Big picture

* All languages
* Decidable
Turing machines
NP
P
» Context-free
Context-free grammars, push-down automata
* Regular
Automata, non-deterministic automata,
regular expressions



Recall:

Theorem: L :={0" 1" . n =0} is not regular

But it is often needed to recognize this language
Example: Programming language syntax have

matching brackets, not regular.

Next: Introduce context-free languages



Why study context-free languages

* Practice with more powerful model

* Programming languages: Syntax of C++, Java, etc.
IS specified by context-free grammar

* Other reasons: human language has structures
that can be modeled as context-free language
English is not a regular language



Example: Context-free grammar G, 2 = {0,1}
S—>0S1
S — ¢

Two substitution rules (a.k.a. productions) —
Variables = {S}, Terminals = {0,1}

Derivation of 0011 in grammar:
SO 0510 00511 O 0011

L(G)={0" 1" : n 2 0}



Example: Context-free grammar G, 2 = {0,1}
S—>A

S—B

A—0A1

A— €

B—-1BO0

B¢

L(G) = L(A) U L(B)
={0"1":nz=20}U{1"0":n=0}

Next: A convention to write this more compactly



Example: Context-free grammar G, > = {0,1}
S—-A|B

A—0A1]|c¢

B—-1BO0]|¢

Convention: Write A — w|w' for
A—-wandA—->w



Definition: A context-free grammar (CFG) G is
a 4 tuple (V, 2, R, S) where
* V is a finite set of variables

* > is a finite set of terminals (V n Z=0)

 Ris a finite set of rules, where each rule is
A—w AOV,wO(VU?Z22)*
S [0V is the start variable




Example
The language L = {a™b" : m > n}
Is described by the CFG G = (V, 2, R, S)
where:
V={S, T} Derive aaab:
> ={a, b} S — 7
R={ S—aS | aT
T—alb | €}




Example
The language L = {a™b" : m > n}
Is described by the CFG G = (V, 2, R, S)

where:

V={S, T} Derive aaab:
2 ={a, b} S — adS
R={ S—aS | aT — ?

T — alb | 8}



Example
The language L = {a™b" : m > n}
Is described by the CFG G = (V, 2, R, S)

where:

V={S, T} Derive aaab:
> ={a, b} S — asS
R={S—aS | aTl — aal

T—>aTb|e} — ?



Example
The language L = {a™b" : m > n}
Is described by the CFG G = (V, 2, R, S)

where:

V={S, T} Derive aaab:

> ={a, b} S — asS

R={S—aS | aTl — aal
T—alb | €} — aaalb

— ?



Example
The language L = {a™b" : m > n}
Is described by the CFG G = (V, 2, R, S)

where:

V={S, T} Derive aaab:

> ={a, b} S — asS

R={S—aS | aTl — aal
T—alb | €} — aaalb

— aaab



Definition: Let G = (V, Z, R, S) be a CFG
we write uAv 1 uwv and say uAv yields uwv

If A— wis arule

We say u derives v, written u O * v, if

s U=V, or
« Ou,, u,, ..., uy k=>1:

u U, U, u =V

The language of the grammaris L(G) ={w : S




Definition: Alanguage L is context-free if
CFGG:L(G)=L




Example:

> =1{0,1,#}
Givea CFGfor L={x#y: x,yin{0,1} |x| #|y|}

G= S— BL
S —> RB
L —- BL | A
R > RB | A
A — BAB | #
B - 0|1 Remark: B O * ?

To understand, explain what each piece does!



Example:

> ={0,1,#}
Givea CFGfor L={x#y: x,yin{0,1} |x| #|y|}

G= S— BL
S— RB
L — BL | A
R —> RB | A
A — BAB | # Remark:A[O*?
B — 0] 1 Remark: BO*0, BO™* 1




Example:

> ={0,1,#}
Givea CFGfor L={x#y: x,yin{0,1} |x| #|y|}

G= S— BL
S— RB
L — BL | A
R > RB|A RemarkiRO*?
A — BAB | # Remark: AO* x#y : |x|=|y]
B—> 0] 1 Remark:BO*0, BO* 1




Example:

> ={0,1,#}
Givea CFGfor L={x#y: x,yin{0,1} |x| #|y|}

G= S— BL
S— RB
L - BL| A Remark:LO*?
R — RB | A Remark: RO*x#y: [x| <y
A — BAB | # Remark: AO* x#y : [x|=]y]
B> 0] 1 Remark: BO*0, BO* 1




Example:

> ={0,1,#}
Givea CFGfor L={x#y: x,yin{0,1} |x| #|y|}
G= S— BL
S— RB Remark: RB O * ?

L — BL | A Remark:LO*x#y: |x|2|y
R —> RB|A RemarkiRO*x#y:[x|<]y
A — BAB | # Remark: AO* x#y : |x|=]y]
B - 0] 1 Remark: BO*0, BO™* 1




Example:

> ={0,1,#}
Givea CFGfor L={x#y: x,yin{0,1} |x| #|y|}

G= S— BL Remark: BL O * ?
S—> RB Remark: RB O * x#y : [x| <
L — BL | A Remark:LO*x#y: |x|2|y
R —> RB|A RemarkiRO*x#y:[x|<]y
A — BAB | # Remark: AO* x#y : |x|=]y]
B - 0] 1 Remark: BO*0, BO™* 1

y|



Example:

2. =10,1.#}

Givea CFGfor L={x#y: x,yin{0,1} |x| #|y|}

G= S— BL Remark: BL O * x#y . |x| > |
S—> RB Remark: RB O * x#y : [x| <
L — BL | A Remark:LO*x#y: |x|2|y
R —> RB|A RemarkiRO*x#y:[x|<]y
A — BAB | # Remark: AO* x#y : |x|=]y]
B - 0] 1 Remark: BO*0, BO™* 1

L(G) =L

y|
y|




Example: CFG for expressions in programming
languages

Task: recognize strings like 0 + 0 + 1 x (1 + 0)

S—>S+S|SxS|(S)|0]1

S—- S+S - 0+S - 0+S+S - 0+0+S
—-0+0+SxS - 0+0+1xS

—-0+0+1x(S) > 0+0+1x(S+9S5)
—- 0+0+1x(1+S) > 0+0+1x(1+0)



We have seen: CFG, definition, and examples

Next: Ambiguity



* Ambiguity: Some string may have multiple
derivations in a CFG

* Ambiguity is a problem for compilers:

Compilers use derivation to give meaning to strings.

Example: meaning of 1+0x0 € > *is its value, 1 € N

If there are two different derivations,
the value may not be well defined.



Example: The string 1+0x0 has two derivations In
S—>S+S|SXxS|(S)|[0]1

One derivation:
S - 5+S - 1+S — 1+SxS — 1+0xS — 1+0x0

Another derivation:
S—-7?




Example: The string 1+0x0 has two derivations In
S—>S+S|SXxS|(S)|[0]1

One derivation:
S - 5+S - 1+S — 1+SxS — 1+0xS — 1+0x0

Another derivation:
S—>SxS -7




Example: The string 1+0x0 has two derivations In
S—>S+S|SXxS|(S)|[0]1

One derivation:
S - 5+S - 1+S — 1+SxS — 1+0xS — 1+0x0

Another derivation:
S —>SxS - 8Sx0 -7




Example: The string 1+0x0 has two derivations In
S—>S+S|SXxS|(S)|[0]1

One derivation:
S - 5+S - 1+S — 1+SxS — 1+0xS — 1+0x0

Another derivation:
S - SxS —- Sx0 — S+Sx0 — ?




Example: The string 1+0x0 has two derivations In
S—>S+S|SXxS|(S)|[0]1

One derivation:
S - 5+S - 1+S — 1+SxS — 1+0xS — 1+0x0

Another derivation:
S - SxS - Sx0 - S+Sx0 —» S+0x0 — ?




Example: The string 1+0x0 has two derivations In
S—>S+S|SXxS|(S)|[0]1

One derivation:
S - 5+S - 1+S — 1+SxS — 1+0xS — 1+0x0

Another derivation:
S - SXxS —» Sx0 —» S+Sx0 — S+0x0 — 1+0x0




We now want to define CFG with no ambiguity

Definition: A derivation is leftmost if at every step
the leftmost variable is expanded

Example: the 1° previous derivation was leftmost
S —> S+S —» 1+S —» 1+SxS — 1+0xS — 1+0x0

Definition: A CFG G is un-ambiguous if no string
nas two different leftmost derivations.




Example

The CFG S—>S+S|SxS|(S)|0]1
IS ambiguous because 1+0x0 has two distinct
leftmost derivations

One leftmost derivation:
S —>S+S > 1+S —» 1+SxS — 1+0xS — 1+0x0

Another leftmost derivation:
S - SXxS —» S+SxS —» 1+SxS — 1+0xS — 1+0x0




Example Instead of using CFG
S—>S+S|SxS|(S)|0]1

we may use un-ambiguous grammar
S—>S+T|T

T—->TxF | F

F—->0]1](S)

Unique leftmost derivation of 1+0x0:
S —?




Example Instead of using CFG
S—>S+S|SxS|(S)|0]1

we may use un-ambiguous grammar
S—>S+T|T

T—->TxF | F

F—->0]1](S)

Unique leftmost derivation of 1+0x0:
S—>S+T -7




Example Instead of using CFG
S—>S+S|SxS|(S)|0]1

we may use un-ambiguous grammar
S—>S+T|T

T—->TxF | F

F—->0]1](S)

Unique leftmost derivation of 1+0x0:
S—>S+T->T+T -7




Example Instead of using CFG
S—>S+S|SxS|(S)|0]1

we may use un-ambiguous grammar
S—>S+T|T

T—->TxF | F

F—->0]1](S)

Unique leftmost derivation of 1+0x0:
S—>S+T->T+T—o>F+T->7?




Example Instead of using CFG
S—>S+S|SxS|(S)|0]1

we may use un-ambiguous grammar
S—>S+T|T

T—->TxF | F

F—->0]1](S)

Unique leftmost derivation of 1+0x0:
S>S+T->T+T—->F+T—>1+T

— ?



Example Instead of using CFG
S—>S+S|SxS|(S)|0]1

we may use un-ambiguous grammar
S—>S+T|T

T—->TxF | F

F—->0]1](S)

Unique leftmost derivation of 1+0x0:
S>S+T->T+T—->F+T—>1+T
—1+TxF—>7?




Example Instead of using CFG
S—>S+S|SxS|(S)|0]1

we may use un-ambiguous grammar
S—>S+T|T

T—->TxF | F

F—->0]1](S)

Unique leftmost derivation of 1+0x0:
S>S+T->T+T—->F+T—>1+T
—-1+TxF—-1+0xF—->1+0x0




Actual Java specification grammar snippet
Cumbersome but un-ambiguous

MuiltiplicativeExpression:
UnaryExpression
MuiltiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MuiltiplicativeExpression % UnaryExpression
AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression



Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then
notA isreqgular ?

AUB isreqgular?
Ao B isregular?

A* is reqular ?



Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then

not A regular

AU B regular
Ao B regular

A* regular



Suppose A, B are context-free:
A=L(G,) for CFG G,=(V,, 2, Ry, Sy)

B = L(Gy) for CFG Gg=(V4, %, Ry, Sg)

What about
AUB S —>?
AoB

A*



Suppose A, B are context-free:
A=L(G,) for CFG G,=(V,, 2, Ry, Sy)

B = L(Gy) for CFG Gg=(V4, %, Ry, Sg)

What about
AUB S — S5,|S5g Context-free

AoB S—- 7
A*



Suppose A, B are context-free:
A=L(G,) for CFG G,=(V,, 2, Ry, Sy)

B = L(Gyg) for CFG Gg=(Vg, =, Ry, Sg)

What about
AUB S — S5,|S5g Context-free

AoB S — S, Sy Context-free
A* S— 7



Suppose A, B are context-free:
A=L(G,) for CFG G,=(V,, 2, Ry, Sy)

B = L(Gyg) for CFG Gg=(Vg, =, Ry, Sg)

What about
AUB S — S5,|S5g Context-free

AoB S — S, Sy Context-free
A* S—SS,|e Context-free

Above all context-free!
In general, (not A) is NOT context-free



Suppose A, B are context-free:
A=L(G,) for CFG G,=(V,, 2, Ry, Sy)

B = L(Gyg) for CFG Gg=(Vg, =, Ry, Sg)

What about
AUB S — S5,|S5g Context-free

AoB S — S, Sy Context-free
A* S—SS,|e Context-free

Above also shows regular = context-free

Context-free languages contain regular languages



Example: Context Free UNION S = {0,1,#

GiveaCFGfor L={x#y: x,yin{0,1}
x| #]y] OR x =y}

yR IS the reverse of y:
001R =100

11010R = 01011
1R =1



Example: Context Free UNION S = {0,1,#

GiveaCFGfor L={x#y: x,yin{0,1}
x| #|y] OR x =yR}
Write L = L1 U L2, where

L. ={x#y: x| £yl } L ={x#ty : x=yR}



Example: Context Free UNION S = {0,1,#

GiveaCFGfor L={x#y: x,yin{0,1}*

x| #]y] OR x=yR}
Write L = L1 U L2, where
L, ={x#y : |x| #y|} L, ={x#y :x=yR}
G= S,— BL | RB

1
L - BL | A Remark:LO*x#y: x| =]y
R - RB | A RemarkiRO*x#y:|x| <y
A — BAB | # Remark: AO* x#y : [x|=]y]
B—- 0] 1




Example: Context Free UNION S = {0,1,#

GiveaCFGfor L={x#y: x,yin{0,1}
x| #|y] OR x =yR}
Write L = L1 U L2, where

L, = {dty < [ # Iyl } L, = {xity :x=yR}
G= S —->BL|RB G=S5 —-0S0]1S1 | #
L —» BL | A
R > RB | A
A — BAB | #

B— 0| 1



Example: Context Free UNION S = {0,1,#

GiveaCFGfor L={x#y: x,yin{0,1}
x| #|y] OR x =yR}
Write L = L1 U L2, where

L, = {dty < [ # Iyl } L, = {xity :x=yR}
G= S —->BL|RB G=S5 —-0S0]1S1 | #
L —» BL | A

letG=S—>S, | S,
R — RB | A

A= BABL# then L(G)=L, & LG)=L

1

5~ 011 1 L(G)=L UL =L

2



Example: Context Free CONCATENATION

Givea CFGfor L={0™™0"": meven and n odd}



Example: Context Free CONCATENATION
Givea CFGfor L={0™™0"": meven and n odd}

Write L = L1 0 L2, where
L. ={0™" : meven} L, ={0"" : nodd}



Example: Context Free CONCATENATION
Givea CFGfor L={0™™0"": meven and n odd}

Write L = L1 0L2, where
L. ={0™" : meven} L, ={0"" : nodd}
G1= S1—> 008111 | €



Example: Context Free CONCATENATION
Givea CFGfor L={0™™0"": meven and n odd}

WriteL=L1 oL2, where
L. ={0™" : meven} L, ={0"" : nodd}
G1= S1—> 008111 | € GZ= SZ—> 008211 | 01



Example: Context Free CONCATENATION
Givea CFGfor L={0™™0"": meven and n odd}

Write L = L1 0L2, where
L. ={0™" : meven} L, ={0"" : nodd}
G1= S1—> 008111 | € GZ= SZ—> 008211 | 01

letG=S —S S,

Then, L(G)=L & L(G) =L

1

0 L(G)=L, oL =L

2



Example: Context Free STAR

Give a CFG for
L={win{0,1}": w=w w ==w ,k20

where each w is a palindrome }

* A string w is a palindrome if w = wR
That is, w reads the same forwards and backwards

 Example: 00100, 1001, and 0 are palindromes;
0011, 01 are not



Example: Context Free STAR

Give a CFG for
L={win{0,1}": w=w w ==w ,k20

where each w.is a palindrome }

Write L =L ", where L ={w:wis a palindrome}

Note: In fact, L = {0,1}*, but we will not use that.



Example: Context Free STAR

Give a CFG for
L={win{0,1}": w=w w ==w ,k20

where each w.is a palindrome }

Write L =L ", where L ={w:wis a palindrome}

G=S, —0S0[1S1]|0|1]ce



Example: Context Free STAR

Give a CFG for
L={win{0,1}": w=w w ==w ,k20

where each w.is a palindrome }

Write L =L ", where L ={w:wis a palindrome}

G=S, —0S0[1S1]|0|1]ce

LetG=S—>SS |e. Then, L(G)=L
U L(G)=L"=L



Beyond regular

A string and its reversal with C in middle:
S—> 050|151 |C
Example: S =* 0001C1000

More generally, to get strings of the form Ak C B
userules:S—-ASB|C



Example: = = {0,1,#}, wR is reverse of w
L = {w # x : wR is a substring of x}

Useful to rewrite L as:



Example: = = {0,1,#}, wR is reverse of w

L = {w # x : wR is a substring of x}

= {wix wRy :wX,y

G =

S — CB
C—0CO0|1C1 | #B
B—-0B|1B]|¢

10,1}

Remark: B

*



Example: = = {0,1,#}, wR is reverse of w
L = {w # x : wR is a substring of x}

= {witx wRy : w,x,y O{0,1}* }

G =

S—->CB

C—-0CO0[1C1|#B Remark:C0O*?
B—-0B|1B]|¢ Remark: B O * {0,1}"




Example: = = {0,1,#}, wR is reverse of w
L = {w # x : wR is a substring of x}

= {witx wRy : w,x,y O{0,1}* }

G =

S —CB

C—0CO|1C1|#B Remark: C O* w#{0,1}*wR
B—-0B|1B]|¢ Remark: B O * {0,1}"

L(G) =L



CFG vs. automata
CFG < non-deterministic pushdown automata (PDA)

A PDA is simply an NFA with a stack.

This means: “read x from the input;
pop y off the stack;
push z onto the stack”

Any of x,y,z may be €.



Example: PDAforL={0"1":n =0}

The $ is a special symbol to recognize end of stack

|dea:
q,: read and push Os onto stack until no more

q,: read 1s and match with Os popped from stack



Unlike the case for regular automata,
non-deterministic PDA are strictly more powerful
than deterministic PDA.

Compilers must work with deterministic PDA,
an important subclass of context-free languages



Non-context-free languages
Intuition: If L involves regular expressions and/or

nested matchings then probably context-free.
If not, probably not.

{0"1":n=20}CF: 000 111 nested
=]

{ww:w@OZ2>*} not CF: 1101 1101 not nested

{0"1"2" : n=0} not CF: 00 11 22 not nested
| L




Non-context-free languages

There is a pumping lemma for context-free
languages.

Similar to the one for regular, but
simultaneously “pump” string in two parts:
W=uVvxyz



Context-free pumping lemma:

L is CF language

p 20
wlL, |wlzp

u,v,X,y,Z :

W= uvxyz, |[vy|> 0, |vxy|< p

i20:uvixylzOL



Context-free pumping lemma:

L is CF language p =0

wilL, |w[zp

u,v,X,vy,Z .

W= uvxyz, |vy

i =0 :uvxy'z

Proof idea:
Let Gbe CFG:L(G) =L

>0, |vxyl|s p
L

If w O L is very long, derivation repeats a variable V

(like repeat states in regular P.L.)

vXy = piece of w that V derives: V »* vxy

Because V repeated once, can repeat it again



Context-free pumping lemma:

L is CF language p =0

wilL, |w[zp

u,v,x,y,Z :

W= uvxyz, |vy|> 0, |vxy|< p

i=20:uvxy'zOL

Useful to prove L NOT context-free.

Use contrapositive:

L context-free language 0 A

Same as

(not A) O L not context-free




Context-free pumping lemma (contrapositive)

p =0
wOL, [wl2p
u,v,X,y,Z : L not context-free

W = uvxyz, |vy|> 0, |vxy|< p

i>0:uvxy'zOL

To prove L not context-free it is enough to prove not A

Not A Is the stuff in the box.



Context-free pumping lemma (contrapositive)

p 20
wOL, [wl2p
u,v,X,y,Z : L not context-free

W = uvxyz, |vy|> 0, |vxy|< p

i=20:uvxy'zOL

Adversary picks p,
You pick w € L of length = p,

Adversary decomposes w = uvxyz, |vy| > 0, |vxy| < p
You pick 120

Finally, you win if uvixy'z O L




Theorem: L :={a" b" c": n = 0} is not context-free.

Proof: p =0

Adversary moves p wOL, |w|2p

You move w := aP bP cP u,v,X,y,Z : W = UVXyz,

Adversary moves u,v,X,y,z lvy|> 0, |[vxy|< p

You move i := 2 i=>0:uvxy'zOL

You must show uvvxyyz [ L:

vy misses at least one symbol in ) = {a,b,c}
since 7



Theorem: L :={a" b" c": n = 0} is not context-free.

Proof: p =0

Adversary moves p wOL, |w|2p

You move w := aP bP cP u,v,X,y,Z : W = UVXyz,

Adversary moves u,v,X,y,z lvy|> 0, |[vxy|< p

You move i := 2 i=>0:uvxy'zOL

You must show uvvxyyz [ L:

vy misses at least one symbol in ) = {a,b,c}
since between as and cs there are p bs, and |vy| < p
SO UvvXyyz 77?77



Theorem: L :={a" b" c": n = 0} is not context-free.

Proof: p =0

Adversary moves p wOL, |w|2p

You move w := aP bP cP U,V,X,Y,Z . W = UVXYZ,
Adversary moves u,v,X,y,Z lvy|> 0, |vxy|S p

You move i := 2 i=>0:uvxy'zOL

You must show uvvxyyz [ L:

vy misses at least one symbol in ) = {a,b,c}
since between as and cs there are p bs, and |vy| < p
SO uvvxyyz has too few of that symbol, so € L
DONE



Theorem: L:={a' b/ ck: 0 <i<j<k}is not context-free.
Proof:

p 20
wOL, wlzp

Adversary moves p

You move w = aP bP cP

u,v,X,y,Z : W = UVXyz,

Adversary moves u,V,X,y,Z
vy[> 0, [vxy|s p

i=>0:uvxy'zOL

So far, same as {a" b" c": n = 0}.
But now we need a few cases.
Our choice of i depends on u,v,X,y,z



Theorem: L:={a' b/ ck: 0 <i<j<k}is not context-free.
Proof (cont.):
You have w = aPbPcP, with w = uvxyz, |vy|> 0, [vxy|< p.

You must pick i =2 0 and show uvixy'z O L.

If no a's invy: ?



Theorem: L:={a' b/ ck: 0 <i<j<k}is not context-free.
Proof (cont.):

You have w = aPbPcP, with w = uvxyz, |vy|> 0, [vxy|< p.
You must pick i =2 0 and show uvixy'z O L.

If no a's in vy: uvxyYz has fewer b's or ¢'s than a's.
If noc's invy: ?



Theorem: L:={a' b/ ck: 0 <i<j<k}is not context-free.
Proof (cont.):

You have w = aPbPcP, with w = uvxyz, |vy|> 0, [vxy|< p.
You must pick i =2 0 and show uvixy'z O L.

If no a's in vy: uvxyYz has fewer b's or ¢'s than a's.

If no ¢'s in vy: uv?xy?z has more a's or b's than c's.
If no b's in vy:
?



Theorem: L:={a' b/ ck: 0 <i<j<k}is not context-free.
Proof (cont.):

You have w = aPbPcP, with w = uvxyz, |vy|> 0, [vxy|< p.
You must pick i =2 0 and show uvixy'z O L.

If no a's in vy: uvxyYz has fewer b's or ¢'s than a's.

If no ¢'s in vy: uv?xy?z has more a's or b's than c's.
If no b's in vy:

You fall in a previous case, since |vxy| < p

DONE



Theorem: L:={ss :s 0{0,1}* } is not context-free.

Proof: p =0

Adversary moves p wOL, [w|2p

You move w := 0P 1P QP 1P U,v,X,V,Z : W = UvXyz,

lvy|> 0, |vxy|<p

i>0:uvxy'zOL

Note: To prove L not regular we moved w = 0P 1 OP 1

That move does not work for context-free!



Theorem: L:={ss :s

Proof:
Adversary moves p

{0,1}* } is not context-free.

p 20
wOL, |wl=2p

You move w := 0P 1P QP 1P U,v,X,V,Z : W = UvXyz,

Adversary moves u,v,X,y,Z lvy|> 0, |vxy|< p

Three cases:
vxy in 1% half of w: ?

i=20:uvxyzOL




Theorem: L:={ss :s 0{0,1}* } is not context-free.

Proof: p =20

Adversary moves p wOL, [w|2p

You move w := QP 1P QP 1P u,v,X,¥,Z . W = UvVXyz,
Adversary moves u,v,X,y,Z lvy|> 0, |vxy|< p

Three cases: i=>0:uvixy'zOL

vxy in 1% half of w: 2" half of uv®xy2z starts with 1,
but uv?xy?z still starts with O.
vxy in 2" half of w: ?



Theorem: L:={ss :s 0{0,1}* } is not context-free.

Proof: p =20

Adversary moves p wOL, [w|2p

You move w := QP 1P QP 1P u,v,X,¥,Z . W = UvVXyz,
Adversary moves u,v,X,y,Z lvy|> 0, |vxy|< p

Three cases: i=>0:uvixy'zOL

vxy in 1% half of w: 2" half of uv®xy2z starts with 1,
but uv?xy?z still starts with O.

vxy in 2" half of w: 1% half of uv®xy%z ends with O,
but uv?xy?4z still ends with 1.

vxy touches midpoint: ?



Theorem: L:={ss :s 0{0,1}* } is not context-free.

Proof: p =20

Adversary moves p wOL, [w|2p

You move w := QP 1P QP 1P u,v,X,¥,Z . W = UvVXyz,
Adversary moves u,v,X,y,Z lvy|> 0, |vxy|< p

Three cases: i=>0:uvixy'zOL

vxy in 1% half of w: 2" half of uv®xy2z starts with 1,
but uv?xy?z still starts with O.
vxy in 2" half of w: 1% half of uv®xy%z ends with O,
but uv?xy?4z still ends with 1.
vxy touches midpoint:
uvxy%z =0r 10/ 1P with eitheri<porj<p. DONE



L :={w O {a,b}* : whas same number of a and b}

Grammar for L

?7?



L :={w O {a,b}* : whas same number of a and b}

Grammar for L

S > ¢|SS|aSb|bSa

Not clear why this works.

It requires a proof.



Proofs by induction

Let P(n) be any claim
To prove “V n =0, P(n) is true” it suffices to prove

Base case: P(0) is true

Induction step: V n: ( (V i<n,P(i))=> P(n) )
Induction hypothesis

You can replace “0” by any fixed value



Example: P(n)=3% ._," i=n(n+1)/2

Claim: V n=0, P(n)

Proof by induction:

Base case: P(0)
0=0(1)/2=0Is true

Induction step: V n: ( (V i<n,P(i))=> P(n) )

S " =77



Example: P(n)=3% ._," i=n(n+1)/2

Claim: V n=0, P(n)

Proof by induction:
Base case: P(0)
0=0(1)/2=0Is true

Induction step: V n: ( (V i<n,P(i))=> P(n) )

Y 2ot i=Y " i+ n=(n-1)n/2 + n =n(n+1)/2



L :={w 0O {a,b}*: whas same number of a and b}
S—€e|SS|aSb | bSa
Claim: Foranyw € {a,b}*,S —>*w ifandonlyifw & L

Proof of “only if": Suppose S —* w. Must show w € L.

This fact is self-evident.
We show a proof by induction nevertheless,
as a warm-up for the other direction,

which is not self-evident.



L :={w 0O {a,b}*: whas same number of a and b}

S—¢|SS|aSb | bSa

Claim: Foranyw € {a,b}*,S —>*w ifandonlyifw & L

Proof of “only if": Suppose S —* w. Must show w € L.

Let P(n) =any w € {S,a,b}” such that S —* w in n steps
has same number of a and b.

Base case (n=1): 7?7



L :={w 0O {a,b}*: whas same number of a and b}
S—¢|SS|aSb | bSa
Claim: Foranyw € {a,b}*,S —>*w ifandonlyifw & L
Proof of “only if": Suppose S —* w. Must show w € L.
Let P(n) =any w € {S,a,b}” such that S —* w in n steps

has same number of a and b.
Base case (n=1): g, SS, aSb, bSa have same number.
Induction step: Suppose S —->* W' — w

where S —”* w' in n-1 steps.

By induction hypothesis, 7?7



L :={w 0O {a,b}*: whas same number of a and b}
S—¢|SS|aSb | bSa
Claim: Foranyw € {a,b}*,S —>*w ifandonlyifw & L
Proof of “only if": Suppose S —* w. Must show w € L.
Let P(n) =any w € {S,a,b}” such that S —* w in n steps

has same number of a and b.
Base case (n=1): g, SS, aSb, bSa have same number.
Induction step: Suppose S —->* W' — w

where S —”* w' in n-1 steps.

By induction hypothesis, w' has same number of a, b.

Since any rule adds same number of a and b, w has too.



L :={w 0O {a,b}*: whas same number of a and b}
S—¢|SS|aSb | bSa

Claim: Foranyw € {a,b}*,S —>*w ifandonlyifw & L
Proof of “if": Suppose w € L. Must show S —»* w

Let P(n)= V w € {S,a,b}*, [w|=n, S ->* w.

Base case: w =¢. Use rule 7?7



L :={w 0O {a,b}*: whas same number of a and b}
S—¢|SS|aSb | bSa

Claim: Foranyw € {a,b}*,S —>*w ifandonlyifw & L
Proof of “if": Suppose w € L. Must show S —»* w

Let P(n)= V w € {S,a,b}*, [w|=n, S ->* w.

Base case:w=¢€. Userule S — ¢

Induction step: Let |w| = n.

This step is more complicated, and is the

“creative step” of this proof.



S > ¢|SS|aSb|bSa

Induction step: Let |w| = n.
Define C = number of a - number of b in Wy Wy ... W,

Cy=0 cn=??



S > ¢|SS|aSb|bSa

Induction step: Let |w| = n.
Define C = number of a - number of b in Wy Wy ... W,

CO=O Cn=0

f 30<i<n:c =0

then w = ??



S > ¢|SS|aSb|bSa

Induction step: Let |w| = n.
Define C = number of a - number of b in Wy Wy ... W,

CO=O Cn=0

f 30<i<n:c=0

thenw =w'w", where w', w" € L,
and |w'| <n, |W"| <n
By induction hypothesis. S — *w', S — * w",

Hence S - SS—->"W S -ww'=w



S > ¢|SS|aSb|bSa

Induction step: Let |w| = n.
Define C = number of a - number of b in Wy Wy ... W,

CO=O Cn=0

If VO0<i<n:c,>0

then w = ??



S > ¢|SS|aSb|bSa

Induction step: Let |w| = n.
Define C = number of a - number of b in Wy W, ...

CO=O Cn=0

If VO<i<n:c >0

thenw=aw'b, wherew' € Land [w'| <n
By induction hypothesis. S — * W'

Hence S - aSb—-*aw'b=w



S > ¢|SS|aSb|bSa

Induction step: Let |w| = n.
Define C = number of a - number of b in Wy Wy ... W,

CO=O Cn=0

If V0<i<n:c <0

then w = ??



S > ¢|SS|aSb|bSa

Induction step: Let |w| = n.
Define C = number of a - number of b in Wy W, ...

CO=O Cn=0

If V0<i<n:c <0

thenw=bw'a, wherew' € Land [w'| <n
By induction hypothesis. S —>* W'

HenceS - bSa—*bw'a=w



S > ¢|SS|aSb|bSa

Induction step: Let |w| = n.
Define C = number of a - number of b in Wy Wy ... W,

CO=O Cn=0

These three cover all cases, because two consecutive
c; differ by 1. So the c; cannot change sign without

going through O

DONE



