Divide and conquer

Philip II of Macedon
Divide and conquer

1) **Divide** your problem into subproblems

2) **Solve** the subproblems recursively, that is, run the same algorithm on the subproblems (when the subproblems are very small, solve them from scratch)

3) **Combine** the solutions to the subproblems into a solution of the original problem
Divide and conquer

Recursion is “top-down” start from big problem, and make it smaller

Every divide and conquer algorithm can be written without recursion, in an iterative “bottom-up” fashion: solve smallest subproblems, combine them, and continue

Sometimes recursion is a bit more elegant
Mergesort (low, high) {
 if (high-low <= 1) return; //Smallest subproblems

 //Divide into subproblems low..split and split..high
 split = (low+high) / 2;

 MergeSort(low, split); //Solve subproblem recursively
 MergeSort(split+1, high); //Solve subproblem recursively

 //Combine solutions
 merge sorted sequences a[low..split] and a[split+1 ..high] into the single sorted sequence a[low..high]
}

Mergesort (low, high) {
 if (high-low <= 1) return;
 split = (low+high) / 2;
 MergeSort(low, split);
 MergeSort(split+1, high);
}

Merge A1[1..a1], A2[1..a2] into B[1..(a1+a2)]

i1=i2=j=1;

while i1 < a1 and i2 < a2
 if (A1[i1] < A2[i2])
 B[j++] = A1[i1++])
 else
 B[j++] = A2[i2++]
end while;

Put what left in A1 or A2 in B
Analysis of running time

Merging \(A1[1..a1]\), \(A2[1..a2]\) into \(B[1..(a1+a2)]\) takes time?

\[
\text{MergeSort}(\text{low}, \text{high}) \{
 \text{if} (\text{high}-\text{low} \leq 1) \text{ return;}
 \text{split} = (\text{low}+\text{high}) / 2;
 \text{MergeSort}(\text{low}, \text{split});
 \text{MergeSort}(\text{split}+1, \text{high});
 \text{Merge low..split and split+1 ..high}
\}
\]
Analysis of running time
Merging A1[1..a1], A2[1..a2] into B[1..(a1+a2)] takes time $c \cdot (a1+a2)$ for some constant c

Let $T(n)$ be time for merge sort on $A[1..n]$

Recurrence relation $T(n) = ?$

```
MergeSort(low, high) {
  if (high-low <= 1) return;
  split = (low+high) / 2;
  MergeSort(low, split);
  MergeSort(split+1, high);
  Merge low..split and split+1 ..high
}
```
Analysis of running time
Merging $A_1[1..a_1]$, $A_2[1..a_2]$ into $B[1..(a_1+a_2)]$ takes time $c\cdot(a_1+a_2)$ for some constant c

Let $T(n)$ be time for merge sort on $A[1..n]$

Recurrence relation $T(n) = 2\ T(n/2) + c\cdot n$
Solving recurrence $T(n) = 2 \ T(n/2) + c \ n$

At level i we have $2^i \ cn/2^i = cn$

Numbers of levels is $\log(n)$ \Rightarrow $T(n) = cn \ \log n$
Analysis of space

How many extra array elements we need?

At least n to merge

It can be implemented to use O(n) space.
Quick sort
QuickSort(low, high) {
 if (high-low ≤ 1) return;
 partition(low, high) and return split;
 QuickSort(low, split-1);
 QuickSort(split+1, high);
}

Partition permutes a[low..high] so that
each element in a[low.. split] is ≤ a[split],
each element in a[split+1.. high] is > a[split].
Partition(A[lo.. hi]) For simplicity, assume distinct elements

Pick pivot index p. // We will explain later how
Swap A[p] and A[hi]; i = lo-1; j = hi;
 Do i++ while A[i] < A[hi];
 Do j-- while A[j] > A[hi];
 If i < j then swap A[i] and A[j]
 Else {
 swap A[i] and A[hi]; return i
 }
}
Running time: linear.
Analysis of running time

$T(n)$ = number of comparisons on an array of length n.

$T(n)$ depends on the choice of the pivot index p

- Choosing pivot deterministically
- Choosing pivot randomly

```
QuickSort(low, high)
{
  if (high-low <= 1) return;
  partition(low, high) and return split,
  QuickSort(low, split-1);
  QuickSort(split+1, high);
}
```
Analysis of running time

T(n) = number of comparisons on an array of length n.

• Choosing pivot deterministically:
 the worst case happens when one sub-array is empty and the other is of size n-1, in this case:

\[T(n) = T(n-1) + T(0) + cn \]

= ?
Analysis of running time

$T(n) =$ number of comparisons on an array of length n.

- Choosing pivot deterministically:

 the worst case happens when one sub-array is empty and the other is of size $n-1$, in this case :

 $T(n)= T(n-1) + T(0) + c n$

 $= O(n^2)$.

- Choosing pivot randomly we can guarantee

 $T(n) = O(n \log n)$ with high probability
Randomized-Quick sort:

R-QuickSort(low, high) {
 if (high-low ≤ 1) return;
 \textbf{R-partition}(low, high) and return split,
 R-QuickSort(low, split-1);
 R-QuickSort(split+1, high);
}

\textbf{R-partition}(low, high)

Pick pivot index \(p \) uniformly in \{low, low+1, \ldots, high\}

Then partition as before

\begin{center}
We bound the total time spent by Partition
\end{center}
• Definition: X is the number of comparisons

• Next we bound the expectation of X, E[X]
Rename array A as z_1, z_2, …, z_n, with z_i being the i-th smallest.

Note: each pair of elements z_i, z_j is compared at most once. Why?
• Rename array A as z_1, z_2, \ldots, z_n, with z_i being the i-th smallest

• Note: each pair of elements z_i, z_j is compared at most once.
 Elements are compared with the pivot.
 An element is a pivot at most once.

• Define indicator random variables
 $X_{ij} := 1$ if \{ z_i is compared to z_j \}
 $X_{ij} := 0$ otherwise

• Note: $X =$?
• Rename array A as z_1, z_2, \ldots, z_n, with z_i being the i-th smallest

• Note: each pair of elements z_i, z_j is compared at most once. Elements are compared with the pivot. An element is a pivot at most once.

• Define indicator random variables

 $X_{ij} := 1$ if \{ z_i is compared to z_j \}

 $X_{ij} := 0$ otherwise

• Note: $X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$.
\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} . \]

Taking expectation, and using linearity:

\[E[X] = \mathbb{E} \left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right) \]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E} [X_{ij}] \]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{P}(z_i \text{ is compared to } z_j) \]
• Pr \{z_i \text{ is compared to } z_j\} = ?

• If some element \(y, z_i < y < z_j \) chosen as pivot, \(z_i \) and \(z_j \) can not be compared.
 Why?
• Pr \(\{ z_i \text{ is compared to } z_j \} = ? \)

• If some element \(y \), \(z_i < y < z_j \) chosen as pivot,
 \(z_i \) and \(z_j \) can not be compared.
 Because after partition \(z_i \) and \(z_j \) will be in two different parts.

• Definition: \(Z_{ij} \) is = \(\{ z_i, z_{i+1}, ..., z_j \} \)

• \(z_i \) and \(z_j \) are compared if
 first element chosen as pivot from \(Z_{ij} \) is either \(z_i \) or \(z_j \).
Pr \{z_i \text{ is compared to } z_j\} = \Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}]
\[
\Pr \{z_i \text{ is compared to } z_j\} = \Pr \{z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}\}
\]
\[
= \Pr \{z_j \text{ is first pivot chosen from } Z_{ij}\}
\]
\[
+ \Pr \{z_i \text{ is first pivot chosen from } Z_{ij}\}
\]
\[\Pr \{z_i \text{ is compared to } z_j \} = \Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}] \\
= \Pr [z_i \text{ is first pivot chosen from } Z_{ij}] \\
+ \Pr [z_j \text{ is first pivot chosen from } Z_{ij}] \\
= \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1} . \]
Pr \{z_i \text{ is compared to } z_j\} = \Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}] \\
= \Pr [z_i \text{ is first pivot chosen from } Z_{ij}] \\
+ \Pr [z_j \text{ is first pivot chosen from } Z_{ij}] \\
= \frac{1}{(j-i+1)} + \frac{1}{(j-i+1)} = \frac{2}{(j-i+1)}.

E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr \{z_i \text{ is compared to } z_j\}

= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{(j-i+1)}.
Pr \{z_i \text{ is compared to } z_j\} = Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}] \\
= Pr [z_i \text{ is first pivot chosen from } Z_{ij}] \\
+ Pr [z_j \text{ is first pivot chosen from } Z_{ij}] \\
= 1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr \{z_i \text{ is compared to } z_j\} \\
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2/(j-i+1) \\
= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} 2/(k+1) \\
< \sum_{i=1}^{n-1} \sum_{k=1}^{n} 2/k
Pr \{z_i \text{ is compared to } z_j\} = Pr [z_i \text{ or } z_j \text{ is first pivot chosen from } Z_{ij}]
= Pr [z_i \text{ is first pivot chosen from } Z_{ij}]
+ Pr [z_j \text{ is first pivot chosen from } Z_{ij}]
= 1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1).

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr \{z_i \text{ is compared to } z_j\}\]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{(j-i+1)} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{(k+1)}\]

\[< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} = \sum_{i=1}^{n-1} O(\log n) = O(n \log n).\]

Expected running time of Randomized-QuickSort is \(O(n \log n)\).
An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved $\mathbb{E}[T] \leq c \ n \ \log \ n$, for some constant c.

Hence, $\Pr[T > 100 \ c \ n \ \log \ n] < ?$
An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved $E[T] \leq c \, n \, \log n$, for some constant c.

Hence, $\Pr[T > 100 \, c \, n \, \log n] < 1/100$

Markov's inequality useful to translate bounds on the expectation in bounds of the form: “It is unlikely the algorithm will take too long.”
Oblivious Sorting

Want an algorithm that only accesses the input via

\textbf{Compare-exchange}(x,y)

Compares \(a[x]\) and \(a[y]\) and swaps them if necessary

We call such algorithms \textbf{oblivious}. Useful if you want to sort with a (non-programmable) piece of hardware

Did we see any oblivious algorithms?
Oblivious Mergesort

This is just like Merge sort except that the merge subroutine is replaced with a subroutine whose comparisons do not depend on the input.

Assumption:
Size of the input sequence, n, is a power of 2.
Oblivious-Mergesort (a[0..n-1]) {
 if n > 1 then
 Oblivious-Mergesort(a[0.. n/2-1]);
 Oblivious-Mergesort(a [n/2 .. n-1]);
 odd-even-Merge(a[0..n-1]);
 }

Same structure as Mergesort

But Odd-even-merge is more complicated, recursive
odd-even-merge(a[0..n-1]); {
 if n = 2 then compare-exchange(0,1);
 else {
 odd-even-merge(a[0,2 .. n-2]); //even subsequence
 odd-even-merge(a[1,3,5 .. n-1]); //odd subsequence
 for i ∈ {1,3,5, … n-1} do
 compare-exchange(i, i +1);
 }
}

Compare-exchange(x,y) compares a[x] and a[y] and swaps them if necessary

Merges correctly if a[0.. n/2-1] and a[n/2 .. n-1] are sorted
odd-even-merge(a[0..n-1]);
 if n = 2 then compare-exchange(0,1);
else
 odd-even-merge(a[0,2 .. n-2]);
 odd-even-merge(a[1,3,5 .. n-1]);
for i ∈ {1,3,5, … n-1} do
 compare-exchange(i, i +1);

0-1 principle: If algorithm works correctly on sequences of 0 and 1, then it works correctly on all sequences

True when input only accessed through compare-exchange
odd-even-merge(a[0..n-1]);
if n = 2 then compare-exchange(0,1);
else
 odd-even-merge(a[0,2 .. n-2]);
 odd-even-merge(a[1,3,5 .. n-1]);
for i ∈ {1,3,5, … n-1} do
 compare-exchange(i, i +1);

<table>
<thead>
<tr>
<th>a[0]</th>
<th>a[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a[8]</td>
<td>a[9]</td>
</tr>
<tr>
<td>a[12]</td>
<td>a[13]</td>
</tr>
<tr>
<td>a[14]</td>
<td>a[15]</td>
</tr>
</tbody>
</table>

(a) (b) (c) (d) (e)
Analysis of running time

$T(n) = \text{number of comparisons.}$

$= 2T(n/2) + T'(n)$.

$T'(n) = \text{number of operations in odd-even-merge}$

$= 2T'(n/2) + cn = ?$

Oblivious-Mergesort (a[0..n-1])

if $n > 1$ then

Oblivious-Mergesort(a[0.. n/2-1]);
Oblivious-Mergesort(a [n/2 .. n-1]);
Odd-even-merge(a[0..n-1]);

else

odd-even-merge(a[0..n-1]);
if $n = 2$ then

compare-exchange(0,1);
else

odd-even-merge(a[0,2 .. n-2]);
odd-even-merge(a[1,3,5 .. n-1]);
for $i \in \{1,3,5, \ldots n-1\}$ do

compare-exchange(i, i +1);
Analysis of running time

\[T(n) = \text{number of comparisons}. \]
\[= 2T(n/2) + T'(n) \]
\[= 2T(n/2) + O(n \log n). \]
\[= ? \]

\[T'(n) = \text{number of operations in odd-even-merge} \]
\[= 2T'(n/2) + c n = O(n \log n). \]

Oblivious-Mergesort (a[0..n-1])
if n > 1 then
 Oblivious-Mergesort(a[0..n/2-1]);
 Oblivious-Mergesort(a[n/2..n-1]);
else
 Odd-even-merge(a[0..n-1]);

odd-even-merge(a[0..n-1]);
if n = 2 then
 compare-exchange(0,1);
else
 odd-even-merge(a[0,2..n-2]);
 odd-even-merge(a[1,3,5..n-1]);
 for i \in \{1,3,5, \ldots n-1\} do
 compare-exchange(i, i+1);
Analysis of running time

\[T(n) = \text{number of comparisons.} \]

\[= 2T(n/2) + T'(n) \]

\[= 2T(n/2) + O(n \log n) \]

\[= O(n \log^2 n). \]

Oblivious-Mergesort \((a[0..n-1])\)
if \(n > 1\) then
 Oblivious-Mergesort\((a[0..n/2-1])\);
 Oblivious-Mergesort\((a[n/2..n-1])\);
else
 Odd-even-merge\((a[0..n-1])\);

odd-even-merge\((a[0..n-1])\);
if \(n = 2\) then
 compare-exchange\((0,1)\);
else
 odd-even-merge\((a[0,2 .. n-2])\);
 odd-even-merge\((a[1,3,5 .. n-1])\);
 for \(i \in \{1,3,5, \ldots n-1\}\) do
 compare-exchange\((i, i +1)\);
<table>
<thead>
<tr>
<th>Sorting algorithm</th>
<th>Time</th>
<th>Space</th>
<th>Assumption/ Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble sort</td>
<td>$\Theta(n^2)$</td>
<td>$O(1)$</td>
<td>Easy to code</td>
</tr>
<tr>
<td>Counting sort</td>
<td>$\Theta(n+k)$</td>
<td>$O(n+k)$</td>
<td>Input range is [0..k]</td>
</tr>
<tr>
<td>Radix sort</td>
<td>$\Theta(d(n+k))$</td>
<td>$O(n+k)$</td>
<td>Inputs are d-digit integers in base k</td>
</tr>
<tr>
<td>Quick sort (deterministic)</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>Quick sort (Randomized)</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
<td></td>
</tr>
<tr>
<td>Merge sort</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
<td></td>
</tr>
<tr>
<td>Oblivious merge sort</td>
<td>$O(n \log^2 n)$</td>
<td>$O(1)$</td>
<td>Comparisons are independent of input</td>
</tr>
</tbody>
</table>
Sorting is still open!

- **Input:** n integers in \{0, 1, \ldots, 2^w - 1\}

- **Model:** Usual operations (+, *, AND, \ldots) on w-bit integers in constant time

- **Open question:** Can you sort in time $O(n)$?

- **Best known time:** $O(n \log \log \log n)$
Next

- View other divide-and-conquer algorithms
- Some related to sorting
Selecting h-th smallest element

- **Definition**: For array A[1..n] and index h,
 \[S(A,h) := \text{h-th smallest element in } A, \]
 \[= B[h] \text{ for } B = \text{sorted version of } A \]

- \(S(A,(n+1)/2) \) is the median of A, when \(n \) is odd

- We show how to compute \(S(A,h) \) with \(O(n) \) comparisons
Divide array in consecutive blocks of 5: A[1..5], A[6..10], A[11..15], ...

Find median of each:
\[m_1 = S(A[1..5],3), \ m_2 = S(A[6..10],3), \ m_3 = S(A[11..15],3) \]

Find median of medians, \[x = S([m_1, m_2, ..., m_{n/5}], (n/5+1)/2) \]

Partition A according to x. Let x be in position k

If h = k return x, if h < k return S(A[1..k-1], h),
if h > k return S(A[k+1..n], h-k-1)
• Divide array in consecutive blocks of 5
• Find median of each
 \(m_1 = S(A[1..5],3) \), \(m_2 = S(A[6..10],3) \), \(m_3 = S(A[11..15],3) \)
• Find median of medians, \(x = S([m_1, m_2, \ldots, m_{n/5}], \frac{n/5+1}{2}) \)
• Partition \(A \) according to \(x \). Let \(x \) be in position \(k \)
• If \(h = k \) return \(x \), if \(h < k \) return \(S(A[1..k-1],h) \),
 if \(h > k \) return \(S(A[k+1..n],h-k-1) \)

• Analysis: When partitioning according to \(x \), half the medians will be \(\geq x \). Each contributes \(\geq 3 \) elements from their 5. So we throw away \(\geq \) ?
• Divide array in consecutive blocks of 5
• Find median of each
 \(m_1 = S(A[1..5],3) \), \(m_2 = S(A[6..10],3) \), \(m_3 = S(A[11..15],3) \)
• Find median of medians, \(x = S([m_1, m_2, ..., m_{n/5}], (n/5+1)/2) \)
• Partition A according to x. Let x be in position k
• If \(h = k \) return x, if \(h < k \) return \(S(A[1..k-1],h) \),
 if \(h > k \) return \(S(A[k+1..n],h-k-1) \)

• Analysis: When partitioning according to x, half the medians will be \(\geq x \). Each contributes \(\geq 3 \) elements from their 5. So we throw away \(\geq 3n/10 \) elements
• \(T(n) \leq ? \)
• Divide array in consecutive blocks of 5
• Find median of each
 \[m_1 = S(A[1..5],3), \quad m_2 = S(A[6..10],3), \quad m_3 = S(A[11..15],3) \]
• Find median of medians, \(x = S([m_1, m_2, \ldots, m_{n/5}], (n/5+1)/2) \)
• Partition A according to x. Let x be in position k
 If \(h = k \) return x, if \(h < k \) return \(S(A[1..k-1],h) \),
 if \(h > k \) return \(S(A[k+1..n],h-k-1) \)

• Analysis: When partitioning according to x, half the medians will be \(\geq x \). Each contributes \(\geq 3 \) elements from their 5. So we throw away \(\geq 3n/10 \) elements
 \[T(n) \leq T(n/5) + T(7n/10) + O(n) \]
• \(T(n) = \)
• Divide array in consecutive blocks of 5

 • Find median of each
 $m_1 = S(A[1..5],3)$, $m_2 = S(A[6..10],3)$, $m_3 = S(A[11..15],3)$

 • Find median of medians, $x = S([m_1, m_2, \ldots, m_{n/5}], (n/5+1)/2)$

 • Partition A according to x. Let x be in position k

 • If $h = k$ return x, if $h < k$ return $S(A[1..k-1],h)$,
 if $h > k$ return $S(A[k+1..n],h-k-1)$

 • Analysis: When partitioning according to x, half the
 medians will be $\geq x$. Each contributes ≥ 3 elements
 from their 5. So we throw away $\geq 3n/10$ elements

 $T(n) \leq T(n/5) + T(7n/10) + O(n)$

 • $T(n) = O(n)$ because $1/5 + 7/10 = 9/10 < 1$
Closest pair of points

Input:

Set P of n points in the plane

Output:

Two points x_1 and x_2 with the shortest (Euclidean) distance from each other.
Closest pair of points

Input:
Set P of n points in the plane

Output:
Two points x_1 and x_2 with the shortest (Euclidean) distance from each other.

- For the following algorithm we assume that we have two arrays X and Y, each containing all the points of P.
- X is sorted so that the x-coordinates are increasing
- Y is sorted so that y-coordinates are increasing.
Closest pair of points

Divide: find a vertical line \(L \) that bisects \(P \) into two sets

\[
P_L := \{ \text{points in } P \text{ that are on } L \text{ or to the left of } L \}.
\]

\[
P_R := \{ \text{points in } P \text{ that are to the right of } L \}.
\]

Such that \(|P_L| = n/2 \) and \(P_R = n/2 \) (plus or minus 1)

Easy to do given that we have \(X \) that's sorted.

Next: Conquer
Closest pair of points

Divide: find a vertical line \(L \) that bisects \(P \) into two sets

\(P_L := \{ \text{points in } P \text{ that are on } L \text{ or to the left of } L \} \).

\(P_R := \{ \text{points in } P \text{ that are to the right of } L \} \).

Such that \(|P_L| = n/2 \) and \(P_R = n/2 \) (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair of point in \(P_L \) and \(P_R \).

Let the closest distances in \(P_L \) and \(P_R \) be \(\delta_L \) and \(\delta_R \), and let \(\delta = \min(\delta_L, \delta_R) \).

Note computing \(X \) and \(Y \) for \(P_L \) and \(P_R \) is easy

Next: Combine
Closest pair of points

Divide: find a vertical line L that bisects P into two sets $P_L := \{ \text{points in } P \text{ that are on } L \text{ or to the left of } L \}$. $P_R := \{ \text{points in } P \text{ that are to the right of } L \}$. Such that $|P_L| = n/2$ and $P_R = n/2$ (plus or minus 1)

Conquer: Make two recursive calls to find the closest pair of points in P_L and P_R. Let the closest distances in P_L and P_R be δ_L and δ_R, and let $\delta = \min(\delta_L, \delta_R)$.

Combine: The closest pair is either the one with distance δ or it is a pair with one point in P_L and the other in P_R with distance less than δ. (No saving?)
Closest pair of points

Combine: The closest pair is either the one with distance δ or it is a pair with one point in P_L and the other in P_R with distance less than δ.

How to find if the latter exists?

Observation:
If latter exists it must be in a $\delta \times 2\delta$ box straddling L.
• Create Y' by removing from Y points that are not in 2δ-wide vertical strip.
• For each consecutive block of 8 points in Y'
 \[p_1, p_2, \ldots, p_8 \]
 compute all their distances.
• If any of them are closer than δ,
 update the closest pair
 and the shortest distance δ.
• Return δ and the closest pair.
Why 8?

Recall we are looking for pairs in $\delta \times 2\delta$ box straddling L.

Fact: If there are 9 points in a $\delta \times 2\delta$ box straddling L. Then there exist two points on the same side of L with distance less than δ.

This violates the definition of δ.
Analysis of running time

Similar to Merge sort:

$$T(n) = \text{number of operations}$$

$$T(n) = 2 \ T(n/2) + c \ n$$

$$= O(n \ \log \ n).$$
Is multiplication harder than addition?

Alan Cobham, < 1964
Is multiplication harder than addition?

Alan Cobham, < 1964

We still do not know!
Addition

Input: two n-digit integers a, b in base w
(think $w = 2, 10$)

Output: One integer $c = a + b$.

Operations allowed: only on digits

The simple way to add takes ?
Addition

Input: two n-digit integers a, b in base w
 (think w = 2, 10)

Output: One integer c = a + b.

Operations allowed: only on digits

The simple way to add takes O(n)

optimal?
Addition

Input: two n-digit integers a, b in base w (think $w = 2$, 10)

Output: One integer $c = a + b$.

Operations allowed: only on digits

The simple way to add takes $O(n)$

This is optimal, since we need at least to write c
Multiplication

Input: two n-digit integers a, b in base w

(think $w = 2, 10$)

Output: One integer $c = a \cdot b$.

Operations allowed: only on digits

Simple way takes?

\[
\begin{array}{c}
23958233 \\
\times 5830 \\
\hline
00000000 \ (= 23,958,233 \times 0) \\
71874699 \ (= 23,958,233 \times 30) \\
191665864 \ (= 23,958,233 \times 800) \\
119791165 \ (= 23,958,233 \times 5,000) \\
\hline
139676498390 \ (= 139,676,498,390)
\end{array}
\]
Multiplication

Input: two n-digit integers a, b in base w
\hspace{1cm} (think $w = 2, 10$)

Output: One integer $c = a \cdot b$.

Operations allowed: only on digits

The simple way to multiply takes $\Omega(n^2)$

Can we do this any faster?
Multiplication

Example:

2-digit numbers N_1 and N_2 in base w.

$N_1 = a_0 + a_1 w$.

$N_2 = b_0 + b_1 w$.

For this example, think w very large, like $w = 2^{32}$.
Multiplication

Example:

2-digit numbers \(N_1 \) and \(N_2 \) in base \(w \).

\[
N_1 = a_0 + a_1 w.
\]

\[
N_2 = b_0 + b_1 w.
\]

\[
P = N_1 N_2
\]

\[
= a_0 b_0 + (a_0 b_1 + a_1 b_0)w + a_1 b_1 w^2
\]

\[
= p_0 + p_1 w + p_2 w^2.
\]

This can be done with \(? \) multiplications.
Multiplication

Example:

2-digit numbers N_1 and N_2 in base w.

$N_1 = a_0 + a_1 w$.

$N_2 = b_0 + b_1 w$.

$P = N_1 N_2$

$= a_0 b_0 + (a_0 b_1 + a_1 b_0) w + a_1 b_1 w^2$

$= p_0 + p_1 w + p_2 w^2$.

This can be done with 4 multiplications

Can we save multiplications, possibly increasing additions?
Compute
$q_0 = a_0b_0$.
$q_1 = (a_0 + a_1)(b_1 + b_0)$.
$q_2 = a_1b_1$.

Note:
$q_0 = p_0$.
$q_1 = p_1 + p_0 + p_2$.
$q_2 = p_2$.

$P = a_0b_0 + (a_0b_1 + a_1b_0)w + a_1b_1w^2$
$= p_0 + p_1w + p_2w^2$.

$p_0 = q_0$.
$p_1 = q_1 - q_0 - q_2$.
$p_2 = q_2$.

So the three digits of P are evaluated using 3 multiplications rather than 4.

What to do for larger numbers?
The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer $c = a \cdot b$.

Divide:
 How?
The Karatsuba algorithm

Input: two n-digit integers \(a, b \) in base \(w \).

Output: One integer \(c = a \cdot b \).

Divide:

\[m = \frac{n}{2}. \]

\[a = a_0 + a_1 w^m. \]

\[b = b_0 + b_1 w^m. \]

\[
\begin{align*}
 a \cdot b &= a_0 b_0 + (a_0 b_1 + a_1 b_0) w^m + a_1 b_1 w^{2m} \\
 &= p_0 + p_1 w^m + p_2 w^{2m}
\end{align*}
\]
The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer $c = a \cdot b$.

Divide:

$m = n/2$.

$a = a_0 + a_1 w^m$.

$b = b_0 + b_1 w^m$.

Conquer:

$q_0 = a_0 \times b_0$.

$q_1 = (a_0 + a_1) \times (b_1 + b_0)$.

$q_2 = a_1 \times b_1$.

Each \times is a recursive call

\[
a \cdot b = a_0 b_0 + (a_0 b_1 + a_1 b_0) w^m + a_1 b_1 w^{2m} = p_0 + p_1 w^m + p_2 w^{2m}
\]
The Karatsuba algorithm

Input: two n-digit integers a, b in base w.

Output: One integer $c = a \cdot b$.

Divide:

$m = n/2$.

$a = a_0 + a_1 w^m$.

$b = b_0 + b_1 w^m$.

Conquer:

$q_0 = a_0 \times b_0$.

$q_1 = (a_0 + a_1) \times (b_1 + b_0)$.

$q_2 = a_1 \times b_1$.

Each \times is a recursive call

Combine:

$p_0 = q_0$.

$p_1 = q_1 - q_0 - q_2$.

$p_2 = q_2$.
Analysis of running time

T(n) = number of operations.

T(n) = 3 \ T(n/2) + O(n)

= ?
Analysis of running time

\[T(n) = \text{number of operations}. \]

\[T(n) = 3 \, T(n/2) + O(n) \]

\[= \Theta(n^{\log_2 3}) \quad \text{(log in base 2)} \]

\[= O(n^{1.59}). \]

Karatsuba may be used in your computers to reduce, say, multiplication of 128-bit integers to 64-bit integers.

Are there faster algorithms for multiplication?
Algorithms taking essentially $O(n \log n)$ are known.

1971: Schönhage-Strassen $O(n \log n \log \log n)$

2007: Furer $O(n \log n \exp(\log^* n))$

$\log^* n$ = times you need to apply log to n to make it 1

They are all based on Fast Fourier Transform, which we will see later
Matrix Multiplication

n x n matrixes. Note input length is n^2

Just to write down output need time $\Omega(n^2)$

The simple way to do matrix multiplication takes ?
Matrix Multiplication

$n \times n$ matrixes. Note input length is n^2

\[A = \begin{bmatrix}
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{bmatrix} \quad \begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
\end{bmatrix} \quad = \begin{bmatrix}
\end{bmatrix} \]

$n=4$

Just to write down output need time $\Omega(n^2)$

The simple way to do matrix multiplication takes $O(n^3)$.
Strassen's Matrix Multiplication

Input: two $n \times n$ matrices A, B.
Output: One $n \times n$ matrix $C = A \cdot B$.
Strassen's Matrix Multiplication

Divide:

Divide each of the input matrices A and B into 4 matrices of size $n/2 \times n/2$, as follows:

$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ \hspace{1cm} B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$

$A.B = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$
Strassen's Matrix Multiplication

Conquer:

Compute the following 7 products:

$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$.

$M_2 = (A_{21} + A_{22})B_{11}$.

$M_3 = A_{11}(B_{12} - B_{22})$.

$M_4 = A_{22}(B_{21} - B_{11})$.

$M_5 = (A_{11} + A_{12})B_{22}$.

$M_6 = (A_{21} - A_{11})(B_{11} - B_{12})$.

$M_7 = (A_{12} - A_{22})(B_{21} - B_{22})$.

$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$

$B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$
Strassen's Matrix Multiplication

Combine:

\[C_{11} = M_1 + M_4 - M_5 + M_7. \]
\[C_{12} = M_3 + M_5. \]
\[C_{21} = M_2 + M_4. \]
\[C_{22} = M_1 - M_2 + M_3 + M_6. \]

\[
C = \begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
\]
Analysis of running time

\[T(n) = \text{number of operations} \]

\[T(n) = 7 \ T(n/2) + 18 \ \{\text{Time to do matrix addition}\} \]

\[= 7 \ T(n/2) + \Theta(n^2) \]

\[= ? \]
Analysis of running time

\[T(n) = \text{number of operations} \]

\[T(n) = 7 \ T(n/2) + 18 \ \{\text{Time to do matrix addition}\} \]

\[= 7 \ T(n/2) + \Theta(n^2) \]

\[= \Theta(n \ \log 7) \]

\[= O(n^{2.81}). \]
Definition: ω is the smallest number such that multiplication of $n \times n$ matrices can be computed in time $n^{\omega+\varepsilon}$ for every $\varepsilon > 0$

Meaning: time n^ω up to lower-order factors

$\omega \geq 2$ because you need to write the output
$\omega < 2.81$ Strassen, just seen
$\omega < 2.38$ state of the art

Determining ω is one of the most important problems
Fast Fourier Transform (FFT)

We start with the most basic case, then move to more complicated
Walsh-Hadamard transform

Hadamard $2^i \times 2^i$ matrix H_i:

$$H_0 = [1]$$

$$H_{i+1} = \begin{pmatrix} H_i & H_i \\ H_i & -H_i \end{pmatrix}$$

Problem: Given vector x of length $n = 2^k$, compute $H_k x$

Trivial: $O(n^2)$

Next: $O(n \log n)$
Walsh-Hadamard transform

Write \(x = [y \ z]^T \), and note that \(H_{k+1} x = \)

\[
\begin{pmatrix}
H_k y + H_k z \\
H_k y - H_k z
\end{pmatrix}
\]

This gives \(T(n) = ? \)
Walsh-Hadamard transform

Write \(x = [y \ z]^T \), and note that \(H_{k+1} x = \)

\[
\begin{pmatrix}
H_k y + H_k z \\
H_k y - H_k z
\end{pmatrix}
\]

This gives \(T(n) = 2 \ T(n/2) + O(n) = O(n \log n) \)
Polynomials and Fast Fourier Transform (FFT)
Polynomials

\[A(x) = \sum_{i=0}^{n-1} a_i x^i \] a polynomial of degree \(n-1 \)

Evaluate at a point \(x = b \) with how many multiplications?

2n trivial
Polynomials

A(x) = \sum_{i=0}^{n-1} a_i x^i \quad \text{a polynomial of degree n-1}

Evaluate at a point x = b with Horner's rule:
Compute a_{n-1},

\[a_{n-2} + a_{n-1} x, \]
\[a_{n-3} + a_{n-2} x + a_{n-1} x^2 \]

\[\vdots \]

Each step: multiply by x, and add a coefficient

There are \leq n steps \Rightarrow n multiplications
Summing Polynomials

\[\sum_{i=0}^{n-1} a_i x^i \] a polynomial of degree n-1

\[\sum_{i=0}^{n-1} b_i x^i \] a polynomial of degree n-1

\[\sum_{i=0}^{n-1} c_i x^i \] the sum polynomial of degree n-1

\[c_i = a_i + b_i \]

Time \(O(n) \)
How to multiply polynomials?

\[\sum_{i=0}^{n-1} a_i x^i \quad \text{a polynomial of degree n-1} \]

\[\sum_{i=0}^{n-1} b_i x^i \quad \text{a polynomial of degree n-1} \]

\[\sum_{i=0}^{2n-2} c_i x^i \quad \text{the product polynomial of degree n-1} \]

\[c_i = \sum_{j \leq i} a_j b_{i-j} \]

Trivial algorithm: time \(O(n^2) \)
FFT gives time \(O(n \log n) \)
Polynomial representations

Coefficient: \((a_0, a_1, a_2, \ldots a_{n-1})\)

Point-value: have points \(x_0, x_1, \ldots x_{n-1}\) in mind

Represent polynomials \(A(X)\) by pairs
\[
\{(x_0, y_0), (x_1, y_1), \ldots\}
\]

\[A(x_i) = y_i\]

To multiply in point-value, just need \(O(n)\) operations.
Approach to polynomial multiplication:

A, B given as coefficient representation

1) Convert A, B to point-value representation

2) Multiply C = AB in point-value representation

3) Convert C back to coefficient representation

2) done easily in time O(n)

FFT allows to do 1) and 3) in time O(n \log n).
Note: For C we need 2n-1 points; we'll just think “n”
From coefficient to point-value:

\[
\begin{align*}
y_0 &= \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ \vdots \\ a_{n-1} \end{pmatrix} \\
y_1 &= \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{pmatrix} \\
y_{n-1} &= \begin{pmatrix} \vdots \\ \vdots \end{pmatrix}
\end{align*}
\]

From point-value representation, note above matrix is invertible (if points distinct)

Alternatively, Lagrange's formula
We need to evaluate A at points $x_1 \ldots x_n$ in time $O(n \log n)$

Idea: divide and conquer:

$$A(x) = A^0(x^2) + x A^1(x^2)$$

where A^0 has the even-degree terms, A^1 the odd

Example: $A = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$

$$A^0(x^2) = a_0 + a_2 x^2 + a_4 x^4$$

$$A^1(x^2) = a_1 + a_3 x^2 + a_5 x^4$$

How is this useful?
We need to evaluate A at points $x_1 \ldots x_n$ in time $O(n \log n)$

Idea: divide and conquer:

$$A(x) = A^0(x^2) + x A^1(x^2)$$

where A^0 has the even-degree terms, A^1 the odd

If my points are $x_1, x_2, x_{n/2}, -x_1, -x_2, -x_{n/2}$

I just need the evaluations of A^0, A^1 at $x_1^2, x_2^2, \ldots x_{n/2}^2$

$T(n) \leq 2 T(n/2) + O(n)$, with solution $O(n \log n)$. Are we done?
We need to evaluate A at points $x_1 \ldots x_n$ in time $O(n \log n)$

Idea: divide and conquer:

$$A(x) = A^0(x^2) + x A^1(x^2)$$
where A^0 has the even-degree terms, A^1 the odd

If my points are $x_1, x_2, x_{n/2}, -x_1, -x_2, -x_{n/2}$

I just need the evaluations of A^0, A^1 at $x_1^2, x_2^2, \ldots x_{n/2}^2$

$T(n) \leq 2 T(n/2) + O(n)$, with solution $O(n \log n)$. Are we done?

Need points which can be iteratively decomposed in + and -
Complex numbers:
Real numbers “with a twist”

\[P(x, y) \]
\[z \equiv x + iy \]

\[x = r \cos \theta \]
\[y = r \sin \theta \]
\[r = \sqrt{x^2 + y^2} \]
\(\omega_n = n\text{-th primitive root of unity} \)

\(\omega_n^0, \ldots, \omega_n^{n-1} \)

\(n\text{-th roots of unity} \)

We evaluate polynomial \(A \) of degree \(n-1 \) at roots of unity \(\omega_n^0, \ldots, \omega_n^{n-1} \)

Fact: The \(n \) squares of the \(n\text{-th} \) roots of unity are:

- first the \(n/2 \) \(n/2\text{-th} \) roots of unity,
- then again the \(n/2 \) \(n/2\text{-th} \) roots of unity.

\(\rightarrow \text{from coefficient to point-value in } O(n \log n) \text{ (complex) steps} \)
Summary: Evaluate A at n-th roots of unity $\omega_n^0, \ldots, \omega_n^{n-1}$

Divide: $A(x) = A^0 (x^2) + x A^1 (x^2)$
where A^0 has the even-degree terms, A^1 the odd

Conquer: Evaluate A^0, A^1 at $n/2$-th roots $\omega_{n/2}^0, \ldots, \omega_{n/2}^{n/2-1}$
This yields evaluation vectors y^0, y^1

Combine: $z := 1 = \omega_n^0$
for ($k = 0$, $k < n$, $k++$) {
 $y[k] = y^0[k \text{ modulo } n/2] + z y^1[k \text{ modulo } n/2];$
 $z = z \cdot \omega_n$
}

$T(n) \leq 2 T(n/2) + O(n)$, with solution $O(n \log n)$.
It only remains to go from point-value to coefficient represent.

$$
\begin{bmatrix}
 y_0 \\
 y_1 \\
 y_2 \\
 y_3 \\
 \vdots \\
 y_{n-1}
\end{bmatrix} =
\begin{bmatrix}
 1 & 1 & 1 & 1 & \cdots & 1 \\
 1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\
 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\
 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3 \\
 \vdots \\
 a_{n-1}
\end{bmatrix}
$$

We need to invert F.
It only remains to go from point-value to coefficient representation.

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\ 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix}$$

Fact: $$(F^{-1})_{j,k} = \omega_n^{-jk} / n$$ Note $j,k \in \{0,1,\ldots,n-1\}$

To compute inverse, use FFT with ω^{-1} instead of ω, then divide by n.