Divide and conquer

Philip II of Macedon
Divide and conquer

1) Divide your problem into subproblems

2) Solve the subproblems recursively, that is, run the same algorithm on the subproblems (when the subproblems are very small, solve them from scratch)

3) Combine the solutions to the subproblems into a solution of the original problem
Divide and conquer

Recursion is “top-down” start from big problem, and make it smaller

Every divide and conquer algorithm can be written without recursion, in an iterative “bottom-up” fashion: solve smallest subproblems, combine them, and continue

Sometimes recursion is a bit more elegant
Merge sort (low, high) {
 if (high-low <= 1) return; //Smallest subproblems

 //Divide into subproblems low..split and split..high
 split = (low+high) / 2;
 MergeSort(low, split); //Solve subproblem recursively
 MergeSort(split, high); //Solve subproblem recursively

 //Combine solutions
 merge sorted sequences a[low..split] and a[split ..high] into the single sorted sequence a[low..high]
}
Merge sort (low, high) {
 if (high-low <= 1) return;
 split = (low+high) / 2;
 MergeSort(low, split);
 MergeSort(split, high);
 Merge
}

Merge A1[1..m], A2[1..m] into B[1..2m]
i1=i2=j=1;
while i1 < m and i2 < m
 if (A1[i1] < A2[i2])
 B[j++] = A1[i1++])
 else
 B[j++] = A2[i2++]
end while;
Put what left in A1 or A2 in B
Analysis of running time $T(n)$

$T(n) = 2^i \frac{cn}{2^i} = cn$

Numbers of levels is $\log(n)$ $\Rightarrow T(n) = cn \log n$
Analysis of space

How many extra array elements we need?

O(n) to merge
Quick sort:

QuickSort(low, high)
{
 if (high-low <= 1) return;
 partition(low, high) and return split;
 QuickSort(low, split);
 QuickSort(split+1, high);
}

Partition rearranges the input array a[low..high] into two (possibly empty) sub-arrays a[low.. split] and a[split+1.. high] each element in a[low.. split] is \(\leq \) a[split], each element in a[split+1.. high] is \(> \) a[split].
Quick sort:

QuickSort(low, high)
{
 if (high-low <= 1) return;
 partition(low, high) and return split;
 QuickSort(low, split);
 QuickSort(split+1, high);
}

The choice of split determines the running time of Quick sort. If the partitioning is balanced, Quick sort is as fast as Merge sort, if the partitioning is unbalanced, Quick sort is as slow as Bubble sort.
Partition(A[lo.. hi] w.r.t. pivot)

For simplicity, assume all elements and pivot different.
i = lo-1; j = hi+1.

Repeat {
 Do i++ while A[i] < pivot;
 Do j-- while A[j] > pivot;
 If i < j then swap A[i] and A[j]
 Else return i
}

Then can place pivot in A[j] (and move A[i] to A[hi+1]).

Running time: linear.
Analysis of running time

T(n) = worst-case number of comparisons in Quick sort on an arrays of length n.

T(n) depends on the choice of the pivot element split.

- Choosing pivot deterministically
- Choosing pivot randomly

```python
QuickSort(low, high)
{
    if (high-low <= 1) return;
    partition(low, high) and
    return split,
    QuickSort(low, split);
    QuickSort(split+1, high);
}
```
Analysis of running time

T(n) = worst-case number of comparisons in Quick sort on an arrays of length n.

- Choosing pivot deterministically:
 the worst case happens when one sub-array is empty and the other is of size n-1, in this case:

 \[T(n) = T(n-1) + T(0) + cn \]

 = ?
Analysis of running time

T(n) = worst-case number of comparisons in Quick sort on an array of length n.

- Choosing pivot deterministically:
 the worst case happens when one sub-array is empty and the other is of size n-1, in this case:
 \[T(n) = T(n-1) + T(0) + c \cdot n \]
 \[= O(n^2). \]

- Choosing pivot randomly we can guarantee
 \[T(n) = O(n \log n) \] with high probability
Randomized-Quick sort:

R-QuickSort(low, high) {
 if (high-low ≤ 1) return;
 R-partition(low, high) and return split,
 R-QuickSort(low, split-1);
 R-QuickSort(split+1, high);
}

R-partition(low, high)

i:= random(low, high);
exchange (a[i], A[low]);
partition(low, high);

We bound the total time spent by Partition
We shall bound X, the number of times elements are compared.

Note that elements are only compared in partition.

When does the algorithm compare two elements?
When does the algorithm compare to elements?

- Rename array A as $z_1, z_2, \ldots z_n$, with z_i being the ith smallest element
- Define $Z_{ij} := \{z_i, z_{i+1}, \ldots z_j\}$.
When does the algorithm compare to elements?

- Rename array A as $z_1, z_2, \ldots z_n$, with z_i being the ith smallest element.
- Define $Z_{ij}:=$\{z_i, z_{i+1}, \ldots z_j \}$.
- Note: each pair of elements z_i, z_j is compared at most once. Elements are compared with the **pivot**, after a particular call to Partition that **pivot** is never used again.
When does the algorithm compare to elements?

- Rename array A as z_1, z_2, \ldots, z_n, with z_i being the ith smallest element.
- Define $Z_{ij} = \{z_i, z_{i+1}, \ldots, z_j\}$.
- Note: each pair of elements z_i, z_j is compared at most once.
 Elements are compared with the pivot, after a particular call to Partition that pivot is never used again.

- Define indicator random variable $X_{ij} = 1 \{z_i \text{ is compared to } z_j\}$,
 $X_{ij} = 0 \{z_i \text{ is not compared to } z_j\}$
When does the algorithm compare to elements?

- Rename array A as z_1, z_2, \ldots, z_n, with z_i being the ith smallest element.
- Define $Z_{ij} := \{z_i, z_{i+1}, \ldots, z_j\}$.
- Note: each pair of elements z_i, z_j is compared at most once.
 Elements are compared with the pivot, after a particular call to Partition that pivot is never used again.

- Define indicator random variable $X_{ij} := 1 \{ \text{z}_i \text{ is compared to z}_j \}$, $X_{ij} := 0 \{ \text{z}_i \text{ is not compared to z}_j \}$

- Note: $X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$.
\(X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \).

Taking expectation of both sides and using linearity of E, we get:

\[
E[X] = E \left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right)
\]

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E \left[X_{ij} \right]
\]

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr \{z_i \text{ is compared to } z_j\}
\]
Pr \{z_i \text{ is compared to } z_j\} = ?

When two elements \(z_i\) and \(z_j\) are compared?
Pr \{z_i \text{ is compared to } z_j\} = ?

When two elements z_i and z_j are compared? It's useful to think when they are not compared!
Pr \{z_i \text{ is compared to } z_j\} = ?

When two elements \(z_i\) and \(z_j\) are compared? It's useful to think when they are not compared!

If some element \(y\), \(z_i < y < z_j\) is chosen as pivot, we know that \(z_i\) and \(z_j\) can not be compared.

Why?
Pr \{z_i \text{ is compared to } z_j\} = ?

When two elements \(z_i\) and \(z_j\) are compared? It's useful to think when they are \textbf{not} compared!

If some element \(y\), \(z_i < y < z_j\) is chosen as pivot, we know that \(z_i\) and \(z_j\) can not be compared.

Because list of numbers will be partitioned and \(z_i\) and \(z_j\) will be in two different parts.
When two elements z_i and z_j are compared? It's useful to think when they are not compared!

If some element y, $z_i < y < z_j$ is chosen as pivot, we know that z_i and z_j cannot be compared.

Because list of numbers will be partitioned and z_i and z_j will be in two different parts.

Therefore z_i and z_j are compared if the first element chosen as pivot from Z_{ij} is either z_i or z_j.
Pr \{z_i \text{ is compared to } z_j \} = \text{Pr } [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}]
Pr \{z_i \text{ is compared to } z_j\} = Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}] \\
= Pr [z_j \text{ is first pivot chosen from } Z_{ij}] \\
+ Pr [z_i \text{ is first pivot chosen from } Z_{ij}]
Pr \{z_i \text{ is compared to } z_j\} = Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}]
\quad = Pr [z_j \text{ is first pivot chosen from } Z_{ij}]
\quad + Pr [z_i \text{ is first pivot chosen from } Z_{ij}]
\quad = \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1}.
Pr \{z_i \text{ is compared to } z_j\} = Pr \left[z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}\right]
\hspace{2cm} = Pr \{z_j \text{ is first pivot chosen from } Z_{ij}\}
\hspace{2cm} + Pr \{z_i \text{ is first pivot chosen from } Z_{ij}\}
\hspace{2cm} = 1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr \{z_i \text{ is compared to } z_j\}
\hspace{2cm} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2/(j-i+1) .
Pr \{z_i \text{ is compared to } z_j \} = Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}]

= Pr [z_j \text{ is first pivot chosen from } Z_{ij}]

+ Pr [z_i \text{ is first pivot chosen from } Z_{ij}]

= \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1}.

E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr \{z_i \text{ is compared to } z_j \}

= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}

= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}

< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}
\[\Pr \{z_i \text{ is compared to } z_j\} = \Pr \{z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}\} \]
\[= \Pr \{z_j \text{ is first pivot chosen from } Z_{ij}\} \]
\[+ \Pr \{z_i \text{ is first pivot chosen from } Z_{ij}\} \]
\[= \frac{1}{(j-i+1)} + \frac{1}{(j-i+1)} = \frac{2}{(j-i+1)}. \]

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr \{z_i \text{ is compared to } z_j\} \]
\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{(j-i+1)} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{(k+1)} \]
\[< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} = \sum_{i=1}^{n-1} O(\log n) = O(n \log n). \]
Pr \{z_i \text{ is compared to } z_j \} = \Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}] \\
\hspace{2cm} = \Pr [z_j \text{ is first pivot chosen from } Z_{ij}] \\
\hspace{3.5cm} + \Pr [z_i \text{ is first pivot chosen from } Z_{ij}] \\
\hspace{2cm} = \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1} .

E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr \{z_i \text{ is compared to } z_j \} \\
\hspace{2cm} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
\hspace{2cm} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\
\hspace{2cm} < \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \\
\hspace{2cm} = \sum_{i=1}^{n-1} O(\log n) = O(n \log n).

Expected running time of Randomized-QuickSort is \(O(n \log n)\).
An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved $\mathbb{E}[T] \leq c \cdot n \cdot \log n$, for some constant c.

Hence, $\Pr[T > 100 \cdot c \cdot n \cdot \log n] < ?$
An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved $E[T] \leq cn \log n$, for some constant c.

Hence, $Pr[T > 100cn \log n] < 1/100$

Markov's inequality useful to translate bounds on the expectation in bounds of the form: “It is unlikely the algorithm will take too long.”
Batcher's Odd-Even Mergesort

This is just like Merge sort except that the merge subroutine is replaced with a subroutine whose comparisons do not depend on the input.

Useful if you want to sort with a (non-programmable) piece of hardware
Batcher's Odd-Even Mergesort

This is just like Merge sort except that the merge subroutine is replaced with a subroutine whose comparisons do not depend on the input.

Assumption:
Size of the input sequence, n, is a power of 2.
Odd-even-Mergesort (a[0..n-1]) {
if n > 1 then
 odd-even-Mergesort(a[0.. n/2-1]);
 odd-even-Mergesort(a [n/2 .. n-1]);
 odd-even-merge(a[0..n-1]);
}

Same structure as Merge sort

But Odd-even-merge is more complicated, recursive
odd-even-merge(a[0..n-1]); {
 if n = 2 then compare-exchange(0,1);
 else {
 odd-even-merge(a[0,2 .. n-2]); //even subsequence

 odd-even-merge(a[1,3,5 .. n-1]); //odd subsequence

 for i ∈ {1,3,5, … n-1} do
 compare-exchange(i, i +1);
 }
}

Compare-exchange(x,y) compares a[x] and a[y] and swaps them if necessary

Merges correctly if a[0.. n/2-1] and a[n/2 .. n-1] are sorted
odd-even-merge(a[0..n-1]);
 if n = 2 then compare-exchange(0,1);
 else
 odd-even-merge(a[0,2 .. n-2]);
 odd-even-merge(a[1,3,5 .. n-1]);
 for i ∈ {1,3,5, … n-1} do
 compare-exchange(i, i +1);

0-1 principle: If we sort correctly all sequences of 0 and 1, then we sort correctly all sequences

True when input only accessed through compare-exchange
odd-even-merge(a[0..n-1]);
if n = 2 then compare-exchange(0,1);
else
 odd-even-merge(a[0,2 .. n-2]);
 odd-even-merge(a[1,3,5 .. n-1]);
for i ∈ {1,3,5, … n-1} do
 compare-exchange(i, i +1);
Analysis of running time

T(n) = number of comparisons.

\[T(n) = 2T(n/2) + T'(n). \]

T'(n) = number of operations in odd-even-merge

\[T'(n) = 2T'(n/2) + cn. \]

OE-Mergesort (a[0..n-1])
if n > 1 then
 OE-Mergesort(a[0..n/2-1]);
 OE-Mergesort(a[n/2..n-1]);
 OE-merge(a[0..n-1]);
else
 odd-even-merge(a[0..n-1]);
 if n = 2 then
 compare-exchange(0,1);
 else
 odd-even-merge(a[0,2..n-2]);
 odd-even-merge(a[1,3,5..n-1]);
 for i ∈ {1,3,5, … n-1} do
 compare-exchange(i, i +1);
Analysis of running time

\[T(n) = \text{number of comparisons.} \]

\[= 2T(n/2) + T'(n) \]

\[= 2T(n/2) + O(n \log n). \]

\[= ? \]

\[T'(n) = \text{number of operations in odd-even-merge} \]

\[= 2T'(n/2) + c \cdot n = O(n \log n). \]

OE-Mergesort \(a[0..n-1] \)

if \(n > 1 \) then

OE-Mergesort(\(a[0..n/2-1] \));

OE-Mergesort(\(a[n/2..n-1] \));

OE-merge(\(a[0..n-1] \));

odd-even-merge(\(a[0..n-1] \));

if \(n = 2 \) then

compare-exchange(0,1);

else

odd-even-merge(\(a[0,2..n-2] \));

odd-even-merge(\(a[1,3,5..n-1] \));

for \(i \in \{1,3,5, \ldots n-1\} \) do

compare-exchange(i, i +1);
Analysis of running time

\[T(n) = \text{number of comparisons}. \]
\[= 2T(n/2) + T'(n) \]
\[= 2T(n/2) + O(n \log n) \]
\[= O(n \log^2 n). \]

OE-Mergesort (a[0..n-1])

if \ n > 1 \ then

OE-Mergesort(a[0..n/2-1]);
OE-Mergesort(a[n/2..n-1]);
OE-merge(a[0..n-1]);

odd-even-merge(a[0..n-1]);

if \ n = 2 \ then

compare-exchange(0,1);

else

odd-even-merge(a[0,2 .. n-2]);
odd-even-merge(a[1,3,5 .. n-1]);
for \ i \in \{1,3,5, \ldots, n-1\} \ do

compare-exchange(i, i +1);
<table>
<thead>
<tr>
<th>Sorting algorithm</th>
<th>Time</th>
<th>Space</th>
<th>Assumption/ Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble sort</td>
<td>$\Theta(n^2)$</td>
<td>$O(1)$</td>
<td>Easy to code</td>
</tr>
<tr>
<td>Counting sort</td>
<td>$\Theta(n+k)$</td>
<td>$O(n+k)$</td>
<td>Input range is $[0..k]$</td>
</tr>
<tr>
<td>Radix sort</td>
<td>$\Theta(d(n+k))$</td>
<td>$O(n+k)$</td>
<td>Inputs are d-digit integers in base k</td>
</tr>
<tr>
<td>Quick sort (deterministic)</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>Quick sort (Randomized)</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>Merge sort</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
<td></td>
</tr>
<tr>
<td>Odd-even merge sort</td>
<td>$O(n \log^2 n)$</td>
<td>$O(1)$</td>
<td>Comparisons are independent of input</td>
</tr>
</tbody>
</table>
Next

- View other divide-and-conquer algorithms
- Some related to sorting
Selecting h-th smallest element

- Input: A[1], ..., A[n], and h
 Desired output: B[h] for B = sorted version of A

- Can do with sorting, would take O(n log n)

- Now we give O(n) algorithm
Selecting h-th smallest element

- Divide array in consecutive blocks of 5
- Find median of each
- Find median of medians, x
- Partition array according to x. Let x be k-th element
- If k = h return x, if k > h recurse on left, if k < h recurse on right
• Divide array in consecutive blocks of 5
• Find median of each
• Find median of medians, x
• Partition array according to x. Let x be k-th element
• If k = h return x, if k > h recurse on left, if k < h recurse on right

• Analysis: When partitioning according to x, half the medians will be ≥ x. Each contributes ≥ 3 elements from their 5. So we throw away ≥ ?
• Divide array in consecutive blocks of 5
• Find median of each
• Find median of medians, x
• Partition array according to x. Let x be k-th element
• If \(k = h\) return x, if \(k > h\) recurse on left, if \(k < h\) recurse on right

• Analysis: When partitioning according to x, half the medians will be \(\geq x\). Each contributes \(\geq 3\) elements from their 5. So we throw away \(\geq 3n/10\) elements

• \(T(n) \leq \) ?
• Divide array in consecutive blocks of 5
• Find median of each
• Find median of medians, x
• Partition array according to x. Let x be k-th element
 • If k = h return x, if k > h recurse on left, if k < h recurse on right

• Analysis: When partitioning according to x, half the medians will be ≥ x. Each contributes ≥ 3 elements from their 5. So we throw away ≥ 3n/10 elements

• T(n) ≤ T(n/5) + T(7n/10) + O(n)
• T(n) = ? (not immediate)
• Divide array in consecutive blocks of 5
• Find median of each
• Find median of medians, x
• Partition array according to x. Let x be k-th element
 If k = h return x, if k > h recurse on left, if k < h recurse on right

• Analysis: When partitioning according to x, half the medians will be ≥ x. Each contributes ≥ 3 elements from their 5. So we throw away ≥ 3n/10 elements

• T(n) ≤ T(n/5) + T(7n/10) + O(n)
• T(n) = O(n) because 1/5 + 7/10 = 9/10 < 1
Closest pair of points

Input:
Set P of n points in the plane

Output:
Two points x_1 and x_2 with the shortest (Euclidean) distance from each other.
Closest pair of points

Input:
Set P of n points in the plane

Output:
Two points x_1 and x_2 with the shortest (Euclidean) distance from each other.

- For the following algorithm we assume that we have two arrays X and Y, each containing all the points of P.
- X is sorted so that the x-coordinates are increasing
- Y is sorted so that y-coordinates are increasing.
Closest pair of points

Divide: find a vertical line L that bisects P into two sets $P_L := \{ \text{points in } P \text{ that are on } L \text{ or to the left of } L \}$.

$P_R := \{ \text{points in } P \text{ that are to the right of } L \}$.

Such that $|P_L| = n/2$ and $P_R = n/2$ (plus or minus 1)

Easy to do given that we have X that's sorted.

Next: Conquer
Closest pair of points

Divide: find a vertical line L that bisects P into two sets

$P_L := \{ \text{points in } P \text{ that are on } L \text{ or to the left of } L \}.$

$P_R := \{ \text{points in } P \text{ that are to the right of } L \}.$

Such that $|P_L| = n/2$ and $P_R = n/2$ (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair of point in P_L and P_R.

Let the closest distances in P_L and P_R be δ_L and δ_R, and let $\delta = \min(\delta_L, \delta_R)$.

Note computing X and Y for P_L and P_R is easy
Closest pair of points

Divide: find a vertical line L that bisects P into two sets

$P_L := \{ \text{points in } P \text{ that are on } L \text{ or to the left of } L \}.$

$P_R := \{ \text{points in } P \text{ that are to the right of } L \}.$

Such that $|P_L| = n/2$ and $P_R = n/2$ (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair of point in P_L and P_R.

Let the closest distances in P_L and P_R be δ_L and δ_R, and let $\delta = \min(\delta_L, \delta_R)$.

Combine: The closest pair is either the one with distance δ or it is a pair with one point in P_L and the other in P_R with distance less than δ. (No saving?)
Closest pair of points

Combine: The closest pair is either the one with distance δ or it is a pair with one point in P_L and the other in P_R with distance less than δ.

If such a pair exists it must be in a $\delta \times 2\delta$ box straddling L.

How do we find it?
We can find such pairs if any exist by:

- Create Y' by removing from Y points that are not in 2δ-wide vertical strip.
- For each point $p \in Y'$, Check the distance between p and the seven following points (why 7?) If any of them are closer than δ, update the closest pair and the shortest distance δ.
- Return δ and the closest pair.

(Here p would be somewhere on top edge of box.)
Why 7?
We know all pairs of points in P_L have distance $\geq \delta$
so at most 4 points in P_L can be in a $\delta \times \delta$ square left of L.
Similarly to the right.

This gives 8 points,
and one of them
is your current p
Analysis of running time

Similar to Merge sort:

\[T(n) = \text{number of operations} \]
\[T(n) = 2 \ T(n/2) + c \ n \]
\[= \Omega(n \log n). \]

Exercise: What is the space requirement?
Is multiplication harder than addition?

Alan Cobham, < 1964
Is multiplication harder than addition?

We still do not know!

Alan Cobham, < 1964
Addition

Input: two n-digit integers a, b in base w
 (think $w = 2, 10$)

Output: One integer $c = a + b$.

Operations allowed: only on digits

The simple way to add takes $\ ?$
Addition

Input: two n-digit integers a, b in base w
(think w = 2, 10)

Output: One integer c = a + b.

Operations allowed: only on digits

The simple way to add takes O(n)

optimal?
Addition

Input: two n-digit integers a, b in base w
(think w = 2, 10)

Output: One integer c = a + b.

Operations allowed: only on digits

The simple way to add takes O(n)

This is optimal, since we need at least to write c
Multiplication

Input: two n-digit integers a, b in base w

Output: One integer $c = a \cdot b$.

Operations allowed: only on digits

Simple way takes $?$

\[
\begin{array}{c}
23958233 \\
5830 \times \\
\hline
00000000 \quad (= \quad 23,958,233 \times \quad 0) \\
71874699 \quad (= \quad 23,958,233 \times \quad 30) \\
191665864 \quad (= \quad 23,958,233 \times \quad 800) \\
119791165 \quad (= \quad 23,958,233 \times \quad 5,000) \\
\hline
139676498390 \quad (= \quad 139,676,498,390) \\
\end{array}
\]
Multiplication
Input: two n-digit integers a, b in base w
\hspace{.79 in} \text{(think w = 2, 10)}
Output: One integer \(c = a \cdot b \).
Operations allowed: only on digits
The simple way to multiply takes \(\Omega(n^2) \)
Can we do this any faster?
Multiplication

Example:

2-digit numbers N_1 and N_2 in base w.

$N_1 = a_0 + a_1 w$.

$N_2 = b_0 + b_1 w$.

For this example, think w very large, like $w = 2^{32}$.
Multiplication

Example:

2-digit numbers N_1 and N_2 in base w.

$N_1 = a_0 + a_1w$.

$N_2 = b_0 + b_1w$.

$P = N_1N_2$

$= a_0b_0 + (a_0b_1 + a_1b_0)w + a_1b_1w^2$

$= p_0 + p_1w + p_2w^2$.

This can be done with $?$ multiplications
Multiplication

Example:

2-digit numbers N_1 and N_2 in base w.

$N_1 = a_0 + a_1w$.

$N_2 = b_0 + b_1w$.

$P = N_1N_2$

$= a_0b_0 + (a_0b_1 + a_1b_0)w + a_1b_1w^2$

$= p_0 + p_1w + p_2w^2$.

This can be done with 4 multiplications.

Can we save multiplications, possibly increasing additions?
Compute

$q_0 = a_0 b_0$.

$q_1 = (a_0 + a_1)(b_1 + b_0)$.

$q_2 = a_1 b_1$.

Note:

$q_0 = p_0$.

$q_1 = p_1 + p_0 + p_2$.

$q_2 = p_2$.

$P = a_0 b_0 + (a_0 b_1 + a_1 b_0)w + a_1 b_1 w^2$

$= p_0 + p_1 w + p_2 w^2$.

So the three digits of P are evaluated using 3 multiplications rather than 4.

What to do for larger numbers?
The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer $c = a \cdot b$.

Divide:

How?
The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer $c = a \cdot b$.

Divide:

$m = n/2$.

$a = a_0 + a_1 w^m$.

$b = b_0 + b_1 w^m$.

$$a \cdot b = a_0 b_0 + (a_0 b_1 + a_1 b_0) w^m + a_1 b_1 w^{2m}$$

$$= p_0 + p_1 w^m + p_2 w^{2m}$$
The Karatsuba algorithm

Input: two n-digit integers \(a, b \) in base \(w \).

Output: One integer \(c = a \cdot b \).

Divide:

\[m = \frac{n}{2}. \]
\[a = a_0 + a_1 w^m. \]
\[b = b_0 + b_1 w^m. \]

Conquer:

\[q_0 = a_0 \times b_0. \]
\[q_1 = (a_0 + a_1) \times (b_1 + b_0). \]
\[q_2 = a_1 \times b_1. \]

Each \(\times \) is a recursive call

\[a \cdot b = a_0 b_0 + (a_0 b_1 + a_1 b_0) w^m + a_1 b_1 w^{2m} = p_0 + p_1 w^m + p_2 w^{2m} \]
The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer $c = a \cdot b$.

Divide:

$m = n/2.$

$a = a_0 + a_1 w^m.$

$b = b_0 + b_1 w^m.$

Conquer:

$q_0 = a_0 \times b_0.$

$q_1 = (a_0 + a_1) \times (b_1 + b_0).$

$q_2 = a_1 \times b_1.$

Combine:

$p_0 = q_0.$

$p_1 = q_1 - q_0 - q_2.$

$p_2 = q_2.$

Each \times is a recursive call

\[
\begin{align*}
 a \cdot b &= a_0 b_0 + (a_0 b_1 + a_1 b_0) w^m + a_1 b_1 w^{2m} \\
 &= p_0 + p_1 w^m + p_2 w^{2m}
\end{align*}
\]
Analysis of running time

T(n) = number of operations.

T(n) = 3 T(n/2) + O(n)

= ?

Can someone do this on the board?
Analysis of running time

\[T(n) = \text{number of operations.} \]

\[T(n) = 3\ T(n/2) + O(n) \]

\[= \Theta(n^{\log_2 3}) \quad \text{(log in base 2)} \]

\[= O(n^{1.59}). \]

Karatsuba may be used in your computers to reduce, say, multiplication of 128-bit integers to 64-bit integers.

Are there faster algorithms for multiplication?
Algorithms taking essentially $O(n \log n)$ are known.

1971: Schnage-Strassen $O(n \log n \log \log n)$

2007: Furer $O(n \log n \exp(\log^* n))$

$\log^* n = \text{times you need to apply } \log \text{ to } n \text{ to make it } 1$

They are all based on Fast Fourier Transform, which we will see later.
Matrix Multiplication

$n \times n$ matrixes. Note input length is n^2

![Matrix Multiplication Diagram](image)

$n=4$

Just to write down output need time $\Omega(n^2)$

The simple way to do matrix multiplication takes ?
Matrix Multiplication

n x n matrixes. Note input length is n^2

Just to write down output need time $\Omega(n^2)$

The simple way to do matrix multiplication takes $O(n^3)$.
Strassen's Matrix Multiplication

Input: two $n \times n$ matrices A, B.
Output: One $n \times n$ matrix $C = A \cdot B$.
Strassen's Matrix Multiplication

Divide:

Divide each of the input matrices A and B into 4 matrices of size $n/2 \times n/2$, as follows:

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \quad B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

$A \cdot B = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \cdot \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix} = \begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}$
Strassen's Matrix Multiplication

Conquer:

Compute the following 7 products:

\[M_1 = (A_{11} + A_{22})(B_{11} + B_{22}). \]

\[M_2 = (A_{21} + A_{22})B_{11}. \]

\[M_3 = A_{11}(B_{12} - B_{22}). \]

\[M_4 = A_{22}(B_{21} - B_{11}). \]

\[M_5 = (A_{11} + A_{12})B_{22}. \]

\[M_6 = (A_{21} - A_{11})(B_{11} - B_{12}). \]

\[M_7 = (A_{12} - A_{22})(B_{21} - B_{22}). \]
Strassen's Matrix Multiplication

Combine:

\[C_{11} = M_1 + M_4 - M_5 + M_7. \]

\[C_{12} = M_3 + M_5. \]

\[C_{21} = M_2 + M_4. \]

\[C_{22} = M_1 - M_2 + M_3 + M_6. \]

\[
C = \begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
\]
Analysis of running time

\(T(n) = \) number of operations

\(T(n) = 7 \, T(n/2) + 18 \) \{Time to do matrix addition\}

\[= 7 \, T(n/2) + \Theta(n^2) \]

\[= \, ? \]
Analysis of running time

\(T(n) = \text{number of operations} \)

\[T(n) = 7 \ T(n/2) + 18 \ \{ \text{Time to do matrix addition} \} \]

\[= 7 \ T(n/2) + \Theta(n^2) \]

\[= \Theta(n \ \log 7) \]

\[= O(n^{2.81}). \]
Definition: ω is the smallest number such that multiplication of $n \times n$ matrices can be computed in time $n^{\omega+\varepsilon}$ for every $\varepsilon > 0$.

Meaning: time n^ω up to lower-order factors.

$\omega \geq 2$ because you need to write the output.

$\omega < 2.81$ Strassen, just seen.

$\omega < 2.38$ state of the art.

Determining ω is one of the most important problems.
Fast Fourier Transform (FFT)

We start with the most basic case, then move to more complicated
Walsh-Hadamard transform

Hadamard $2^i \times 2^i$ matrix H_i:

$$H_0 = [1]$$

$$H_{i+1} = \begin{pmatrix} H_i & H_i \\ H_i & -H_i \end{pmatrix}$$

Problem: Given vector x of length $n = 2^k$, compute $H_k x$

Trivial: $O(n^2)$
Next: $O(n \log n)$
Walsh-Hadamard transform

Write \(x = [y \ z]^T \), and note that \(H_{k+1} x = \)

\[
\begin{pmatrix}
H_k y + H_k z \\
H_k y - H_k z
\end{pmatrix}
\]

This gives \(T(n) = ? \)
Walsh-Hadamard transform

Write $x = [y \ z]^T$, and note that $H_{k+1} \ x =$

$$
\begin{pmatrix}
H_k \ y + H_k \ z \\
H_k \ y - H_k \ z
\end{pmatrix}
$$

This gives $T(n) = 2 \ T(n/2) + O(n) = O(n \ \log \ n)$
Polynomials and Fast Fourier Transform (FFT)
Polynomials

$$A(x) = \sum_{i=0}^{n-1} a_i x^i$$ a polynomial of degree n-1

Evaluate at a point $x = b$ with how many multiplications?

2n trivial
Polynomials

\[A(x) = \sum_{i=0}^{n-1} a_i x^i \]

a polynomial of degree n-1

Evaluate at a point \(x = b \) with Horner's rule:
Compute \(a_{n-1} x \),
\[
\begin{align*}
 a_{n-2} + a_{n-1}x^2 , \\
 a_{n-3} + a_{n-2}x + a_{n-1}x^3
\end{align*}
\]

…

Each step: multiply by \(x \), and add a coefficient

There are \(\leq n \) steps \(\Rightarrow n \) multiplications
Summing Polynomials

\[\sum_{i=0}^{n-1} a_i x^i \]

a polynomial of degree n-1

\[\sum_{i=0}^{n-1} b_i x^i \]

a polynomial of degree n-1

\[\sum_{i=0}^{n-1} c_i x^i \]

the sum polynomial of degree n-1

\[c_i = a_i + b_i \]

Time \(O(n) \)
How to multiply polynomials?

\[\sum_{i=0}^{n-1} a_i x^i \]
a polynomial of degree n-1

\[\sum_{i=0}^{n-1} b_i x^i \]
a polynomial of degree n-1

\[\sum_{i=0}^{2n-2} c_i x^i \]
the product polynomial of degree n-1

\[c_i = \sum_{j \leq i} a_j b_{i-j} \]

Trivial algorithm: time \(O(n^2) \)
FFT gives time \(O(n \log n) \)
Polynomial representations

Coefficient: \((a_0, a_1, a_2, \ldots, a_{n-1})\)

Point-value: have points \(x_0, x_1, \ldots, x_{n-1}\) in mind

Represent polynomials \(A(X)\) by pairs
\[
\{ (x_0, y_0), (x_1, y_1), \ldots \} \quad \text{A}(x_i) = y_i
\]

To multiply in point-value, just need \(O(n)\) operations.
Approach to polynomial multiplication:

A, B given as coefficient representation

1) Convert A, B to point-value representation

2) Multiply C = AB in point-value representation

3) Convert C back to coefficient representation

2) done easily in time $O(n)$

FFT allows to do 1) and 3) in time $O(n \log n)$. Note: For C we need $2n-1$ points; we'll just think “n”
From coefficient to point-value:

\[
y_0 = \begin{pmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1}
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
a_{n-1}
\end{pmatrix}
\]

From point-value representation, note above matrix is invertible (if points distinct)

Alternatively, Lagrange's formula
We need to evaluate A at points $x_1 \ldots x_n$ in time $O(n \log n)$

Idea: divide and conquer:

$$A(x) = A^0(x^2) + x A^1(x^2)$$

where A^0 has the even-degree terms, A^1 the odd

Example: $A = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$

$$A^0(x^2) = a_0 + a_2 x^2 + a_4 x^4$$

$$A^1(x^2) = a_1 + a_3 x^2 + a_5 x^4$$

How is this useful?
We need to evaluate A at points $x_1 \ldots x_n$ in time $O(n \log n)$

Idea: divide and conquer:

$$A(x) = A^0 (x^2) + x A^1 (x^2)$$

where A^0 has the even-degree terms, A^1 the odd.

If my points are $x_1, x_2, x_{n/2}, -x_1, -x_2, -x_{n/2}$

I just need the evaluations of A^0, A^1 at $x_1^2, x_2^2, \ldots x_{n/2}^2$

$T(n) \leq 2 T(n/2) + O(n)$, with solution $O(n \log n)$. Are we done?
We need to evaluate A at points $x_1 \ldots x_n$ in time $O(n \log n)$

Idea: divide and conquer:

$$A(x) = A^0 \left(x^2\right) + x A^1 \left(x^2\right)$$

where A^0 has the even-degree terms, A^1 the odd

If my points are $x_1, x_2, x_{n/2}, -x_1, -x_2, -x_{n/2}$

I just need the evaluations of A^0, A^1 at $x_1^2, x_2^2, \ldots x_{n/2}^2$

$$T(n) \leq 2 T(n/2) + O(n), \text{ with solution } O(n \log n). \text{ Are we done?}$$

Need points which can be iteratively decomposed in $+$ and $-$
Complex numbers:
Real numbers “with a twist”

\[z \equiv x + iy \]

\[x = r \cos \theta \]
\[y = r \sin \theta \]
\[r = \sqrt{x^2 + y^2} \]
\(\omega_n = n\)-th primitive root of unity

\(\omega_n^0, \ldots, \omega_n^{n-1} \)

n-th roots of unity

We evaluate polynomial A of degree n-1 at roots of unity.

\(\omega_n^0, \ldots, \omega_n^{n-1} \)

Fact: The n squares of the n-th roots of unity are:
- first the n/2 n/2-th roots of unity,
- then again the n/2 n/2-th roots of unity.

\(\Rightarrow \) from coefficient to point-value in \(O(n \log n) \) (complex) steps
Summary: Evaluate A at n-th roots of unity $\omega_n^0, \ldots, \omega_n^{n-1}$

Divide: $A(x) = A^0(x^2) + x A^1(x^2)$
where A^0 has the even-degree terms, A^1 the odd

Conquer: Evaluate A^0, A^1 at $n/2$-th roots $\omega_{n/2}^0, \ldots, \omega_{n/2}^{n/2-1}$
This yields evaluation vectors y^0, y^1

Combine: $z := 1 = \omega_n^0$
for $(k = 0, k < n, k++)$
\[
y[k] = y^0[k \text{ modulo } n/2] + z y^1[k \text{ modulo } n/2]; \quad z = z \cdot \omega_n
\]

$T(n) \leq 2 \, T(n/2) + O(n)$, with solution $O(n \log n)$.
It only remains to go from point-value to coefficient represent.

\[
\begin{pmatrix}
 y_0 \\
 y_1 \\
 y_2 \\
 \vdots \\
 y_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
 1 & 1 & 1 & 1 & \cdots & 1 \\
 1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\
 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\
 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)}
\end{pmatrix}
\begin{pmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3 \\
 \vdots \\
 a_{n-1}
\end{pmatrix}
\]

We need to invert \(F \).
It only remains to go from point-value to coefficient represent.

\[
\begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_{n-1}
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\
1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\
1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3 \\
\vdots \\
a_{n-1}
\end{bmatrix}
\]

Fact: \((F^{-1})_{j,k} = \omega_n^{-jk} / n\) \quad \text{Note } j,k \in \{0,1,\ldots, n-1\}

To compute inverse, use FFT with \(\omega^{-1}\) instead of \(\omega\), then divide by \(n\).