Big picture

- All languages
- Decidable

Turing machines

- NP
- P
- Context-free

Context-free grammars, push-down automata

• Regular

Automata, non-deterministic automata, regular expressions

Theorem: L := $\{0^n \ 1^n : n \ge 0\}$ is not regular

But it is often needed to recognize this language Example: Programming language syntax have matching brackets, not regular.

Next: Introduce context-free languages

Why study context-free languages

• Practice with more powerful model

Programming languages: Syntax of C++, Java, etc.
is specified by context-free grammar

 Other reasons: human language has structures that can be modeled as context-free language
English is not a regular language Example: Context-free grammar G, $\Sigma = \{0,1\}$ S $\rightarrow 0$ S 1 S $\rightarrow \epsilon$

Two substitution rules (a.k.a. productions) \rightarrow Variables = {S}, Terminals = {0,1}

Derivation of 0011 in grammar: $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 0011$

 $L(G) = \{0^n \ 1^n : n \ge 0\}$

$S \rightarrow B$ $A \rightarrow 0 A 1$ $A \rightarrow \epsilon$ $B \rightarrow 1 B 0$ $B \rightarrow \varepsilon$ L(G) = L(A) U L(B) $= \{0^n \ 1^n : n \ge 0\} \cup \{1^n \ 0^n : n \ge 0\}$

Example: Context-free grammar G, $\Sigma = \{0,1\}$

 $S \rightarrow A$

Next: A convention to write this more compactly

Example: Context-free grammar G, $\Sigma = \{0, 1\}$

- $S \to A \mid B$
- $A \rightarrow 0 A 1 \mid \epsilon$
- $B \rightarrow 1 \ B \ 0 \mid \epsilon$

Convention: Write A \rightarrow w|w' for A \rightarrow w and A \rightarrow w'

Definition: A context-free grammar (CFG) G is

a 4 tuple (V, Σ , R, S) where

- V is a finite set of variables
- Σ is a finite set of terminals $(V \cap \Sigma = \emptyset)$
- R is a finite set of rules, where each rule is

 $A \to W \qquad A \in V, w \in (V \cup \Sigma)^*$

• $S \in V$ is the start variable

- The language L = $\{a^m b^n : m > n\}$ is described by the CFG G = (V, Σ , R, S) where:
 - $V = \{S, T\}$ $\Sigma = \{a, b\}$ $R = \{S \rightarrow aS \mid aT$ $T \rightarrow aTb \mid \epsilon \}$

 $\frac{\text{Derive aaab}}{S \rightarrow ?}$

- The language L = $\{a^m b^n : m > n\}$ is described by the CFG G = (V, Σ , R, S) where:
 - $V = \{S, T\}$ $\Sigma = \{a, b\}$ $R = \{S \rightarrow aS \mid aT$ $T \rightarrow aTb \mid \epsilon \}$ Derive aaab: $S \rightarrow aS$ $\rightarrow ?$

- The language L = $\{a^m b^n : m > n\}$ is described by the CFG G = (V, Σ , R, S) where:
 - $V = \{S, T\}$ $\Sigma = \{a, b\}$ $R = \{S \rightarrow aS \mid aT$ $T \rightarrow aTb \mid \epsilon\}$ Derive aaab: $S \rightarrow aS$ $\rightarrow aS$

- The language L = $\{a^m b^n : m > n\}$ is described by the CFG G = (V, Σ , R, S) where:
 - $V = \{S, T\}$ $\Sigma = \{a, b\}$ $R = \{S \rightarrow aS \mid aT$ $T \rightarrow aTb \mid \epsilon\}$ $A = \{O(B) = O(B)$ $A = \{O(B) = O(B)$ $A = \{O(B) = O(B)$ A = O(B) A

- The language L = $\{a^m b^n : m > n\}$ is described by the CFG G = (V, Σ , R, S) where:
 - $V = \{S, T\}$ $\Sigma = \{a, b\}$ $R = \{S \rightarrow aS \mid aT$ $T \rightarrow aTb \mid \epsilon\}$ $A = \{B, T\}$ $A = \{S, T\}$ $A = \{S,$

Definition: Let G = (V, Σ , R, S) be a CFG we write uAv \Rightarrow uwv and say uAv yields uwv if A \rightarrow w is a rule

We say u derives v, written $u \Rightarrow^* v$, if

- u = v, or
- ∃ u₁, u₂, ..., u_k k≥1:
 - $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow ... \Rightarrow u_k = v$

The language of the grammar is $L(G) = \{w : S \Rightarrow^* w\}$

Definition: A language L is context-free if $\exists CFG G : L(G) = L$

$\sum = \{0, 1, \#\}$

Give a CFG for L = { $x#y : x,y \text{ in } \{0,1\}^* |x| \neq |y| \}$

 $G = S \rightarrow BL$ $S \rightarrow RB$ $L \rightarrow BL \mid A$ $R \rightarrow RB \mid A$ $A \rightarrow BAB \mid \#$ $B \rightarrow 0 \mid 1$ Remark: $B \Rightarrow * ?$

To understand, explain what each piece does!

$\sum = \{0, 1, \#\}$

- $\mathsf{G}=~\mathsf{S}\rightarrow~\mathsf{BL}$
 - $S \rightarrow \ RB$
 - $\mathsf{L} \to \mathsf{BL} \mid \mathsf{A}$
 - $\mathsf{R} \ \rightarrow \ \mathsf{RB} \ | \ \mathsf{A}$
 - $A \rightarrow BAB \mid \# \text{ Remark: } A \Rightarrow^* ?$
 - $B \rightarrow 0 \mid 1$ Remark: $B \Rightarrow^* 0, B \Rightarrow^* 1$

$\sum = \{0, 1, \#\}$

- $\mathsf{G}=~\mathsf{S}\rightarrow~\mathsf{BL}$
 - $S \rightarrow \ RB$
 - $\mathsf{L} \to \mathsf{BL} \mid \mathsf{A}$
 - $R \rightarrow RB \mid A$ Remark: $R \Rightarrow^*$?
 - $A \rightarrow BAB \mid \# Remark: A \Rightarrow^* x \#y : |x|=|y|$
 - $B \rightarrow 0 \mid 1$ Remark: $B \Rightarrow^* 0, B \Rightarrow^* 1$

$\sum = \{0, 1, \#\}$

Give a CFG for L = { $x#y : x,y \text{ in } \{0,1\}^* |x| \neq |y| \}$

- $\mathsf{G}=~\mathsf{S}\rightarrow~\mathsf{BL}$
 - $S \rightarrow RB$
 - $L \rightarrow BL \mid A$ Remark: $L \Rightarrow^*$?

 $R \rightarrow RB \mid A$ Remark: $R \Rightarrow^* x\#y : |x| \le |y|$

 $A \rightarrow BAB \mid \# Remark: A \Rightarrow^* x \#y : |x|=|y|$

 $B \rightarrow 0 \mid 1$ Remark: $B \Rightarrow^* 0, B \Rightarrow^* 1$

$\sum = \{0, 1, \#\}$

- $G = S \rightarrow BL$
 - $S \rightarrow RB$ Remark: $RB \Rightarrow^*$?
 - $L \rightarrow BL \mid A$ Remark: $L \Rightarrow^* x # y : |x| \ge |y|$
 - $R \rightarrow RB \mid A$ Remark: $R \Rightarrow^* x\#y : |x| \le |y|$
 - $A \rightarrow BAB \mid \# Remark: A \Rightarrow^* x \#y : |x|=|y|$
 - $B \rightarrow 0 \mid 1$ Remark: $B \Rightarrow^* 0, B \Rightarrow^* 1$

 $\sum = \{0, 1, \#\}$

- $G = S \rightarrow BL \qquad \text{Remark: } BL \Rightarrow^* ?$
 - $S \rightarrow RB$ Remark: $RB \Rightarrow^* x\#y : |x| < |y|$
 - $L \rightarrow BL \mid A$ Remark: $L \Rightarrow^* x \# y : |x| \ge |y|$
 - $R \rightarrow RB \mid A$ Remark: $R \Rightarrow^* x\#y : |x| \le |y|$
 - $A \rightarrow BAB \mid \# Remark: A \Rightarrow^* x \#y : |x|=|y|$
 - $B \rightarrow 0 \mid 1$ Remark: $B \Rightarrow^* 0, B \Rightarrow^* 1$

L(G) =

 $\sum = \{0, 1, \#\}$

- $G = S \rightarrow BL \qquad \text{Remark: } BL \Rightarrow^* x\#y : |x| > |y|$
 - $S \rightarrow RB$ Remark: $RB \Rightarrow^* x\#y : |x| < |y|$
 - $L \rightarrow BL \mid A$ Remark: $L \Rightarrow^* x \# y : |x| \ge |y|$
 - $R \rightarrow RB \mid A$ Remark: $R \Rightarrow^* x\#y : |x| \le |y|$
 - $A \rightarrow BAB \mid \# Remark: A \Rightarrow^* x \#y : |x|=|y|$
 - $B \rightarrow 0 \mid 1$ Remark: $B \Rightarrow^* 0, B \Rightarrow^* 1$

Example: CFG for expressions in programming languages

Task: recognize strings like $0 + 0 + 1 \times (1 + 0)$

 $S \rightarrow S+S \mid S \times S \mid (S) \mid 0 \mid 1$

$$\begin{split} S \rightarrow S + S \rightarrow 0 + S \rightarrow 0 + S + S \rightarrow 0 + 0 + S \\ \rightarrow 0 + 0 + S \times S \rightarrow 0 + 0 + 1 \times S \\ \rightarrow 0 + 0 + 1 \times (S) \rightarrow 0 + 0 + 1 \times (S + S) \\ \rightarrow 0 + 0 + 1 \times (1 + S) \rightarrow 0 + 0 + 1 \times (1 + 0) \end{split}$$

We have seen: CFG, definition, and examples

Next: Ambiguity

 Ambiguity: Some string may have multiple derivations in a CFG

• Ambiguity is a problem for compilers:

Compilers use derivation to give meaning to strings.

Example: meaning of $1+0x0 \in \Sigma^*$ is its value, $1 \in \mathbb{N}$

If there are two different derivations, the value may not be well defined.

One derivation:

 $S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S x S \rightarrow 1 + 0 x S \rightarrow 1 + 0 x 0$

Another derivation:

 $S \rightarrow ?$

One derivation:

 $S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S x S \rightarrow 1 + 0 x S \rightarrow 1 + 0 x 0$

Another derivation:

 $S \rightarrow SxS \rightarrow ?$

One derivation:

 $S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S x S \rightarrow 1 + 0 x S \rightarrow 1 + 0 x 0$

Another derivation:

 $S \rightarrow SxS \rightarrow Sx0 \rightarrow ?$

One derivation:

 $S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S x S \rightarrow 1 + 0 x S \rightarrow 1 + 0 x 0$

Another derivation:

 $S \rightarrow SxS \rightarrow Sx0 \rightarrow S+Sx0 \rightarrow ?$

One derivation:

 $S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S x S \rightarrow 1 + 0 x S \rightarrow 1 + 0 x 0$

Another derivation:

 $S \rightarrow SxS \rightarrow Sx0 \rightarrow S+Sx0 \rightarrow S+0x0 \rightarrow ?$

One derivation:

 $S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S x S \rightarrow 1 + 0 x S \rightarrow 1 + 0 x 0$

Another derivation:

 $S \rightarrow SxS \rightarrow Sx0 \rightarrow S+Sx0 \rightarrow S+0x0 \rightarrow 1+0x0$

We now want to define CFG with no ambiguity

Definition: A derivation is leftmost if at every step the leftmost variable is expanded

<u>Example</u>: the 1st previous derivation was leftmost $S \rightarrow S+S \rightarrow 1+S \rightarrow 1+SxS \rightarrow 1+0xS \rightarrow 1+0x0$

Definition: A CFG G is **un-ambiguous** if no string has two different leftmost derivations.

The CFG $S \rightarrow S+S \mid S \times S \mid (S) \mid 0 \mid 1$ is ambiguous because 1+0x0 has two distinct leftmost derivations

<u>One leftmost derivation:</u> $S \rightarrow S+S \rightarrow 1+S \rightarrow 1+SxS \rightarrow 1+0xS \rightarrow 1+0x0$

Another leftmost derivation: $S \rightarrow SxS \rightarrow S+SxS \rightarrow 1+SxS \rightarrow 1+0xS \rightarrow 1+0x0$

we may use un-ambiguous grammar $S \rightarrow S + T \mid T$ $T \rightarrow T \times F \mid F$ $F \rightarrow 0 \mid 1 \mid (S)$

<u>Unique leftmost derivation of 1+0x0:</u> $S \rightarrow ?$

we may use un-ambiguous grammar $S \rightarrow S + T \mid T$ $T \rightarrow T \times F \mid F$ $F \rightarrow 0 \mid 1 \mid (S)$

<u>Unique leftmost derivation of 1+0x0:</u> $S \rightarrow S + T \rightarrow ?$

we may use un-ambiguous grammar $S \rightarrow S + T | T$ $T \rightarrow T \times F | F$

Unique leftmost derivation of 1+0x0:

 $S \rightarrow S + T \rightarrow T + T \rightarrow ?$

 $F \rightarrow 0 \mid 1 \mid (S)$

we may use un-ambiguous grammar $S \rightarrow S + T | T$ $T \rightarrow T \times F | F$ $F \rightarrow 0 | 1 | (S)$

Unique leftmost derivation of 1+0x0: $S \rightarrow S + T \rightarrow T + T \rightarrow F + T \rightarrow ?$
Example Instead of using CFG S \rightarrow S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar $S \rightarrow S + T \mid T$ $T \rightarrow T \times F \mid F$ $F \rightarrow 0 \mid 1 \mid (S)$

Unique leftmost derivation of 1+0x0: $S \rightarrow S + T \rightarrow T + T \rightarrow F + T \rightarrow 1 + T$ $\rightarrow ?$ Example Instead of using CFG S \rightarrow S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar $S \rightarrow S + T \mid T$ $T \rightarrow T \times F \mid F$ $F \rightarrow 0 \mid 1 \mid (S)$

<u>Unique leftmost derivation of 1+0x0:</u> $S \rightarrow S + T \rightarrow T + T \rightarrow F + T \rightarrow 1 + T$ $\rightarrow 1 + T \times F \rightarrow ?$ Example Instead of using CFG S \rightarrow S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar $S \rightarrow S + T \mid T$ $T \rightarrow T \times F \mid F$ $F \rightarrow 0 \mid 1 \mid (S)$

 $\frac{\text{Unique leftmost derivation of } 1+0x0:}{S \rightarrow S + T \rightarrow T + T \rightarrow F + T \rightarrow 1 + T}$ $\rightarrow 1 + T x F \rightarrow 1 + 0 x F \rightarrow 1 + 0 x 0$

Actual Java specification grammar snippet Cumbersome but un-ambiguous

MultiplicativeExpression:

UnaryExpression

MultiplicativeExpression * UnaryExpression

MultiplicativeExpression / UnaryExpression

MultiplicativeExpression % UnaryExpression

AdditiveExpression:

MultiplicativeExpression

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then

- not A is regular?
- AUB is regular?
- A o B is regular ?
- A* is regular ?

Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then

- not A regular
- AUB regular
- A o B regular

A* regular

What about AUB $S \rightarrow ?$ A o B

A*

What about $A \cup B = S \rightarrow S_A | S_B$ Context-free

A o B $S \rightarrow ?$

A*

What about $A \cup B \qquad S \rightarrow S_A | S_B \qquad Co$ $A \circ B \qquad S \rightarrow S_A S_B \qquad Co$ $A^* \qquad S \rightarrow ?$

Context-free Context-free

Above all context-free!

In general, (not A) is NOT context-free

Above also shows regular ⇒ context-free Context-free languages contain regular languages

 $\sum = \{0, 1, \#\}$

Give a CFG for L = { $x#y : x,y \text{ in } \{0,1\}^*$ $|x| \neq |y| \text{ OR } x = y^R$ }

```
y^{R} is the reverse of y:

001^{R} = 100

11010^{R} = 01011

1^{R} = 1
```

 $\sum = \{0, 1, \#\}$

Give a CFG for L = { x#y : x,y in {0,1}* $|x| \neq |y|$ OR x = y^R } Write L = L₁ U L₂, where L₁ = { x#y : $|x| \neq |y|$ } L₂ = { x#y : x = y^R }

 $\sum = \{0, 1, \#\}$

- Give a CFG for $L = \{x \# y : x, y \text{ in } \{0, 1\}^*$ $|\mathbf{x}| \neq |\mathbf{y}|$ OR $\mathbf{x} = \mathbf{y}^{\mathsf{R}}$ }
- Write $L = L_1 U L_2$, where $L_{1} = \{ x \# y : |x| \neq |y| \}$
 - $G_1 = S_1 \rightarrow BL \mid RB$

$$L_{2} = \{ x \# y : x = y^{R} \}$$

- $L \rightarrow BL \mid A$ Remark: $L \Rightarrow^* x \# y : |x| \ge |y|$
- $R \rightarrow RB \mid A$ Remark: $R \Rightarrow x \# y : |x| \le |y|$

Remark: $A \Rightarrow x \# y : |x| = |y|$ $A \rightarrow BAB \mid \#$

 $B \rightarrow 0 \mid 1$

 $\sum = \{0, 1, \#\}$

Give a CFG for $L = \{x \# y : x, y \text{ in } \{0, 1\}^*$ $|\mathbf{x}| \neq |\mathbf{y}|$ OR $\mathbf{x} = \mathbf{y}^{\mathsf{R}}$ } Write $L = L_1 U L_2$, where $L_{2} = \{ x \# y : x = y^{R} \}$ $L_{1} = \{ x \# y : |x| \neq |y| \}$ $G_1 = S_1 \rightarrow BL | RB$ $G_2 = S_2 \rightarrow 0S_20 \mid 1S_21 \mid \#$ $L \rightarrow BL \mid A$ $R \rightarrow RB \mid A$ $A \rightarrow BAB \mid \#$ $B \rightarrow 0 \mid 1$

∑ = {0,1,#}

Give a CFG for $L = \{x \# y : x, y \text{ in } \{0, 1\}^*$ $|\mathbf{x}| \neq |\mathbf{y}|$ OR $\mathbf{x} = \mathbf{y}^{\mathsf{R}}$ } Write $L = L_1 U L_2$, where $L_{2} = \{ x \# y : x = y^{R} \}$ $L_{1} = \{ x \# y : |x| \neq |y| \}$ $G_1 = S_1 \rightarrow BL \mid RB$ $G_{2} = S_{2} \rightarrow 0S_{2}0 | 1S_{2}1 | \#$ $L \rightarrow BL \mid A$ Let $G = S \rightarrow S_1 \mid S_2$ $R \rightarrow RB \mid A$ $A \rightarrow BAB \mid \#$ Then, $L(G_1) = L_1 \& L(G_2) = L_2$ $B \rightarrow 0 \mid 1$ \Rightarrow L(G) = L₁ U L₂ = L

Give a CFG for $L = \{ 0^m 1^m 0^n 1^n : m \text{ even and } n \text{ odd} \}$

Give a CFG for $L = \{ 0^m 1^m 0^n 1^n : m \text{ even and } n \text{ odd} \}$

Write $L = L_1 \circ L_2$, where $L_1 = \{ 0^m 1^m : m \text{ even} \}$ $L_2 = \{ 0^n 1^n : n \text{ odd} \}$

Give a CFG for $L = \{ 0^m 1^m 0^n 1^n : m \text{ even and } n \text{ odd} \}$

Write $L = L_1 \circ L_2$, where $L_1 = \{ 0^m 1^m : m \text{ even} \}$

 $L_2 = \{ 0^n 1^n : n \text{ odd} \}$

 $G_1 = S_1 \rightarrow 00S_111 | \epsilon$

Give a CFG for $L = \{ 0^m 1^m 0^n 1^n : m \text{ even and } n \text{ odd} \}$

Write $L = L_1 \circ L_2$, where $L_1 = \{ 0^m 1^m : m \text{ even} \}$ $L_2 = \{ 0^n 1^n : n \text{ odd} \}$ $G_1 = S_1 \rightarrow 00S_111 \mid \epsilon$ $G_2 = S_2 \rightarrow 00S_211 \mid 01$

Give a CFG for $L = \{ 0^m 1^m 0^n 1^n : m \text{ even and } n \text{ odd} \}$

Write
$$L = L_1 \circ L_2$$
, where
 $L_1 = \{ 0^m 1^m : m \text{ even} \}$ $L_2 = \{ 0^n 1^n : n \text{ odd} \}$
 $G_1 = S_1 \rightarrow 00S_1 11 \mid \epsilon$ $G_2 = S_2 \rightarrow 00S_2 11 \mid 01$
Let $G = S \rightarrow S_1S_2$
Then, $L(G_1) = L_1 \& L(G_2) = L_2$
 $\Rightarrow L(G) = L_1 \circ L_2 = L$

Give a CFG for L = { w in {0,1}* : w = $w_1 w_2 \cdots w_k$, k ≥ 0 where each w is a palindrome }

A string w is a palindrome if w = w^R
 That is, w reads the same forwards and backwards

• Example: 00100, 1001, and 0 are palindromes; 0011, 01 are not

Give a CFG for
L = { w in {0,1}* : w =
$$w_1 w_2 \cdots w_k$$
, k ≥ 0
where each w_i is a palindrome }

Write
$$L = L_1^*$$
, where $L_1 = \{w : w \text{ is a palindrome}\}$

Note: In fact, $L = \{0,1\}^*$, but we will not use that.

Give a CFG for L = { w in {0,1}* : w = $w_1 w_2 \cdots w_k$, k ≥ 0 where each w is a palindrome }

Write $L = L_1^*$, where $L_1 = \{w : w \text{ is a palindrome}\}$ $G_1 = S_1 \rightarrow 0S_10 \mid 1S_11 \mid 0 \mid 1 \mid \epsilon$

Give a CFG for L = { w in {0,1}* : w = $w_1 w_2 \cdots w_k$, k ≥ 0 where each w is a palindrome }

Write $L = L_1^*$, where $L_1 = \{w : w \text{ is a palindrome}\}$ $G_1 = S_1 \rightarrow 0S_10 \mid 1S_11 \mid 0 \mid 1 \mid \epsilon$

Let $G = S \rightarrow SS_1 | \epsilon$. Then, $L(G_1) = L_1$ $\Rightarrow L(G) = L_1^* = L$.

A string and its reversal with C in middle:

- $S \rightarrow 0S0 \mid 1S1 \mid C$
- Example: S ⇒* 0001C1000

More generally, to get strings of the form $A^k C B^k$ use rules: $S \rightarrow A S B | C$

Useful to rewrite L as:

 $= \{ w #x w^{R} y : w, x, y \in \{0, 1\}^{*} \}$

G :=

 $S \to CB$

 $C \rightarrow 0C0 \mid 1C1 \mid \#B$

 $B \rightarrow 0 B | 1 B | \epsilon$ Remark: $B \Rightarrow^*$?

 $= \{ w #x w^{R} y : w, x, y \in \{0, 1\}^{*} \}$

G :=

 $S \to CB$

 $C \rightarrow 0C0 \mid 1C1 \mid \#B$ Remark: $C \Rightarrow^* ?$ $B \rightarrow 0 \mid B \mid 1 \mid B \mid \epsilon$ Remark: $B \Rightarrow^* \{0,1\}^*$

 $= \{ w #x w^{R} y : w, x, y \in \{0, 1\}^{*} \}$

G :=

 $S \to CB$

C → 0C0 | 1C1 | #B Remark: C \Rightarrow * w#{0,1}*w^R B → 0 B | 1 B | ε Remark: B \Rightarrow * {0,1}*

L(G) = L

CFG ⇔ non-deterministic pushdown automata (PDA)

A PDA is simply an NFA with a stack.

$$(q_1) \xrightarrow{X, Y \to Z} (q_2)$$

This means: "read x from the input; pop y off the stack; push z onto the stack" Any of x,y,z may be ε. Example: PDA for $L = \{0^{n}1^{n} : n \ge 0\}$

The \$ is a special symbol to recognize end of stack

Idea:

q₁: read and push 0s onto stack until no more

q₂: read 1s and match with 0s popped from stack

Unlike the case for regular automata, non-deterministic PDA are strictly more powerful than deterministic PDA.

Compilers must work with deterministic PDA, an important subclass of context-free languages Non-context-free languages

- Intuition: If L involves regular expressions and/or
- nested matchings then probably context-free.
- If not, probably not.

Non-context-free languages

There is a pumping lemma for context-free languages.

Similar to the one for regular, but simultaneously "pump" string in two parts: $w = u v^{i} x y^{i} z$ Context-free pumping lemma:

L is CF language \Rightarrow

 $\exists p \ge 0$ $∀ w ∈ L, |w| \ge p$ $\exists u, v, x, y, z :$ w= uvxyz, |vy|> 0, |vxy|≤ p∀ i ≥ 0 : uvⁱxyⁱz ∈ L
Context-free pumping lemma: L is CF language \Rightarrow 0≤ q E $\forall w \in L, |w| \ge p$ Э u,**v**,x,**y**,z : w= uvxyz, |vy| > 0, $|vxy| \le p$ $\forall i \ge 0 : uv^i xy^i z \in L$

Proof idea:

Let G be CFG : L(G) = L

If $w \in L$ is very long, derivation repeats a variable V

(like repeat states in regular P.L.)

vxy = piece of w that V derives: $V \Rightarrow^* vxy$

Because V repeated once, can repeat it again

Context-free pumping lemma:

L is CF language \Rightarrow

 $\exists p \ge 0 \qquad A$ $∀ w ∈ L, |w| \ge p$ $\exists u,v,x,y,z :$ w= uvxyz, |vy|> 0, |vxy|≤ p∀ i ≥ 0 : uvⁱxyⁱz ∈ L

Useful to prove L NOT context-free.

Use contrapositive:

L context-free language \Rightarrow A

same as

 $(not A) \Rightarrow L not context-free$

Context-free pumping lemma (contrapositive)

∀ p ≥0 not A ∃ w ∈ L, |w| ≥ p∀ u,v,x,y,z : w = uvxyz, |vy| > 0, |vxy| ≤ p∃ i ≥ 0 : uvⁱxyⁱz ∉ L

 \Rightarrow L not context-free

To prove L not context-free it is enough to prove not A

Not A is the stuff in the box.

Context-free pumping lemma (contrapositive) **∀** p ≥0 $\exists w \in L, |w| \ge p$ \Rightarrow L not context-free ∀ u,v,x,y,z : w = uvxyz, |vy| > 0, $|vxy| \le p$ $\exists i \ge 0 : uv^i xy^i z \notin L$

Adversary picks p,

- You pick $w \in L$ of length $\geq p$,
- Adversary decomposes w = uvxyz, |vy| > 0, $|vxy| \le p$
- You pick $i \ge 0$
- Finally, you win if $uv^i xy^i z \notin L$

Theorem: L := $\{a^n b^n c^n : n \ge 0\}$ is not context-free.	
Proof:	∀ p ≥0
Adversary moves p	$\exists w \in L, w \ge p$
You move w := a ^p b ^p c ^p	\forall u,v,x,y,z : w = uvxyz,
Adversary moves u,v,x,y,z	vy >0, vxy ≤p
You move i := 2	$\exists i \ge 0 : uv^i xy^i z \notin L$
You must show uvvxyyz ∉ L:	
vy misses at least one symbol in $\sum = \{a,b,c\}$	
since ?	

Theorem: L := $\{a^n b^n c^n : n \ge 0\}$ is not context-free.		
Proof:	∀ p ≥0	
Adversary moves p	$\exists w \in L, w \ge p$	
You move w := a ^p b ^p c ^p	\forall u,v,x,y,z : w = uvxyz,	
Adversary moves u,v,x,y,z	vy >0, vxy ≤p	
You move i := 2	∃i≥0:uv ⁱ xy ⁱ z∉L	
You must show uvvxyyz ∉ L:		
vy misses at least one symbol in $\sum = \{a,b,c\}$		
since between as and cs there are p bs, and $ vy \le p$		

so uvvxyyz ????

Theorem: L := $\{a^n b^n c^n : n \ge 0\}$ is not context-free.	
Proof:	∀ p ≥0
Adversary moves p	$\exists w \in L, w \ge p$
You move w := a ^p b ^p c ^p	\forall u,v,x,y,z : w = uvxyz,
Adversary moves u,v,x,y,z	vy > 0, vxy ≤ p
You move i := 2	∃i≥0:uv ⁱ xy ⁱ z∉L
You must show uvvxyyz ∉ l	
vy misses at least one symbol in $\sum = \{a,b,c\}$	

since between as and cs there are p bs, and $|vy| \le p$

so uvvxyyz has too few of that symbol, so $\ensuremath{\in}\xspace L$

DONE

Theorem: L := { $a^i b^j c^k : 0 \le i \le j \le k$ } is not context-free. **Proof**:

Adversary moves p

You move w := a^p b^p c^p

Adversary moves u,v,x,y,z

```
∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
|vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uv<sup>i</sup>xy<sup>i</sup>z ∉ L
```

So far, same as $\{a^n b^n c^n : n \ge 0\}$.

But now we need a few cases.

Our choice of i depends on u,v,x,y,z

- Theorem: L := { $a^i b^j c^k : 0 \le i \le j \le k$ } is not context-free. Proof (cont.):
- You have $w = a^p b^p c^p$, with w = uvxyz, |vy| > 0, $|vxy| \le p$.
- You must pick i ≥ 0 and show $uv^i xy^i z \notin L$.
- If no a's in vy: ?

- Theorem: L := { $a^i b^j c^k : 0 \le i \le j \le k$ } is not context-free. Proof (cont.):
- You have $w = a^p b^p c^p$, with w = uvxyz, |vy| > 0, $|vxy| \le p$.
- You must pick i ≥ 0 and show $uv^i xy^i z \notin L$.
- **If no a's in vy**: uv⁰xy⁰z has fewer b's or c's than a's. **If no c's in vy**: **?**

- Theorem: L := $\{a^i b^j c^k : 0 \le i \le j \le k\}$ is not context-free. Proof (cont.):
- You have $w = a^p b^p c^p$, with w = uvxyz, |vy| > 0, $|vxy| \le p$.
- You must pick i ≥ 0 and show $uv^i xy^i z \notin L$.
- If no a's in vy: uv^0xy^0z has fewer b's or c's than a's. If no c's in vy: uv^2xy^2z has more a's or b's than c's. If no b's in vy:

?

- Theorem: L := { $a^i b^j c^k : 0 \le i \le j \le k$ } is not context-free. Proof (cont.):
- You have $w = a^p b^p c^p$, with w = uvxyz, |vy| > 0, $|vxy| \le p$.
- You must pick i ≥ 0 and show $uv^i xy^i z \notin L$.
- If no a's in vy: uv⁰xy⁰z has fewer b's or c's than a's.
- If no c's in vy: uv^2xy^2z has more a's or b's than c's. If no b's in vy:

You fall in a previous case, since $|vxy| \le p$

DONE

Theorem: L := {s s : s \in {0,1}* } is not context-free.

Proof:

Adversary moves p

You move w := 0^p 1^p 0^p 1^p

∀ p ≥0 ∃ w ∈ L, |w| ≥ p ∀ u,v,x,y,z : w = uvxyz, $|vy| > 0, |vxy| \le p$ ∃ i ≥ 0 : uvⁱxyⁱz ∉ L

Note: To prove L not regular we moved w = 0^p 1 0^p 1

That move does not work for context-free!

Theorem: L := {s s : s \in {0,1}* } is not context-free.

Proof:

Adversary moves p

You move w := 0^p 1^p 0^p 1^p

Adversary moves u,v,x,y,z

Three cases:

```
vxy in 1<sup>st</sup> half of w: ?
```

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
|vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvⁱxyⁱz ∉ L

Theorem: L := {s s : s \in {0,1}* } is not context-free. Proof: **∀** p ≥0 Adversary moves p $\exists w \in L, |w| \ge p$ You move w := 0^p 1^p 0^p 1^p \forall u,v,x,y,z : w = uvxyz, Adversary moves u,v,x,y,z |vy| > 0, $|vxy| \le p$ Three cases: $\exists i \geq 0 : uv^i x y^i z \notin L$ **vxy in 1st half of w**: 2^{nd} half of uv^2xy^2z starts with 1, but uv^2xy^2z still starts with 0.

vxy in 2nd half of w: ?

Theorem: L := {s s : s \in {0,1}* } is not context-free. Proof: **∀** p ≥0 $\exists w \in L, |w| \ge p$ Adversary moves p You move w := 0^p 1^p 0^p 1^p \forall u,v,x,y,z : w = uvxyz, Adversary moves u,v,x,y,z |vy|> 0, |vxy|≤ p Three cases: $\exists i \geq 0 : uv^i x y^i z \notin L$ **vxy in 1st half of w**: 2^{nd} half of uv^2xy^2z starts with 1, but uv^2xy^2z still starts with 0. **vxy in 2^{nd} half of w**: 1^{st} half of uv^2xy^2z ends with 0, but uv^2xy^2z still ends with 1.

vxy touches midpoint: ?

Theorem: L := {s s : s \in {0,1}* } is not context-free. Proof: **∀** p ≥0 Adversary moves p $\exists w \in L, |w| \ge p$ You move w := 0^p 1^p 0^p 1^p \forall u,v,x,y,z : w = uvxyz, Adversary moves u,v,x,y,z |vy|> 0, |vxy|≤ p Three cases: $\exists i \ge 0 : uv^i x y^i z \notin L$ **vxy in 1st half of w**: 2^{nd} half of uv^2xy^2z starts with 1, but uv^2xy^2z still starts with 0.

vxy in 2nd half of w: 1st half of uv²xy²z ends with 0, but uv²xy²z still ends with 1.

vxy touches midpoint:

 $uv^{0}xy^{0}z = 0^{p} 1^{i} 0^{j} 1^{p}$ with either i < p or j < p. DONE

L := { w \in {a,b}* : w has same number of a and b}

Grammar for L

??

L := { w \in {a,b}* : w has same number of a and b}

Grammar for L

 $S \rightarrow \epsilon \mid SS \mid aSb \mid bSa$

Not clear why this works.

It requires a proof.

Proofs by induction

Let P(n) be any claim To prove " \forall n ≥ 0, P(n) is true" it suffices to prove

Base case: P(0) is true

Induction step: \forall n : ((\forall i < n, P(i)) => P(n)) Induction hypothesis

You can replace "0" by any fixed value

Example: $P(n) = \sum_{i=0}^{n} i = n(n+1)/2$

Claim: ∀ n ≥ 0, P(n)

Proof by induction: Base case: P(0)0 = O(1)/2 = 0 is true

Induction step: \forall n : ((\forall i < n, P(i)) => P(n))

 $\sum_{i=0}^{n} i = ??$

Example: $P(n) = \sum_{i=0}^{n} i = n(n+1)/2$

Claim: ∀ n ≥ 0, P(n)

Proof by induction: Base case: P(0) 0 = 0(1)/2 = 0 is true

Induction step: \forall n : ((\forall i < n, P(i)) => P(n))

 $\sum_{i=0}^{n} i = \sum_{i=0}^{n-1} i + n = (n-1)n/2 + n = n(n+1)/2$

$$\begin{split} \mathsf{L} &:= \{ \ \mathsf{w} \in \{\mathsf{a},\mathsf{b}\}^* : \mathsf{w} \text{ has same number of a and b} \} \\ \mathsf{S} &\to \epsilon \mid \mathsf{SS} \mid \mathsf{aSb} \mid \mathsf{bSa} \\ \\ \textbf{Claim: For any } \mathsf{w} &\subseteq \{\mathsf{a},\mathsf{b}\}^* \text{ , } \mathsf{S} \to^* \mathsf{w} \text{ if and only if } \mathsf{w} \in \mathsf{L} \\ \\ \textbf{Proof of "only if": Suppose S} \to^* \mathsf{w}. \text{ Must show } \mathsf{w} \in \mathsf{L}. \end{split}$$

This fact is self-evident.

- We show a proof by induction nevertheless,
- as a warm-up for the other direction,
- which is not self-evident.

 $L := \{ w \in \{a,b\}^* : w \text{ has same number of } a \text{ and } b \}$ $S \rightarrow \epsilon \mid SS \mid aSb \mid bSa$ **Claim:** For any $w \in \{a,b\}^*$, $S \rightarrow^* w$ if and only if $w \in L$ **Proof of "only if"**: Suppose $S \rightarrow * w$. Must show $w \in L$. Let $P(n) = any w \in {S,a,b}^*$ such that $S \rightarrow^* w$ in n steps has same number of a and b.

Base case (n=1): ??

 $L := \{ w \in \{a,b\}^* : w \text{ has same number of } a \text{ and } b \}$ $S \rightarrow \epsilon | SS | aSb | bSa$ **Claim:** For any $w \in \{a,b\}^*$, $S \rightarrow^* w$ if and only if $w \in L$ **Proof of "only if"**: Suppose $S \rightarrow * w$. Must show $w \in L$. Let $P(n) = any w \in {S,a,b}^*$ such that $S \rightarrow^* w$ in n steps has same number of a and b. Base case (n=1): ε, SS, aSb, bSa have same number. Induction step: Suppose $S \rightarrow^* w' \rightarrow w$ where $S \rightarrow^* w'$ in n-1 steps.

By induction hypothesis, ??

 $L := \{ w \in \{a,b\}^* : w \text{ has same number of } a \text{ and } b \}$ $S \rightarrow \epsilon \mid SS \mid aSb \mid bSa$ **Claim:** For any $w \in \{a,b\}^*$, $S \rightarrow^* w$ if and only if $w \in L$ **Proof of "only if"**: Suppose $S \rightarrow * w$. Must show $w \in L$. Let $P(n) = any w \in {S,a,b}^*$ such that $S \rightarrow^* w$ in n steps has same number of a and b. Base case (n=1): ε, SS, aSb, bSa have same number. Induction step: Suppose $S \rightarrow^* w' \rightarrow w$

where
$$S \rightarrow^* w'$$
 in n-1 steps.

By induction hypothesis, w' has same number of a, b. Since any rule adds same number of a and b, w has too. L := { w \in {a,b}* : w has same number of a and b} S $\rightarrow \epsilon$ | SS | aSb | bSa Claim: For any w \in {a,b}*, S \rightarrow * w if and only if w \in L Proof of "if": Suppose w \in L. Must show S \rightarrow * w Let P(n) = \forall w \in {S,a,b}*, |w| = n, S \rightarrow * w. Base case: w = ϵ . Use rule ?? $L := \{ w \in \{a,b\}^* : w \text{ has same number of } a \text{ and } b \}$ $S \rightarrow \epsilon | SS | aSb | bSa$ **Claim:** For any $w \in \{a,b\}^*$, $S \rightarrow^* w$ if and only if $w \in L$ **Proof of "if"**: Suppose $w \in L$. Must show $S \rightarrow^* w$ Let $P(n) = \forall w \in \{S,a,b\}^*, |w| = n, S \rightarrow^* w.$ Base case: $w = \varepsilon$. Use rule $S \rightarrow \varepsilon$ Induction step: Let |w| = n.

This step is more complicated, and is the "creative step" of this proof. $S \rightarrow \epsilon \mid SS \mid aSb \mid bSa$ Induction step: Let |w| = n. Define $c_i :=$ number of a - number of b in $w_1 w_2 \dots w_i$ $c_0 = 0 \ c_n = ??$

 $S \rightarrow \epsilon \mid SS \mid aSb \mid bSa$ Induction step: Let |w| = n. Define $c_i :=$ number of a - number of b in $w_1 w_2 \dots w_i$ $c_0 = 0 \ c_n = 0$ If $\exists 0 < i < n : c_i = 0$

then w = ??

 $S \rightarrow \epsilon | SS | aSb | bSa$ Induction step: Let |w| = n. Define $c_i :=$ number of a - number of b in $w_1 w_2 \dots w_i$ $c_0 = 0 \ c_n = 0$ If $\exists 0 < i < n : c_i = 0$ then w = w' w'', where w', w'' \in L, and |w'| <n, |w''| < n By induction hypothesis. $S \rightarrow * w', S \rightarrow * w''$. Hence $S \rightarrow SS \rightarrow * w' S \rightarrow w' w'' = w$

 $S \rightarrow \epsilon \mid SS \mid aSb \mid bSa$ Induction step: Let |w| = n. Define $c_i :=$ number of a - number of b in $w_1 w_2 \dots w_i$ $c_0 = 0 \ c_n = 0$ If $\forall 0 < i < n : c_i > 0$

then w = ??

 $S \rightarrow \epsilon | SS | aSb | bSa$ Induction step: Let |w| = n. Define $c_i :=$ number of a - number of b in $w_1 w_2 \dots w_i$ $c_0 = 0 \ c_n = 0$ If $\forall 0 < i < n : c_i > 0$ then w = a w' b, where w' \in L and |w'| < n By induction hypothesis. $S \rightarrow * w'$

Hence S \rightarrow aSb \rightarrow * a w' b = w

$$\begin{split} S &\rightarrow \epsilon \mid SS \mid aSb \mid bSa \\ \hline \text{Induction step: Let } |w| &= n. \\ Define \ c_i := number \ of \ a - number \ of \ b \ in \ w_1 \ w_2 \ \dots \ w_i \\ c_0 &= 0 \ \ c_n = 0 \\ \hline \text{If } \forall \ 0 < i < n : c_i < 0 \end{split}$$

then w = ??

 $S \rightarrow \epsilon \mid SS \mid aSb \mid bSa$ Induction step: Let |w| = n. Define $c_i :=$ number of a - number of b in $w_1 w_2 \dots w_i$ $c_0 = 0 \ c_n = 0$

lf ∀ 0 < i < n : c_i < 0

then w = b w' a, where w' \in L and |w'| < n By induction hypothesis. S \rightarrow * w' Hence S \rightarrow bSa \rightarrow * b w' a = w $S \rightarrow \epsilon \mid SS \mid aSb \mid bSa$ Induction step: Let |w| = n. Define $c_i :=$ number of a - number of b in $w_1 w_2 \dots w_i$ $c_0 = 0 \ c_n = 0$

These three cover all cases, because two consecutive c_i differ by 1. So the c_i cannot change sign without going through 0

I)()NIH