\}^n : \sum w_i \ x_i = t$

$S(i,s) := \text{number of inputs } x \in \{0,1\}^i \text{ such that } \sum_{j \leq i} w_j \ x_j = s$

Structure of solutions: $S(i,s) = S(i-1,s) + S(i-1,s–w_i) \ i = n,...$

Gives recursive approach: $T(n) = 2 \ T(n-1) \Rightarrow T(n) \geq 2^n$

How can we do faster when $k = n$?

Stop solving the same problems over and over again!

Total sum is $\leq kn$, so there really are only $\ ?$ different $S(i,t)$
Problem: Input \(w_1, w_2, \ldots, w_n\), \(t\) each \(0 \leq w_i \leq k\)

Output: Number of inputs \(x \in \{0,1\}^n : \sum w_i x_i = t\)

\[S(i,s) := \text{number of inputs } x \in \{0,1\}^i \text{ such that } \sum_{j \leq i} w_j x_j = s\]

Structure of solutions: \(S(i,s) = S(i-1,s) + S(i-1,s-w_i)\) \(i = n,\ldots\)

Gives recursive approach: \(T(n) = 2 \cdot T(n-1) \Rightarrow T(n) \geq 2^n\)

How can we do faster when \(k = n\) ?

Stop solving the same problems over and over again!

Total sum is \(\leq kn\), so there really are only \(kn^2\) different \(S(i,t)\)
Just solve all of those!
- Problem: Input $w_1 \ w_2 \ \ldots \ w_n$, t each $0 \leq w_i \leq k$
- Output: Number of inputs $x \in \{0,1\}^n : \sum w_i \ x_i = t$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum s

$\mathit{Algorithm}$

- Fill first column
- (for $i = 2 \ldots n$)
 (for $s = 0 \ldots kn$)
Problem: Input $w_1 w_2 \ldots w_n$, t each $0 \leq w_i \leq k$

Output: Number of inputs $x \in \{0,1\}^n : \sum w_i x_i = t$

```
  1
  
  
  
  i = 1 \ldots n
```

- Fill first column
- (for $i = 2 \ldots n$)
 (for $s = 0 \ldots kn$)

 \[S(i,s) = S(i-1,s) + S(i-1,s-w_i) \]

- $T(n) = ?$
Problem: Input w_1, w_2, \ldots, w_n, t each $0 \leq w_i \leq k$

Output: Number of inputs $x \in \{0,1\}^n : \sum w_i x_i = t$

- Fill first column
 - (for $i = 2 \ldots n$)
 - (for $s = 0 \ldots kn$)
 - $S(i,s) = S(i-1,s) + S(i-1,s-w_i)$

$T(n) = O(kn^2)$
Steps for dynamic programming approach:

- **Identify subproblems** (here $S(i,s)$)

- **Count subproblems** (here kn^2)

- **Obtain recursion** (here $S(i,s) = S(i-1,s) + S(i-1,s-w_i)$)
 (aka structure of solutions, optimal substructure property)

- The algorithm solves all the subproblems

- Running time = Number of subproblems (here kn^2)
 \times Time to compute recursion (here $O(1)$)
Problem: Have t and ∞ piles of coins of values d_1, \ldots, d_k

Want to use minimum number of coins to obtain target t

Example: $d = (5,4,1)$ $t = 8$ $t = 5+1+1+1$, $t = 4+4$

Subproblems: $\text{Cost}[c] := \text{number of coins to obtain } c$

Number of subproblems: t
Problem: Have \(t \) and \(\infty \) piles of coins of values \(d_1, \ldots, d_k \).

Want to use minimum number of coins to obtain target \(t \).

Example: \(d = (5, 4, 1) \) \(t = 8 \) \(t = 5+1+1+1, \ t = 4+4 \)

Structure of solution: \(\text{Cost}[c] = ? \)

Suppose you obtain \(c \) with some optimal number of coins. If coin of type \(d_i \) was used, then your coins without \(d_i \) must be optimal for \(c - d_i \).
• Problem: Have \(t \) and \(\infty \) piles of coins of values \(d_1 ,... ,d_k \).
• Want to use minimum number of coins to obtain target \(t \).
• Example: \(d = (5,4,1) \) \(t = 8 \) \(t = 5+1+1+1, \ t = 4+4 \).
• Structure of solution: \(\text{Cost}[c] = 1 + \min_{i \leq k} \text{Cost}[c - d_i] \).

Algorithm:
• Initialize vector Cost to 0
• For \((c = 1..t) \)
Problem: Have t and ∞ piles of coins of values d_1, \ldots, d_k

Want to use minimum number of coins to obtain target t

Example: $d = (5,4,1)$ $t = 8$ $t = 5+1+1+1, \ t = 4+4$

Structure of solution: $\text{Cost}[c] = 1 + \min_{i \leq k} \text{Cost}[c - d_i]$

Algorithm:

- Initialize vector Cost to 0
- For $(c = 1..t)$ $\text{Cost}[c] = 1 + \min_{i \leq k} \text{Cost}[c - d_i]$

$T(n) = kn$

To know which coins to use, store argmin

Can reconstruct solution backwards
• Dynamic programming in economics

• Let us plan Bob's next L years.

• At the beginning of each year he owns savings $+ \text{ wage}$

• He must decide how much to consume, rest is saved
 Savings earn interest $(1+\rho)$
 Consuming C yields utility $\log(C)$
 ($\$10K$ vs. $\$20K$ is different from $\$1M$ vs. $\$1M+$\$10K$)

• He wants to maximize sum of utility throughout his lifetime

• He starts with savings 0.
• Formulate as problem

• $U[k,i] := \text{utility for years } i, i+1, \ldots, L \text{ if at beginning of year } i$

 savings + wage = k

• $U[k,L] := ?$

How much should Bob consume in his last year of life?
• Formulate as problem

• \(U[k,i] := \text{utility for years } i, i+1, \ldots, L \text{ if at beginning of year } i \) savings + wage = \(k \)

• \(U[k,L] := \log(k) \)
 Consumption = \(k \), because at last year \(L \) he spends all

• \(U[k,i] := ? \)
• Formulate as problem

• $U[k,i] := \text{utility for years } i, i+1, \ldots, L \text{ if at beginning of year } i$

 savings + wage = k

• $U[k,L] := \log(k)$

 Consumption = k, because at last year L he spends all

• $U[k,i] := \max_c \log(c) + U[(k - c)(1+p) + w, i+1]$

 Consumption = argmax

• A recursive algorithm for $U[0,0]$ would take time $T \geq 2^L$

• Dynamic programming takes time $\text{poly}(L,W)$
• Longest common subsequence

• Given two strings X, Y, want to find a longest subsequence Z,

 i.e. string Z whose symbols appear in X, Y in the same order, but not necessarily consecutively

• Example: $X = XMJYAUZ$

 $Y = MZJAWXU$

 $Z = MJAU$
• **Definition:** For a string $X = (x_1, x_2, \ldots, x_n)$,

 we denote by X_i the prefix (x_1, x_2, \ldots, x_i).

• X_0 is the empty subsequence \emptyset

• Do not confuse x with X

• $\text{LCS}(X_i, Y_j) = \text{longest subsequence of } X_i \text{ and } Y_j$

• Optimal substructure? What if X_i and Y_j end with the same symbol $x_i = y_j$?
• **Definition**: For a string \(X = (x_1, x_2, \ldots, x_n) \), we denote by \(X_i \) the prefix \((x_1, x_2, \ldots, x_i)\).

• \(X_0 \) is the empty subsequence \(\emptyset \).

• Do not confuse \(x \) with \(X \).

• \(\text{LCS}(X_i, Y_j) = \text{longest subsequence of } X_i \text{ and } Y_j \)

\[
\text{LCS}(X_i, Y_j) = \begin{cases}
\emptyset & \text{if } i = 0 \text{ or } j = 0 \\
(LCS(X_{i-1}, Y_{j-1}), x_i) & \text{if } x_i = y_j \\
\text{longest}(LCS(X_i, Y_{j-1}), LCS(X_{i-1}, Y_j)) & \text{if } x_i \neq y_j
\end{cases}
\]

function LCSLength(X[1..m], Y[1..n])
 C = array(0..m, 0..n)
 for i := 0..m
 C[i,0] = 0
 for j := 0..n
 C[0,j] = 0
 for i := 1..m
 for j := 1..n
 if X[i] = Y[j]
 C[i,j] := C[i-1,j-1] + 1
 else
 C[i,j] := max(C[i,j-1], C[i-1,j])
 return C[m,n]

T(m,n) = O(m n)
• As before, if we want to output the sequence, we record which rule was used at each point

\[
LCS(X_i, Y_j) = \begin{cases}
\emptyset & \text{if } i = 0 \text{ or } j = 0 \\
(LCS(X_{i-1}, Y_{j-1}), x_i) & \text{if } x_i = y_j \\
\text{longest}(LCS(X_i, Y_{j-1}), LCS(X_{i-1}, Y_j)) & \text{if } x_i \neq y_j
\end{cases}
\]

What arrows?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>G</td>
<td>Ø</td>
<td>(G)</td>
<td>Ø</td>
<td>(G)</td>
<td>(G)</td>
</tr>
<tr>
<td>A</td>
<td>(A)</td>
<td>(A)</td>
<td>(A)</td>
<td>(GA)</td>
<td>(GA)</td>
</tr>
<tr>
<td>C</td>
<td>(A)</td>
<td>(A)</td>
<td>(AC)</td>
<td>(AC) & (AC) & (AC) & (GA) & (AC) & (AC) & (GC) & (GC) & (GA) & (GA)</td>
<td></td>
</tr>
</tbody>
</table>

• Then we can reconstruct the sequence backwards.
As before, if we want to output the sequence, we record which rule was used at each point:

\[
\text{LCS} (X_i, Y_j) = \begin{cases}
\emptyset & \text{if } i = 0 \text{ or } j = 0 \\
(LCS (X_{i-1}, Y_{j-1}), x_i) & \text{if } x_i = y_j \\
\text{longest} (LCS (X_i, Y_{j-1}), LCS (X_{i-1}, Y_j)) & \text{if } x_i \neq y_j
\end{cases}
\]

Then we can reconstruct the sequence backwards.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
<th></th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>G</td>
<td>Ø</td>
<td>(G)</td>
<td>(G)</td>
<td>(G)</td>
<td>(G)</td>
<td>(G)</td>
</tr>
<tr>
<td>A</td>
<td>(A)</td>
<td>(A)</td>
<td>(A) & (G)</td>
<td>(GA)</td>
<td>(GA)</td>
<td>(GA)</td>
</tr>
<tr>
<td>C</td>
<td>(A)</td>
<td>(A)</td>
<td>(AC) & (GC)</td>
<td>(AC) & (GC) & (GA)</td>
<td>(AC) & (GC) & (GA)</td>
<td>(AC) & (GC) & (GA)</td>
</tr>
</tbody>
</table>
• We have described dynamic programming in an iterative “bottom-up” fashion, i.e., solve all the problems from the smallest to the biggest.

• Alternatively, dynamic programming may be implemented in a “top-down” recursive fashion. You keep a list of the subproblems solved, and at the beginning you check if the current subproblem was already solved, if so you just read off the solution and return.

• This is called Memoization

• Recall even divide-and-conquer may be implemented either in a recursive “top-down” fashion, or in an iterative “bottom-up” fashion.
• Dynamic programming requires solving all subproblems, leads to algorithms with running time usually n^2 or n^3

• Sometimes, greedy is faster.
Greedy Algorithms

A greedy algorithm always makes the choice that looks best at the moment.

That is, it keeps making locally optimal decision in the hope that this will lead to a globally optimal solution.
Activity Selection problem

Input: Set of n activities that need the same resource.

$A := \{ a_1, a_2, \ldots, a_n \}, \ \forall \ i \in [n] \ \ a_i = [s_i, f_i].$

Activity a_i takes time $[s_i, f_i]$. Activities a_i, a_j are compatible if $s_j \geq f_i$.

Output:

Maximum-size subset of mutually compatible activities.
Example:

<table>
<thead>
<tr>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

A set of compatible activities = ?

![Diagram showing overlapping activities]
Example:

<table>
<thead>
<tr>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

A set of compatible activities = \((a_3, a_9, a_{11})\).
Example:

<table>
<thead>
<tr>
<th>(a_i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>(f_i)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

A set of compatible activities = \((a_3, a_9, a_{11})\).

A maximal set of compatible activities = ?
Example:

<table>
<thead>
<tr>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

A set of compatible activities = (a_3, a_9, a_{11}).

A maximal set of compatible activities = (a_1, a_4, a_8, a_{11}).
Example:

<table>
<thead>
<tr>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

A set of compatible activities = (a_3, a_9, a_{11}).

A maximal set of compatible activities = (a_1, a_4, a_8, a_{11}).

Is there another maximal set?
Example:

\[
\begin{array}{cccccccccccc}
 a_i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 s_i & 1 & 3 & 0 & 5 & 3 & 5 & 6 & 8 & 8 & 2 & 12 \\
 f_i & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\end{array}
\]

A set of compatible activities = \((a_3, a_9, a_{11})\).

A maximal set of compatible activities = \((a_1, a_4, a_8, a_{11})\).

Is there another maximal set? Yes. \((a_2, a_4, a_9, a_{11})\)
• **Claim**: some optimal solution contains activity with earliest finish time

• **Proof**:
 Let \([s^*, f^*]\) be activity with earliest finish time \(f^*\)

 Let \(S\) be an optimal solution

 Write \(S = S' \cup [s, f)\) where \([s, f)\) has earliest finish time among activities in \(S\)

• Then \(S' \cup [s^*, f^*]\) is also an optimal solution, because every activity in \(S'\) has start time \(> f > f^*\).
• **Greedy Algorithm:**
 Pick activity with earliest finish time,
 that does not overlap with activities already picked
 Repeat

• **Claim:** The algorithm is correct
• **Proof:** Follows from applying previous claim iteratively.

• Let us see the algorithm in more detail
Greedy activity selection algorithm

activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
 return S;
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
 return S;
}
```plaintext
activity-selection(A) {
    sort A increasingly according to f[i];
    n := length[A];
    S := {a[i]};
    i := 1;
    for (m = 2; m ≤ n; m++)
        if (s[m] ≥ f[i]) {
            Add a[i] to S;
            i := m;
        }
    return S;
}

Example:

<table>
<thead>
<tr>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
```

activity-selection(A) {
 sort A increasingly according to $f[i]$;
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
 return S;
}

Example:
S:={a_1}
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}

Example:
S := {a_1}
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}

Example:
S := {a₁}

<table>
<thead>
<tr>
<th>aᵢ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>sᵢ</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>fᵢ</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 5 6 7 8 9 10 11 12 13 14
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}

Example:
S := {a_1}
s[2] ≥ f[1]?

\[\begin{array}{c|cccccccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 \hline
 s_i & 1 & 3 & 0 & 5 & 3 & 5 & 6 & 8 & 8 & 2 & 12 \\
 f_i & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14
\end{array}\]
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:=\{a[i]\};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}

Example:
S:=\{a_1\}
s[3] ≥ f[1]? n:=11

\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
 a_i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 s_i & 1 & 3 & 0 & 5 & 3 & 5 & 6 & 8 & 8 & 2 & 12 \\
 f_i & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\end{array}
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i])
 Add a[i] to S;
 i := m;
} return S;

Example:
S := {a₁}

<table>
<thead>
<tr>
<th>aᵢ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>fᵢ</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>sᵢ</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Example Table:

<table>
<thead>
<tr>
<th>i</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Example Diagram:
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:=\{a[i]\};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := \{a[i]\};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i])
 Add a[i] to S;
 i := m;
 return S;
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
 return S;
}
activity-selection(A) {
 sort A increasingly according to f [i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}

Example:
S:={a_1, a_4}

<table>
<thead>
<tr>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Example graph:
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:=\{a[i]\};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
 return S;
}

Example:
S:=\{a_1 ,a_4\}
Example:
S:=\{a_1, a_4\}

s[6] ≥ f[4]?

```
activity-selection(A) {
    sort A increasingly according to f[i];
    n := length[A];
    S := \{a[i]\};
    i := 1;
    for (m = 2; m ≤ n; m++)
        if (s[m] ≥ f[i]) {
            Add a[i] to S;
            i := m;
        }
    return S;
}
```
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
 return S;
}

Example:
S:={a_1, a_4}
activity-selection(A) {
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;
 }
 return S;
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;
 }
 return S;
}

Example:
S:={a_1 ,a_4 ,a_8}
activity-selection(A) {
 sort A increasingly according to \(f[i] \);
 \(n := \text{length}[A] \);
 \(S := \{a[i]\} \);
 \(i := 1 \);
 for (\(m = 2; m < n; m++ \)) {
 if (\(s[m] \geq f[i] \)) {
 Add \(a[i] \) to \(S \);
 \(i := m \);
 }
 }
 return \(S \);
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}

Example:
S := {a_1, a_4, a_8}

<table>
<thead>
<tr>
<th>i</th>
<th>m</th>
<th>n := 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
<td></td>
</tr>
<tr>
<td>s_i</td>
<td>1 3 0 5 3 5 6 8 8 2 12</td>
<td></td>
</tr>
<tr>
<td>f_i</td>
<td>4 5 6 7 8 9 10 11 12 13 14</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
```
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
} return S;

Example:
S := \{a_1, a_4, a_8\}
s[9] ≥ f[8]?

<table>
<thead>
<tr>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Example:
S := \{a_1, a_4, a_8\}
s[9] ≥ f[8]?
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 }
 return S;
}

Example:
S := {a_1, a_4, a_8}
s[10] ≥ f[8]?

<table>
<thead>
<tr>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
 return S;
}

Example:
S:={a_1 ,a_4 ,a_8}
s[10] < f[8]

<table>
<thead>
<tr>
<th></th>
<th>a_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td></td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>f_i</td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
Example:
S := \{a_1, a_4, a_8\}

```
activity-selection(A) {
    sort A increasingly according to f[i];
    n := length[A];
    S := \{a[i]\};
    i := 1;
    for (m = 2; m ≤ n; m++)
        if (s[m] ≥ f[i])
            Add a[i] to S;
            i := m;
} return S;
```
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m = 2; m ≤ n; m++)
 if (s[m] ≥ f[i])
 Add a[i] to S;
 i := m;
 return S;
}
Example:

\[S := \{a_1, a_4, a_8, a_{11}\} \]

activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;
 }
 return S;
}

Example:
S:={a_1 ,a_4 ,a_8 ,a_{11}} \quad \quad \quad m = 12, \quad n = 11
activity-selection(A) {
 sort A increasingly according to f[i];
 n:= length[A];
 S:={a[i]};
 i:=1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i :=m;}
 return S;
}
activity-selection(A) {
 sort A increasingly according to f[i];
 n := length[A];
 S := {a[i]};
 i := 1;
 for (m=2; m ≤ n; m++)
 if (s[m] ≥ f[i]) {
 Add a[i] to S;
 i := m;
 } return S;
}
Knapsack

Input:
- $S := \{(v_1, w_1), (v_2, w_2), \ldots (v_n, w_n)\}$.
 - (v_i, w_i) means item i is worth v_i and weighs w_i.
- W, weight-capacity of knapsack.

Output:
- Items that maximize value in knapsack.

Can we take a fraction of an item?
Fractional Knapsack: Yes
0-1 Knapsack: No

Fractional Knapsack

- Compute v_i / w_i for each item.
- Sort S according to v_i / w_i decreasingly.
- Take as much as possible of the item with the most v_i / w_i
Fractional knapsack \((W, S)\)

Sort \(S\), decreasingly according to \(v_i / w_i\);

\(x[1..n] = 0; \ //x[i] = \text{amount of } i \text{ to be taken}\)

\(\text{weight} = 0; i = 1;\)

while (weight < \(W\) and \(i \leq n\))

\(\text{if weight} + w[i] \leq W \{\)

\(x[i] = 1;\)

\(\text{weight} += w[i];\)

\(i++\)

\}\) else {

\(x[i] = (W - \text{weight}) / w[i];\)

\(\text{weight} = W;\)

\}

return \(x\)
Fractional knapsack \((W, S)\)

Sort \(S\), decreasingly according to \(v_i / w_i\);

\(x[1..n] = 0; \quad // x[i] = \text{amount of i to be taken}\)

\(\text{weight} = 0; \quad i = 1;\)

\[
\text{while (weight < W and i ≤ n)} \\
\quad \text{if weight + w[i] ≤ W} \\
\quad \quad x[i] = 1; \\
\quad \quad \text{weight += w[i];} \\
\quad \quad i++ \\
\quad \text{else} \\
\quad \quad x[i] = (W - weight) / w[i]; \\
\quad \quad \text{weight = W;} \\
\]

\(\text{return} \ x\)
Fractional knapsack \((W, S)\)

Sort \(S\), decreasingly according to \(v_i / w_i\);

for \((i = 1; i \leq n; i++)\)

\(x[i] = 0;\)

\(\text{Weight} = 0; i = 1;\)

while (weight < \(W\) and \(i \leq n\))

if \(\text{weight} + w[i] \leq W\)

then \(x[i] = 1;\)

\{weight = weight + w[i];

\(i = i + 1;\}\}

else

\{\(x[i] = (w - \text{weight}) / w[i];\)

weight = \(W;\}\}

return \(x\)

Running time:

\(T(n) = O(n \log n).\)