Big picture

- All languages
- Decidable

Turing machines

- NP
-P
- Context-free

Context-free grammars, push-down automata

- Regular

Automata, non-deterministic automata, regular expressions

Recall:

Theorem: $L:=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular

But it is often needed to recognize this language Example: Programming language syntax have matching brackets, not regular.

Next: Introduce context-free languages

Why study context-free languages

- Practice with more powerful model
- Programming languages: Syntax of C++, Java, etc. is specified by context-free grammar
- Other reasons: human language has structures that can be modeled as context-free language English is not a regular language

Example: Context-free grammar $G, \Sigma=\{0,1\}$

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

Two substitution rules (a.k.a. productions) \rightarrow
Variables $=\{S\}$, Terminals $=\{0,1\}$

Derivation of 0011 in grammar: $S \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 0011$

$$
L(G)=\left\{0^{n} 1^{n}: n \geq 0\right\}
$$

Example: Context-free grammar G, $\Sigma=\{0,1\}$

 $\mathrm{S} \rightarrow \mathrm{A}$$S \rightarrow B$
$\mathrm{A} \rightarrow 0 \mathrm{~A} 1$
$\mathrm{A} \rightarrow \varepsilon$
$B \rightarrow 1$ B 0
$\mathrm{B} \rightarrow \varepsilon$

$$
\begin{aligned}
L(G) & =L(A) \cup L(B) \\
& =\left\{0^{n} 1^{n}: n \geq 0\right\} \cup\left\{1^{n} 0^{n}: n \geq 0\right\}
\end{aligned}
$$

Next: A convention to write this more compactly

Example: Context-free grammar $G, \Sigma=\{0,1\}$

$S \rightarrow A \mid B$
$\mathrm{A} \rightarrow 0 \mathrm{~A} 1 \mid \varepsilon$
$\mathrm{B} \rightarrow 1 \mathrm{~B} 0 \mid \varepsilon$

Convention: Write $\mathrm{A} \rightarrow \mathrm{w} \mid \mathrm{w}$ ' for
$\mathrm{A} \rightarrow \mathrm{w}$ and $\mathrm{A} \rightarrow \mathrm{w}^{\prime}$

Definition: A context-free grammar (CFG) G is

 a 4 tuple (V, $\Sigma, \mathrm{R}, \mathrm{S}$) where- V is a finite set of variables
- Σ is a finite set of terminals ($V \cap \Sigma=\varnothing$)
- R is a finite set of rules, where each rule is
$A \rightarrow w \quad A \in V, w \in(V U \Sigma)^{*}$
$\cdot \mathrm{S} \in \mathrm{V}$ is the start variable

Example

The language $L=\left\{a^{m} b^{n}: m>n\right\}$ is described by the CFG $G=(V, \Sigma, R, S)$ where:

$$
\begin{aligned}
V= & \{S, T\} \\
\Sigma= & \{a, b\} \\
R= & \{S \rightarrow a S \mid a T \\
& T \rightarrow a T b \mid \varepsilon\}
\end{aligned}
$$

Derive aaab:
$S \rightarrow$?

Example

The language $L=\left\{a^{m} b^{n}: m>n\right\}$ is described by the CFG $G=(V, \Sigma, R, S)$ where:

$$
\begin{aligned}
V=\{S, T\} & \text { Derive aaab: } \\
\Sigma=\{a, b\} & S \rightarrow a S \\
R=\{S \rightarrow a S \mid a T & \rightarrow ? \\
& T \rightarrow a T b \mid \varepsilon\}
\end{aligned}
$$

Example

The language $L=\left\{a^{m} b^{n}: m>n\right\}$ is described by the CFG $G=(V, \Sigma, R, S)$ where:

$$
\begin{array}{rlr}
V=\{S, T\} & \text { Derive aaab: } \\
\Sigma=\{a, b\} & S \rightarrow \text { aS } \\
R=\{S \rightarrow a S \mid a T & \rightarrow \text { aaT } \\
T \rightarrow a T b \mid \varepsilon\} & \rightarrow ?
\end{array}
$$

Example

The language $L=\left\{a^{m} b^{n}: m>n\right\}$ is described by the CFG $G=(V, \Sigma, R, S)$ where:

$$
\begin{aligned}
& \mathrm{V}=\{\mathrm{S}, \mathrm{~T}\} \text { Derive aaab: } \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}\} \mathrm{S} \\
& \mathrm{R}=\mathrm{aS} \\
& \mathrm{R} \rightarrow \mathrm{aS} \mid \mathrm{aT} \rightarrow \text { aaT } \\
&\mathrm{T} \rightarrow \mathrm{aTb} \mid \varepsilon\} \\
& \rightarrow \text { aaaTb } \\
& \rightarrow ?
\end{aligned}
$$

Example

The language $L=\left\{a^{m} b^{n}: m>n\right\}$ is described by the CFG $G=(V, \Sigma, R, S)$ where:

$$
\begin{aligned}
& V=\{S, T\} \text { Derive aaab: } \\
& \Sigma=\{a, b\} \\
& R=\{\mathrm{aS} \\
& \mathrm{R}=\{\mathrm{aS\mid aT} \\
&\mathrm{T} \rightarrow \mathrm{a} \rightarrow \mathrm{aTb} \mid \varepsilon\} \\
& \rightarrow \text { aaaTb } \\
& \\
& \rightarrow \text { aaab }
\end{aligned}
$$

Definition: Let $G=(V, \Sigma, R, S)$ be a CFG

 we write $u A v \Rightarrow u w v$ and say $u A v$ yields uwv if $A \rightarrow w$ is a ruleWe say u derives v, written $u \Rightarrow^{*} v$, if

- $u=v$, or
- $\exists \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}} \mathrm{k} \geq 1$:
$u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \ldots \Rightarrow u_{k}=v$

The language of the grammar is $L(G)=\left\{w: S \Rightarrow^{*} w\right\}$

Definition: A language L is context-free if \exists CFG G:L(G) = L

Example:

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\left.\{0,1\}^{*}|x| \neq|y|\right\}$
$G=S \rightarrow B L$
$S \rightarrow R B$
$\mathrm{L} \rightarrow \mathrm{BL} \mid \mathrm{A}$
$R \rightarrow R B \mid A$
$\mathrm{A} \rightarrow \mathrm{BAB} \mid \#$
$B \rightarrow 0 \mid 1 \quad$ Remark: $B \Rightarrow^{*}$?

To understand, explain what each piece does!

Example:

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\left.\{0,1\}^{*}|x| \neq|y|\right\}$
$G=S \rightarrow B L$
$S \rightarrow R B$
$\mathrm{L} \rightarrow \mathrm{BL} \mid \mathrm{A}$
$R \rightarrow R B \mid A$
$\mathrm{A} \rightarrow \mathrm{BAB} \mid \#$ Remark: $\mathrm{A} \Rightarrow^{*}$?
$B \rightarrow 0 \mid 1 \quad$ Remark: $B \Rightarrow^{*} 0, B \Rightarrow{ }^{*} 1$

Example:

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\left.\{0,1\}^{*}|x| \neq|y|\right\}$
$G=S \rightarrow B L$
$S \rightarrow R B$
$\mathrm{L} \rightarrow \mathrm{BL} \mid \mathrm{A}$
$\mathrm{R} \rightarrow \mathrm{RB} \mid \mathrm{A}$ Remark: $\mathrm{R} \Rightarrow^{*}$?
A \rightarrow BAB | \# Remark: A $\Rightarrow^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}|=|\mathrm{y}|$
$B \rightarrow 0 \mid 1 \quad$ Remark: $B \Rightarrow^{*} 0, B \Rightarrow{ }^{*} 1$

Example:

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\left.\{0,1\}^{*}|x| \neq|y|\right\}$
$G=S \rightarrow B L$
$S \rightarrow R B$
$\mathrm{L} \rightarrow \mathrm{BL} \mid \mathrm{A}$ Remark: $\mathrm{L} \Rightarrow^{*}$?
$\mathrm{R} \rightarrow \mathrm{RB} \mid \mathrm{A} \quad$ Remark: $\mathrm{R} \Rightarrow{ }^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}| \leq|\mathrm{y}|$
A \rightarrow BAB | \# Remark: A $\Rightarrow^{*} x \# y:|x|=|y|$
$B \rightarrow 0 \mid 1 \quad$ Remark: $B \Rightarrow^{*} 0, B \Rightarrow{ }^{*} 1$

Example:

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\left.\{0,1\}^{*}|x| \neq|y|\right\}$
$G=S \rightarrow B L$
$\mathrm{S} \rightarrow \mathrm{RB} \quad$ Remark: $\mathrm{RB} \Rightarrow{ }^{*}$?
$\mathrm{L} \rightarrow \mathrm{BL} \mid \mathrm{A}$ Remark: $\mathrm{L} \Rightarrow^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}| \geq|\mathrm{y}|$
$\mathrm{R} \rightarrow \mathrm{RB} \mid \mathrm{A}$ Remark: $\mathrm{R} \Rightarrow{ }^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}| \leq|\mathrm{y}|$
A \rightarrow BAB | \# Remark: A $\Rightarrow^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}|=|\mathrm{y}|$
$B \rightarrow 0 \mid 1 \quad$ Remark: $B \Rightarrow^{*} 0, B \Rightarrow{ }^{*} 1$

Example:

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\left.\{0,1\}^{*}|x| \neq|y|\right\}$
$\mathrm{G}=\mathrm{S} \rightarrow \mathrm{BL} \quad$ Remark: $\mathrm{BL} \Rightarrow^{*}$?
$\mathrm{S} \rightarrow \mathrm{RB} \quad$ Remark: $\mathrm{RB} \Rightarrow{ }^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}|<|\mathrm{y}|$
$L \rightarrow B L\left|A \quad R e m a r k: L \Rightarrow{ }^{*} x \# y:|x| \geq|y|\right.$
$\mathrm{R} \rightarrow \mathrm{RB} \mid \mathrm{A}$ Remark: $\mathrm{R} \Rightarrow{ }^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}| \leq|\mathrm{y}|$
A \rightarrow BAB | \# Remark: A $\Rightarrow^{*} x \# y:|x|=|y|$
$B \rightarrow 0 \mid 1 \quad$ Remark: $B \Rightarrow^{*} 0, B \Rightarrow{ }^{*} 1$

Example:

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\left.\{0,1\}^{*}|x| \neq|y|\right\}$
$\mathrm{G}=\mathrm{S} \rightarrow \mathrm{BL} \quad$ Remark: $\mathrm{BL} \Rightarrow^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}|>|\mathrm{y}|$
$\begin{array}{ll}S \rightarrow R B & \text { Remark: } R B \Rightarrow^{*} x \# y:|x|<|y| \\ L \rightarrow B L \mid A & R e m a r k: L \Rightarrow^{*} x \# y:|x| \geq|y|\end{array}$
$\mathrm{R} \rightarrow \mathrm{RB} \mid \mathrm{A}$ Remark: $\mathrm{R} \Rightarrow{ }^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}| \leq|\mathrm{y}|$
A \rightarrow BAB | \# Remark: A $\Rightarrow^{*} x \# y:|x|=|y|$
$B \rightarrow 0 \mid 1 \quad$ Remark: $B \Rightarrow^{*} 0, B \Rightarrow{ }^{*} 1$
$L(G)=L$

Example: CFG for expressions in programming

 languagesTask: recognize strings like $0+0+1 \times(1+0)$

$$
S \rightarrow S+S|S \times S|(S)|0| 1
$$

$$
\begin{array}{rl}
S & S+S \rightarrow 0+S \rightarrow 0+S+S \rightarrow 0+0+S \\
& \rightarrow 0+0+S \times S \rightarrow 0+0+1 \times S \\
& \rightarrow 0+0+1 \times(S) \rightarrow 0+0+1 \times(S+S) \\
& \rightarrow 0+0+1 \times(1+S) \rightarrow 0+0+1 \times(1+0)
\end{array}
$$

We have seen: CFG, definition, and examples

Next: Ambiguity

- Ambiguity: Some string may have multiple derivations in a CFG
- Ambiguity is a problem for compilers:

Compilers use derivation to give meaning to strings.

Example: meaning of $1+0 \times 0 \in \Sigma^{*}$ is its value, $1 \in \mathbb{N}$

If there are two different derivations, the value may not be well defined.

Example: The string 1+0x0 has two derivations in

 $S \rightarrow S+S|S \times S|(S)|0| 1$One derivation:
$S \rightarrow S+S \rightarrow 1+S \rightarrow 1+S x S \rightarrow 1+0 x S \rightarrow 1+0 \times 0$

Another derivation:

$$
S \rightarrow ?
$$

Example: The string 1+0x0 has two derivations in

 $S \rightarrow S+S|S \times S|(S)|0| 1$One derivation:
$S \rightarrow S+S \rightarrow 1+S \rightarrow 1+S x S \rightarrow 1+0 x S \rightarrow 1+0 \times 0$

Another derivation:

$$
S \rightarrow S x S \rightarrow ?
$$

Example: The string $1+0 \times 0$ has two derivations in

 $S \rightarrow S+S|S \times S|(S)|0| 1$One derivation:
$S \rightarrow S+S \rightarrow 1+S \rightarrow 1+S x S \rightarrow 1+0 x S \rightarrow 1+0 \times 0$

Another derivation:

$$
S \rightarrow S x S \rightarrow S x 0 \rightarrow ?
$$

Example: The string 1+0x0 has two derivations in

 $S \rightarrow S+S|S \times S|(S)|0| 1$One derivation:
$S \rightarrow S+S \rightarrow 1+S \rightarrow 1+S x S \rightarrow 1+0 x S \rightarrow 1+0 \times 0$

Another derivation:

$$
\mathrm{S} \rightarrow \mathrm{SxS} \rightarrow \mathrm{Sx0} \rightarrow \mathrm{~S}+\mathrm{Sx0} \rightarrow ?
$$

Example: The string 1+0x0 has two derivations in

 $S \rightarrow S+S|S \times S|(S)|0| 1$One derivation:
$S \rightarrow S+S \rightarrow 1+S \rightarrow 1+S x S \rightarrow 1+0 x S \rightarrow 1+0 \times 0$

Another derivation:

$$
\mathrm{S} \rightarrow \mathrm{SxS} \rightarrow \mathrm{Sx0} \rightarrow \mathrm{~S}+\mathrm{Sx0} \rightarrow \mathrm{~S}+0 \times 0 \rightarrow ?
$$

Example: The string 1+0x0 has two derivations in

 $S \rightarrow S+S|S \times S|(S)|0| 1$One derivation:
$S \rightarrow S+S \rightarrow 1+S \rightarrow 1+S x S \rightarrow 1+0 x S \rightarrow 1+0 \times 0$

Another derivation:
$S \rightarrow S x S \rightarrow S x 0 \rightarrow S+S x 0 \rightarrow S+0 x 0 \rightarrow 1+0 x 0$

We now want to define CFG with no ambiguity

Definition: A derivation is leftmost if at every step the leftmost variable is expanded

Example: the $1^{\text {st }}$ previous derivation was leftmost

$$
S \rightarrow S+S \rightarrow 1+S \rightarrow 1+S \times S \rightarrow 1+0 \times S \rightarrow 1+0 \times 0
$$

Definition: A CFG G is un-ambiguous if no string has two different leftmost derivations.

Example

The CFG $\quad S \rightarrow S+S|S \times S|(S)|0| 1$ is ambiguous because $1+0 \times 0$ has two distinct leftmost derivations

One leftmost derivation:
$S \rightarrow S+S \rightarrow 1+S \rightarrow 1+S x S \rightarrow 1+0 x S \rightarrow 1+0 \times 0$

Another leftmost derivation:

$$
S \rightarrow S x S \rightarrow S+S x S \rightarrow 1+S x S \rightarrow 1+0 x S \rightarrow 1+0 x 0
$$

Example Instead of using CFG

 $S \rightarrow S+S|S \times S|(S)|0| 1$we may use un-ambiguous grammar $S \rightarrow S+T \mid T$
$\mathrm{T} \rightarrow \mathrm{T} \times \mathrm{F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow 0|1|(\mathrm{S})$

Unique leftmost derivation of $1+0 \times 0$:
$S \rightarrow$?

Example Instead of using CFG

 $S \rightarrow S+S|S \times S|(S)|0| 1$we may use un-ambiguous grammar $S \rightarrow S+T \mid T$
$\mathrm{T} \rightarrow \mathrm{T} \times \mathrm{F} \mid \mathrm{F}$
$F \rightarrow 0|1|(S)$

Unique leftmost derivation of $1+0 \times 0$:
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{T} \rightarrow$?

Example Instead of using CFG

 $S \rightarrow S+S|S \times S|(S)|0| 1$we may use un-ambiguous grammar $S \rightarrow S+T \mid T$
$\mathrm{T} \rightarrow \mathrm{T} \times \mathrm{F} \mid \mathrm{F}$
$F \rightarrow 0|1|(S)$

Unique leftmost derivation of $1+0 \times 0$: $\mathrm{S} \rightarrow \mathrm{S}+\mathrm{T} \rightarrow \mathrm{T}+\mathrm{T} \rightarrow$?

Example Instead of using CFG

 $S \rightarrow S+S|S \times S|(S)|0| 1$we may use un-ambiguous grammar $S \rightarrow S+T \mid T$
$\mathrm{T} \rightarrow \mathrm{T} \times \mathrm{F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow 0|1|(\mathrm{S})$

Unique leftmost derivation of $1+0 \times 0$:
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{T} \rightarrow \mathrm{T}+\mathrm{T} \rightarrow \mathrm{F}+\mathrm{T} \rightarrow$?

Example Instead of using CFG

 $S \rightarrow S+S|S \times S|(S)|0| 1$we may use un-ambiguous grammar $S \rightarrow S+T \mid T$
$\mathrm{T} \rightarrow \mathrm{T} \times \mathrm{F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow 0|1|(\mathrm{S})$

Unique leftmost derivation of $1+0 \times 0$:
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{T} \rightarrow \mathrm{T}+\mathrm{T} \rightarrow \mathrm{F}+\mathrm{T} \rightarrow 1+\mathrm{T}$ \rightarrow ?

Example Instead of using CFG

 $S \rightarrow S+S|S \times S|(S)|0| 1$we may use un-ambiguous grammar $S \rightarrow S+T \mid T$
$\mathrm{T} \rightarrow \mathrm{T} \times \mathrm{F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow 0|1|(\mathrm{S})$

Unique leftmost derivation of $1+0 \times 0$:
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{T} \rightarrow \mathrm{T}+\mathrm{T} \rightarrow \mathrm{F}+\mathrm{T} \rightarrow 1+\mathrm{T}$

$$
\rightarrow 1+\mathrm{T} \times \mathrm{F} \rightarrow ?
$$

Example Instead of using CFG

 $S \rightarrow S+S|S \times S|(S)|0| 1$we may use un-ambiguous grammar
$S \rightarrow S+T \mid T$
$\mathrm{T} \rightarrow \mathrm{T} \times \mathrm{F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow 0|1|(\mathrm{S})$

Unique leftmost derivation of $1+0 \times 0$:
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{T} \rightarrow \mathrm{T}+\mathrm{T} \rightarrow \mathrm{F}+\mathrm{T} \rightarrow 1+\mathrm{T}$

$$
\rightarrow 1+\mathrm{TxF} \rightarrow 1+0 \times \mathrm{F} \rightarrow 1+0 \times 0
$$

Actual Java specification grammar snippet

 Cumbersome but un-ambiguousMultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression \% UnaryExpression
AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then not A is regular?
$A \cup B$ is regular?
AoB is regular?
$\mathrm{A}^{*} \quad$ is regular?

Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then not A regular
AUB regular
AoB regular
A* regular

Suppose A, B are context-free:

$$
\begin{aligned}
& A=L\left(G_{A}\right) \text { for CFG } G_{A}=\left(V_{A}, \Sigma, R_{A}, S_{A}\right) \\
& B=L\left(G_{B}\right) \text { for CFG } G_{B}=\left(V_{B}, \Sigma, R_{B}, S_{B}\right)
\end{aligned}
$$

What about
$\mathrm{A} \cup \mathrm{B} \quad \mathrm{S} \rightarrow$?
AoB
A*

Suppose A, B are context-free:

$$
\begin{aligned}
& A=L\left(G_{A}\right) \text { for CFG } G_{A}=\left(V_{A}, \Sigma, R_{A}, S_{A}\right) \\
& B=L\left(G_{B}\right) \text { for CFG } G_{B}=\left(V_{B}, \Sigma, R_{B}, S_{B}\right)
\end{aligned}
$$

What about
$A \cup B \quad S \rightarrow S_{A} \mid S_{B} \quad$ Context-free
$\mathrm{AoB} \quad \mathrm{S} \rightarrow$?
A*

Suppose A, B are context-free:

$$
\begin{aligned}
& A=L\left(G_{A}\right) \text { for CFG } G_{A}=\left(V_{A}, \Sigma, R_{A}, S_{A}\right) \\
& B=L\left(G_{B}\right) \text { for CFG } G_{B}=\left(V_{B}, \Sigma, R_{B}, S_{B}\right)
\end{aligned}
$$

What about
$A \cup B \quad S \rightarrow S_{A} \mid S_{B} \quad$ Context-free
AoB $\quad S \rightarrow S_{A} S_{B} \quad$ Context-free
$A^{*} \quad S \rightarrow$?

Suppose A, B are context-free:

$$
\begin{aligned}
& A=L\left(G_{A}\right) \text { for CFG } G_{A}=\left(V_{A}, \Sigma, R_{A}, S_{A}\right) \\
& B=L\left(G_{B}\right) \text { for CFG } G_{B}=\left(V_{B}, \Sigma, R_{B}, S_{B}\right)
\end{aligned}
$$

What about
$A \cup B \quad S \rightarrow S_{A} \mid S_{B} \quad$ Context-free
AoB $\quad S \rightarrow S_{A} S_{B} \quad$ Context-free
$A^{*} \quad S \rightarrow S_{A} \mid \varepsilon \quad$ Context-free

Above all context-free!
In general, $(\operatorname{not} A)$ is NOT context-free

Suppose A, B are context-free:

$$
\begin{aligned}
& A=L\left(G_{A}\right) \text { for CFG } G_{A}=\left(V_{A}, \Sigma, R_{A}, S_{A}\right) \\
& B=L\left(G_{B}\right) \text { for CFG } G_{B}=\left(V_{B}, \Sigma, R_{B}, S_{B}\right)
\end{aligned}
$$

What about
$A \cup B \quad S \rightarrow S_{A} \mid S_{B} \quad$ Context-free
AoB $\quad S \rightarrow S_{A} S_{B} \quad$ Context-free
$A^{*} \quad S \rightarrow S_{A} \mid \varepsilon \quad$ Context-free

Above also shows regular \Rightarrow context-free
Context-free languages contain regular languages

Example: Context Free UNION

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\{0,1\}^{*}$

$$
\left.|x| \neq|y| O R \quad x=y^{R}\right\}
$$

y^{R} is the reverse of y :
$001^{R}=100$
$11010^{R}=01011$
$1^{R}=1$

Example: Context Free UNION

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\{0,1\}^{*}$

$$
\left.|x| \neq|y| O R \quad x=y^{R}\right\}
$$

Write $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$, where
$L_{1}=\{x \# y:|x| \neq|y|\}$

$$
L_{2}=\left\{x \# y: x=y^{R}\right\}
$$

Example: Context Free UNION

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\{0,1\}^{*}$

$$
\left.|x| \neq|y| O R \quad x=y^{R}\right\}
$$

Write $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$, where
$L_{1}=\{x \# y:|x| \neq|y|\}$
$\mathrm{G}_{1}=\mathrm{S}_{1} \rightarrow \mathrm{BL} \mid \mathrm{RB}$

$$
L_{2}=\left\{x \# y: x=y^{R}\right\}
$$

$L \rightarrow B L\left|A \quad R e m a r k: L \Rightarrow{ }^{*} x \# y:|x| \geq|y|\right.$
$\mathrm{R} \rightarrow \mathrm{RB} \mid \mathrm{A}$ Remark: $\mathrm{R} \Rightarrow{ }^{*} \mathrm{x} \# \mathrm{y}:|\mathrm{x}| \leq|\mathrm{y}|$
A \rightarrow BAB | \# Remark: A $\Rightarrow^{*} x \# y:|x|=|y|$ $B \rightarrow 0 \mid 1$

Example: Context Free UNION

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\{0,1\}^{*}$

$$
\left.|x| \neq|y| O R \quad x=y^{R}\right\}
$$

Write $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$, where
$L_{1}=\{x \# y:|x| \neq|y|\}$

$$
L_{2}=\left\{x \# y: x=y^{R}\right\}
$$

$\mathrm{G}_{1}=\mathrm{S}_{1} \rightarrow \mathrm{BL} \mid \mathrm{RB}$
$\mathrm{G}_{2}=\mathrm{S}_{2} \rightarrow \mathrm{OS}_{2} 0\left|1 \mathrm{~S}_{2} 1\right| \#$
$\mathrm{L} \rightarrow \mathrm{BL} \mid \mathrm{A}$
$R \rightarrow R B \mid A$
$\mathrm{A} \rightarrow \mathrm{BAB} \mid \#$
$B \rightarrow 0 \mid 1$

Example: Context Free UNION

$$
\Sigma=\{0,1, \#\}
$$

Give a CFG for $L=\left\{x \# y: x, y\right.$ in $\{0,1\}^{*}$

$$
\left.|x| \neq|y| O R \quad x=y^{R}\right\}
$$

Write $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$, where
$L_{1}=\{x \# y:|x| \neq|y|\}$

$$
L_{2}=\left\{x \# y: x=y^{R}\right\}
$$

$\mathrm{G}_{1}=\mathrm{S}_{1} \rightarrow \mathrm{BL} \mid \mathrm{RB}$
$\mathrm{G}_{2}=\mathrm{S}_{2} \rightarrow \mathrm{OS}_{2} 0\left|1 \mathrm{~S}_{2} 1\right| \#$
$\mathrm{L} \rightarrow \mathrm{BL} \mid \mathrm{A}$
Let $\mathrm{G}=\mathrm{S} \rightarrow \mathrm{S}_{1} \mid \mathrm{S}_{2}$
$R \rightarrow R B \mid A$

Example: Context Free CONCATENATION

Give a CFG for $L=\left\{0^{m} 1^{m} 0^{n} 1^{n}: m\right.$ even and n odd $\}$

Example: Context Free CONCATENATION

Give a CFG for $L=\left\{0^{m} 1^{m} 0^{n} 1^{n}: m\right.$ even and n odd $\}$

Write $L=L_{1} \circ L_{2}$, where
$L_{1}=\left\{0^{m} 1^{m}: m\right.$ even $\} \quad L_{2}=\left\{0^{n} 1^{n}: n\right.$ odd $\}$

Example: Context Free CONCATENATION

Give a CFG for $L=\left\{0^{m} 1^{m} 0^{n} 1^{n}: m\right.$ even and n odd $\}$

Write $L=L_{1} \circ L_{2}$, where $L_{1}=\left\{0^{m} 1^{m}: m\right.$ even $\} \quad L_{2}=\left\{0^{n} 1^{n}: n\right.$ odd $\}$
$\mathrm{G}_{1}=\mathrm{S}_{1} \rightarrow 00 \mathrm{~S}_{1} 11 \mid \varepsilon$

Example: Context Free CONCATENATION

Give a CFG for $L=\left\{0^{m} 1^{m} 0^{n} 1^{n}: m\right.$ even and n odd $\}$

Write $L=L_{1} \circ L_{2}$, where $L_{1}=\left\{0^{m} 1^{m}: m\right.$ even $\} \quad L_{2}=\left\{0^{n} 1^{n}: n\right.$ odd $\}$
$\mathrm{G}_{1}=\mathrm{S}_{1} \rightarrow 00 \mathrm{~S}_{1} 11\left|\varepsilon \quad \mathrm{G}_{2}=\mathrm{S}_{2} \rightarrow 00 \mathrm{~S}_{2} 11\right| 01$

Example: Context Free CONCATENATION

Give a CFG for $L=\left\{0^{m} 1^{m} 0^{n} 1^{n}: m\right.$ even and n odd $\}$

Write $L=L_{1} \circ L_{2}$, where
$L_{1}=\left\{0^{m} 1^{m}: m\right.$ even $\} \quad L_{2}=\left\{0^{n} 1^{n}: n\right.$ odd $\}$
$\mathrm{G}_{1}=\mathrm{S}_{1} \rightarrow 00 \mathrm{~S}_{1} 11\left|\varepsilon \quad \mathrm{G}_{2}=\mathrm{S}_{2} \rightarrow 00 \mathrm{~S}_{2} 11\right| 01$
Let $\mathrm{G}=\mathrm{S} \rightarrow \mathrm{S}_{1} \mathrm{~S}_{2}$

Then, $L\left(G_{1}\right)=L_{1}$ \& $L\left(G_{2}\right)=L_{2}$

$$
\Rightarrow \mathrm{L}(\mathrm{G})=\mathrm{L}_{1} \circ \mathrm{~L}_{2}=\mathrm{L}
$$

Example: Context Free STAR

Give a CFG for
$L=\left\{w\right.$ in $\{0,1\}^{*}: w=w_{1} w_{2} \cdots w_{k}, k \geq 0$
where each w_{i} is a palindrome $\}$

- A string w is a palindrome if $w=w^{R}$

That is, w reads the same forwards and backwards

- Example: 00100, 1001, and 0 are palindromes; 0011, 01 are not

Example: Context Free STAR

Give a CFG for
$L=\left\{w\right.$ in $\{0,1\}^{*}: w=w_{1} w_{2} \cdots w_{k}, k \geq 0$ where each w_{i} is a palindrome $\}$

Write $L=L_{1}{ }^{*}$, where $L_{1}=\{w: w$ is a palindrome $\}$

Note: In fact, $L=\{0,1\}^{*}$, but we will not use that.

Example: Context Free STAR

Give a CFG for
$L=\left\{w\right.$ in $\{0,1\}^{*}: w=w_{1} w_{2} \cdots w_{k}, k \geq 0$ where each w_{i} is a palindrome $\}$

Write $L=L_{1}{ }^{*}$, where $L_{1}=\{w: w$ is a palindrome $\}$
$\mathrm{G}_{1}=\mathrm{S}_{1} \rightarrow 0 \mathrm{~S}_{1} 0\left|1 \mathrm{~S}_{1} 1\right| 0|1| \varepsilon$

Example: Context Free STAR

Give a CFG for
$L=\left\{w\right.$ in $\{0,1\}^{*}: w=w_{1} w_{2} \cdots w_{k}, k \geq 0$ where each w_{i} is a palindrome $\}$

Write $L=L_{1}{ }^{*}$, where $L_{1}=\{w: w$ is a palindrome $\}$
$\mathrm{G}_{1}=\mathrm{S}_{1} \rightarrow 0 \mathrm{~S}_{1} 0\left|1 \mathrm{~S}_{1} 1\right| 0|1| \varepsilon$
Let $\mathrm{G}=\mathrm{S} \rightarrow \mathrm{SS}_{1} \mid \varepsilon . \quad$ Then, $\mathrm{L}\left(\mathrm{G}_{1}\right)=\mathrm{L}_{1}$

$$
\Rightarrow \mathrm{L}(\mathrm{G})=\mathrm{L}_{1}{ }^{*}=\mathrm{L} .
$$

Beyond regular

A string and its reversal with C in middle: $S \rightarrow 0 S 0|1 S 1| C$

Example: S $\triangleleft * 0001 \mathrm{C} 1000$

More generally, to get strings of the form $A^{k} C B^{k}$ use rules: $S \rightarrow A S B \mid C$

Example: $\Sigma=\{0,1, \#\}, w^{R}$ is reverse of w $L=\left\{w \# x: w^{R}\right.$ is a substring of $\left.x\right\}$ Useful to rewrite Las:

Example: $\Sigma=\{0,1, \#\}, w^{R}$ is reverse of w $L=\left\{w \# x: w^{R}\right.$ is a substring of $\left.x\right\}$
$=\left\{w \# x w^{R} y: w, x, y \in\{0,1\}^{*}\right\}$

G :=
$S \rightarrow C B$
$C \rightarrow 0 C 0|1 C 1| \# B$
$\mathrm{B} \rightarrow 0 \mathrm{~B}|1 \mathrm{~B}| \varepsilon$
Remark: B $\Rightarrow{ }^{*}$?

Example: $\Sigma=\{0,1, \#\}, w^{R}$ is reverse of w $L=\left\{w \# x: w^{R}\right.$ is a substring of $\left.x\right\}$

$$
=\left\{w \# x w^{R} y: w, x, y \in\{0,1\}^{*}\right\}
$$

G :=
$S \rightarrow C B$
$C \rightarrow 0 C 0|1 C 1| \# B \quad$ Remark: $C \Rightarrow$ *?
$B \rightarrow 0 B|1 B| \varepsilon \quad$ Remark: $B \Rightarrow^{*}\{0,1\}^{*}$

Example: $\Sigma=\{0,1, \#\}, w^{R}$ is reverse of w
$L=\left\{w \# x: w^{R}\right.$ is a substring of $\left.x\right\}$

$$
=\left\{w \# x w^{R} y: w, x, y \in\{0,1\}^{*}\right\}
$$

G :=
$S \rightarrow C B$
$C \rightarrow 0 C 0|1 C 1| \# B \quad$ Remark: $C \Rightarrow{ }^{*} w \#\{0,1\}^{*} w^{R}$
$B \rightarrow 0 B|1 B| \varepsilon \quad$ Remark: $B \Rightarrow^{*}\{0,1\}^{*}$
$L(G)=L$

CFG vs. automata

CFG \Leftrightarrow non-deterministic pushdown automata (PDA)

A PDA is simply an NFA with a stack.

This means: "read x from the input; pop y off the stack;
push z onto the stack"
Any of x, y, z may be ε.

Example: PDA for $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$

The $\$$ is a special symbol to recognize end of stack

Idea:
q_{1} : read and push 0s onto stack until no more $\mathrm{q}_{2}:$ read 1 s and match with 0 s popped from stack

Unlike the case for regular automata, non-deterministic PDA are strictly more powerful than deterministic PDA.

Compilers must work with deterministic PDA, an important subclass of context-free languages

Non-context-free languages

Intuition: If L involves regular expressions and/or nested matchings then probably context-free. If not, probably not.
$\left\{0^{n} 1^{n}: n \geq 0\right\} C F:$
000111
nested
$\left\{w w: w \in \Sigma^{*}\right\}$ not CF: 11011101

$\left\{0^{n} 1^{n} 2^{n}: n \geq 0\right\}$ not CF: 001122

Non-context-free languages

There is a pumping lemma for context-free languages.

Similar to the one for regular, but simultaneously "pump" string in two parts: $w=u v^{i} x y^{i} z$

Context-free pumping lemma:
L is $C F$ language $\Rightarrow \exists p \geq 0$
$\forall w \in L,|w| \geq p$
$\exists \mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{z}$:
$w=u v x y z,|v y|>0,|v x y| \leq p$
$\forall \mathrm{i} \geq 0: \mathrm{uv}^{\mathrm{i}} \mathrm{x} \mathrm{y}^{i} \mathrm{z} \in \mathrm{L}$

Context-free pumping lemma:
L is $C F$ language $\Rightarrow \exists p \geq 0$ $\forall w \in L,|w| \geq p$ $\exists \mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{z}$:

$$
w=u v x y z,|v y|>0,|v x y| \leq p
$$

Proof idea:

$$
\forall \mathrm{i} \geq 0: u^{i} x y^{i} z \in \mathrm{~L}
$$

Let G be CFG: $\mathrm{L}(\mathrm{G})=\mathrm{L}$
If $w \in L$ is very long, derivation repeats a variable V (like repeat states in regular P.L.)
vxy = piece of w that V derives: $\{ }^{5}$ * $v x y$
Because V repeated once, can repeat it again

Context-free pumping lemma:
L is $C F$ language $\Rightarrow \exists p \geq 0$

Useful to prove L NOT context-free.
Use contrapositive:
L context-free language $\Rightarrow A$
same as
$(\operatorname{not} A) \Rightarrow L$ not context-free

Context-free pumping lemma (contrapositive)

$\forall \mathrm{p} \geq 0$
$\exists w \in L,|w| \geq p$
$\forall u, v, x, y, z$:
$\Rightarrow L$ not context-free
$w=u v x y z,|v y|>0,|v x y| \leq p$
$\exists \mathrm{i} \geq 0: u v^{\mathrm{i}} \mathrm{xy} \mathrm{y}^{\mathrm{i}} \mathrm{z} \notin \mathrm{L}$

To prove L not context-free it is enough to prove not A

Not A is the stuff in the box.

Context-free pumping lemma (contrapositive)

$\forall \mathrm{p} \geq 0$
$\exists w \in L,|w| \geq p$
$\forall u, v, x, y, z$:
$\Rightarrow L$ not context-free
$w=u v x y z,|v y|>0,|v x y| \leq p$
$\exists \mathrm{i} \geq 0: u^{i} x y^{i} z \notin \mathrm{~L}$
Adversary picks p,
You pick $w \in L$ of length $\geq p$,
Adversary decomposes w = uvxyz, $|v y|>0,|v x y| \leq p$ You pick i ≥ 0
Finally, you win if $u v^{i} x y^{i} z \notin L$

Theorem: $L:=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is not context-free. Proof:

Adversary moves p

$$
|\exists w \in L,|w| \geq p
$$

You move w := $a^{p} b^{p} c^{p}$

$$
\forall \mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{w}=\mathrm{uvxyz},
$$

Adversary moves u, v, x, y, z You move i := 2

$$
\forall \mathrm{p} \geq 0
$$

$$
|v y|>0,|v x y| \leq p
$$

$\exists \mathrm{i} \geq 0: \mathrm{uv}^{i} x y^{i} z \notin \mathrm{~L}$
You must show uvvxyyz $\notin \mathrm{L}$:
vy misses at least one symbol in $\sum=\{a, b, c\}$ since?

Theorem: $L:=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is not context-free. Proof:

Adversary moves p
You move w := $a^{p} b^{p} c^{p}$
Adversary moves u, v, x, y, z

$$
\forall \mathrm{p} \geq 0
$$

$\exists w \in L,|w| \geq p$

$$
\forall \mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{w}=\mathrm{uvxyz},
$$

$$
|v y|>0,|v x y| \leq p
$$

You move i := 2
$\exists \mathrm{i} \geq 0: u^{i} x y^{i} z \notin \mathrm{~L}$
You must show uvvxyyz $\notin \mathrm{L}$:
vy misses at least one symbol in $\sum=\{a, b, c\}$ since between as and cs there are p bs, and $|v y| \leq p$ so uvvxyyz ????

Theorem: $L:=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is not context-free. Proof:

Adversary moves p

$$
|\exists w \in L,|w| \geq p
$$

You move w := $a^{p} b^{p} c^{p}$

$$
\forall \mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{w}=\mathrm{uvxyz},
$$

Adversary moves u, v, x, y, z

$$
\forall \mathrm{p} \geq 0
$$

$$
|v y|>0,|v x y| \leq p
$$

You move i := 2
$\exists \mathrm{i} \geq 0: u v^{i} x y^{i} z \notin \mathrm{~L}$
You must show uvvxyyz $\notin \mathrm{L}$:
vy misses at least one symbol in $\sum=\{a, b, c\}$ since between as and cs there are p bs, and $|v y| \leq p$ so uvvxyyz has too few of that symbol, so $\notin \mathrm{L}$ DONE

Theorem: $L:=\left\{a^{i} b^{j} c^{k}: 0 \leq i \leq j \leq k\right\}$ is not context-free. Proof:

Adversary moves p
You move $w:=a^{p} b^{p} c^{p}$
Adversary moves u, v, x, y, z

$$
\begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p \\
& \forall u, v, x, y, z: w=u v x y z, \\
& \quad|v y|>0,|v x y| \leq p \\
& \exists i \geq 0: u v^{\prime} x y y^{\prime} z \notin L
\end{aligned}
$$

So far, same as $\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$.
But now we need a few cases.
Our choice of i depends on u, v, x, y, z

Theorem: $L:=\left\{a^{i} b^{j} c^{k}: 0 \leq i \leq j \leq k\right\}$ is not context-free. Proof (cont.):
You have $w=a^{p} b^{p} c^{p}$, with $w=u v x y z,|v y|>0,|v x y| \leq p$. You must pick $\mathrm{i} \geq 0$ and show uvixy'z $\notin \mathrm{L}$. If no a's in vy: ?

Theorem: $L:=\left\{a^{i} b^{j} c^{k}: 0 \leq i \leq j \leq k\right\}$ is not context-free. Proof (cont.):
You have $w=a^{p} b^{p} c^{p}$, with $w=u v x y z,|v y|>0,|v x y| \leq p$. You must pick $\mathrm{i} \geq 0$ and show $u v^{\prime} x y^{\prime} z \notin \mathrm{~L}$.
If no a's in $v y$: $u v^{0} x y^{0} z$ has fewer b's or c's than a's. If no c's in vy: ?

Theorem: $L:=\left\{a^{i} b^{j} c^{k}: 0 \leq i \leq j \leq k\right\}$ is not context-free. Proof (cont.):
You have $w=a^{p} b^{p} c^{p}$, with $w=u v x y z,|v y|>0,|v x y| \leq p$. You must pick $\mathrm{i} \geq 0$ and show $u v^{\prime} x y^{\prime} z \notin \mathrm{~L}$. If no a's in vy: $u v^{0} x y^{0} z$ has fewer b's or c's than a's. If no \mathbf{c} 's in $v y: u^{2} x y^{2} z$ has more a's or b's than c's. If no \mathbf{b} 's in $\mathbf{v y}$:

Theorem: $L:=\left\{a^{i} b^{j} c^{k}: 0 \leq i \leq j \leq k\right\}$ is not context-free. Proof (cont.):
You have $w=a^{p} b^{p} c^{p}$, with $w=u v x y z,|v y|>0,|v x y| \leq p$. You must pick $\mathrm{i} \geq 0$ and show $u v^{\prime} x y^{\prime} z \notin \mathrm{~L}$.
If no a's in $v y$: $u v^{0} x y^{0} z$ has fewer b's or c's than a's. If no \mathbf{c} 's in $v y: u^{2} x y^{2} z$ has more a's or b's than c's. If no \mathbf{b} 's in vy:

You fall in a previous case, since $|v x y| \leq p$

DONE

Theorem: $L:=\left\{s ~ s: s \in\{0,1\}^{*}\right\}$ is not context-free. Proof:

Adversary moves p
You move w:= $0^{p} 1^{p} 0^{p} 1^{p}$

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p \\
& \forall u, v, x, y, z: w=u v x y z, \\
& \quad|v y|>0,|v x y| \leq p \\
& \exists i \geq 0: u v^{\prime} x y^{\prime} z \notin L
\end{aligned}\right.
$$

Note: To prove L not regular we moved $w=0^{p} 10^{p} 1$

That move does not work for context-free!

Theorem: $L:=\left\{s ~ s: s \in\{0,1\}^{*}\right\}$ is not context-free.

Proof:

Adversary moves p
You move w:= $0^{\mathrm{p}} 1^{\mathrm{p}} 0^{\mathrm{p}} 1^{\mathrm{p}}$
Adversary moves u, v, x, y, z
Three cases:
$\forall \mathrm{p} \geq 0$
$\exists w \in L,|w| \geq p$
$\forall u, v, x, y, z: w=u v x y z$,

$$
|v y|>0,|v x y| \leq p
$$

$\exists \mathrm{i} \geq 0: u^{i} \mathrm{xy}^{\mathrm{i}} \mathrm{z} \notin \mathrm{L}$
vxy in $1^{\text {st }}$ half of w ?

Theorem: $L:=\left\{s ~ s: s \in\{0,1\}^{*}\right\}$ is not context-free. Proof:

Adversary moves p
You move w:= $0^{\mathrm{p}} 1^{\mathrm{p}} 0^{\mathrm{p}} 1^{\mathrm{p}}$
Adversary moves u, v, x, y, z

$$
\forall \mathrm{p} \geq 0
$$

$$
\exists \mathrm{w} \in \mathrm{~L},|\mathrm{w}| \geq \mathrm{p}
$$

$$
\forall u, v, x, y, z: w=u v x y z,
$$

$$
|v y|>0,|v x y| \leq p
$$

Three cases:
$\exists \mathrm{i} \geq 0: u^{i} x y^{i} z \notin \mathrm{~L}$
vxy in $1^{\text {st }}$ half of w : $2^{\text {nd }}$ half of $u v^{2} x y^{2} z$ starts with 1 ,
but $u v^{2} x y^{2} z$ still starts with 0 .
vxy in $2^{\text {nd }}$ half of w ?

Theorem: $L:=\left\{s ~ s: s \in\{0,1\}^{*}\right\}$ is not context-free. Proof:

Adversary moves p
You move w:= $0^{p} 1^{p} 0^{p} 1^{p}$
Adversary moves u, v, x, y, z Three cases:

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists \mathrm{w} \in \mathrm{~L},|\mathrm{w}| \geq \mathrm{p} \\
& \forall \mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{w}=\mathrm{uvxyz}, \\
& \\
& \quad|\mathrm{\mid vy}|>0,|v x y| \leq p
\end{aligned}\right.
$$

$\exists \mathrm{i} \geq 0: u^{i} \mathrm{x}^{i} \mathrm{z} \notin \mathrm{L}$
$\mathbf{v x y}$ in $1^{\text {st }}$ half of \mathbf{w} : $2^{\text {nd }}$ half of $u v^{2} x y^{2} z$ starts with 1 , but $u v^{2} x^{2} z$ still starts with 0 .
$\mathbf{v x y}$ in $2^{\text {nd }}$ half of \mathbf{w} : $1^{\text {st }}$ half of $u v^{2} x y^{2} z$ ends with 0 , but $u v^{2} x y^{2} z$ still ends with 1.
vxy touches midpoint: ?

Theorem: $L:=\left\{s ~ s: s \in\{0,1\}^{*}\right\}$ is not context-free. Proof:

Adversary moves p
You move w:= $0^{p} 1^{p} 0^{p} 1^{p}$
Adversary moves u, v, x, y, z Three cases:

$$
\begin{aligned}
& \forall p \geq 0 \\
& \exists \mathrm{w} \in \mathrm{~L},|\mathrm{w}| \geq \mathrm{p} \\
& \forall \mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{w}=\mathrm{uvxyz}, \\
& \quad|\mathrm{\mid vy}|>0,|v x y| \leq p
\end{aligned}
$$

$\exists \mathrm{i} \geq 0: u^{i} \mathrm{x}^{i} \mathrm{z} \notin \mathrm{L}$
$\mathbf{v x y}$ in $1^{\text {st }}$ half of \mathbf{w} : $2^{\text {nd }}$ half of $u v^{2} x y^{2} z$ starts with 1 , but $u v^{2} x^{2} z$ still starts with 0 .
$\mathbf{v x y}$ in $2^{\text {nd }}$ half of \mathbf{w} : $1^{\text {st }}$ half of $u v^{2} x y^{2} z$ ends with 0 , but $u v^{2} x y^{2} z$ still ends with 1.
vxy touches midpoint:

$$
\mathrm{uv}^{0} \mathrm{xy} \mathrm{y}^{0} \mathrm{z}=0^{\mathrm{p}} 1^{\mathrm{i}} 0^{j} 1^{\mathrm{p}} \text { with either } \mathrm{i}<\mathrm{p} \text { or } \mathrm{j}<\mathrm{p} . \quad \text { DONE }
$$

$L:=\left\{w \in\{a, b\}^{*}: w\right.$ has same number of a and $\left.b\right\}$

Grammar for L

??

$L:=\left\{w \in\{a, b\}^{*}: w\right.$ has same number of a and $\left.b\right\}$

Grammar for L

$S \rightarrow \varepsilon|S S| a S b \mid b S a$

Not clear why this works.

It requires a proof.

Proofs by induction

Let $P(n)$ be any claim
To prove " $\forall \mathrm{n} \geq 0, \mathrm{P}(\mathrm{n})$ is true" it suffices to prove

Base case: $P(0)$ is true

Induction step: $\forall \mathrm{n}:((\forall \mathrm{i}<\mathrm{n}, \mathrm{P}(\mathrm{i}))=>\mathrm{P}(\mathrm{n}))$ Induction hypothesis

You can replace "0" by any fixed value

Example: $\mathrm{P}(\mathrm{n})=\sum_{\mathrm{i}=0}{ }^{\mathrm{n}} \mathrm{i}=\mathrm{n}(\mathrm{n}+1) / 2$

Claim: $\forall \mathrm{n} \geq 0, \mathrm{P}(\mathrm{n})$

Proof by induction:
Base case: P(0)

$$
0=0(1) / 2=0 \text { is true }
$$

Induction step: $\forall \mathrm{n}:((\forall \mathrm{i}<\mathrm{n}, \mathrm{P}(\mathrm{i}))=>\mathrm{P}(\mathrm{n}))$

$$
\sum_{i=0}^{n} \mathrm{i}=? ?
$$

Example: $P(n)=\sum_{i=0}^{n} i=n(n+1) / 2$

Claim: $\forall \mathrm{n} \geq 0, \mathrm{P}(\mathrm{n})$

Proof by induction:
Base case: $\mathrm{P}(0)$

$$
0=0(1) / 2=0 \text { is true }
$$

Induction step: $\forall \mathrm{n}:((\forall \mathrm{i}<\mathrm{n}, \mathrm{P}(\mathrm{i}))=>\mathrm{P}(\mathrm{n}))$

$$
\sum_{i=0}^{n} i=\sum_{i=0}^{n-1} i+n=(n-1) n / 2+n=n(n+1) / 2
$$

$L:=\left\{w \in\{a, b\}^{*}: w\right.$ has same number of a and $\left.b\right\}$
 $S \rightarrow \varepsilon|S S| a S b \mid b S a$

Claim: For any $w \in\{a, b\}^{*}, S \rightarrow{ }^{*} w$ if and only if $w \in L$
Proof of "only if": Suppose $S \rightarrow{ }^{*} w$. Must show w $\in L$.

This fact is self-evident.
We show a proof by induction nevertheless, as a warm-up for the other direction, which is not self-evident.
$L:=\left\{w \in\{a, b\}^{*}: w\right.$ has same number of a and $\left.b\right\}$
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Claim: For any $w \in\{a, b\}^{*}, S \rightarrow{ }^{*} w$ if and only if $w \in L$
Proof of "only if": Suppose $S \rightarrow{ }^{*} w$. Must show w $\in L$.
Let $P(n)=$ any $w \in\{S, a, b\}^{*}$ such that $S \rightarrow^{*} w$ in n steps has same number of a and b.
Base case ($\mathrm{n}=1$): ??
$L:=\left\{w \in\{a, b\}^{*}: w\right.$ has same number of a and $\left.b\right\}$
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Claim: For any $w \in\{a, b\}^{*}, S \rightarrow{ }^{*} w$ if and only if $w \in L$
Proof of "only if": Suppose $S \rightarrow{ }^{*} w$. Must show w $\in L$.
Let $P(n)=$ any $w \in\{S, a, b\}^{*}$ such that $S \rightarrow{ }^{*} w$ in n steps has same number of a and b.

Base case ($n=1$): $\varepsilon, S S, a S b, b S a$ have same number.
Induction step: Suppose $S \rightarrow{ }^{*} w^{\prime} \rightarrow w$
where $S \rightarrow{ }^{*}{ }^{\prime}$ ' in $n-1$ steps.
By induction hypothesis, ??
$L:=\left\{w \in\{a, b\}^{*}: w\right.$ has same number of a and $\left.b\right\}$
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Claim: For any $w \in\{a, b\}^{*}, S \rightarrow{ }^{*} w$ if and only if $w \in L$
Proof of "only if": Suppose $S \rightarrow{ }^{*} w$. Must show w $\in L$.
Let $P(n)=$ any $w \in\{S, a, b\}^{*}$ such that $S \rightarrow^{*} w$ in n steps has same number of a and b.

Base case ($n=1$): $\varepsilon, S S, a S b, b S a$ have same number.
Induction step: Suppose $S \rightarrow{ }^{*}{ }^{\prime} \rightarrow \mathrm{w}$
where $S \rightarrow{ }^{*}{ }^{\prime}$ ' in $n-1$ steps.
By induction hypothesis, w' has same number of a, b.
Since any rule adds same number of a and b, w has too.
$L:=\left\{w \in\{a, b\}^{*}: w\right.$ has same number of a and $\left.b\right\}$ $S \rightarrow \varepsilon|S S| a S b \mid b S a$

Claim: For any $w \in\{a, b\}^{*}, S \rightarrow{ }^{*} w$ if and only if $w \in L$
Proof of "if": Suppose $w \in L$. Must show $S \rightarrow{ }^{*} w$
Let $P(n)=\forall w \in\{S, a, b\}^{*},|w|=n, S \rightarrow{ }^{*} w$.
Base case: w = ε. Use rule ??
$L:=\left\{w \in\{a, b\}^{*}: w\right.$ has same number of a and $\left.b\right\}$
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Claim: For any $w \in\{a, b\}^{*}, S \rightarrow{ }^{*} w$ if and only if $w \in L$
Proof of "if": Suppose $w \in L$. Must show $S \rightarrow{ }^{*} w$
Let $P(n)=\forall w \in\{S, a, b\}^{*},|w|=n, S \rightarrow^{*} w$.
Base case: $w=\varepsilon$. Use rule $S \rightarrow \varepsilon$
Induction step: Let $|\mathrm{w}|=\mathrm{n}$.

This step is more complicated, and is the "creative step" of this proof.
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Induction step: Let $|\mathrm{w}|=\mathrm{n}$.
Define c_{i} := number of $a-n u m b e r ~ o f ~ b i n ~ w_{1} w_{2} \ldots w_{i}$ $\mathrm{c}_{0}=0 \mathrm{c}_{\mathrm{n}}=$??
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Induction step: Let $|\mathrm{w}|=\mathrm{n}$.
Define c_{i} := number of $a-$ number of b in $w_{1} w_{2} \ldots w_{i}$
$c_{0}=0 \quad c_{n}=0$

If $\exists 0<\mathrm{i}<\mathrm{n}: \mathrm{c}_{\mathrm{i}}=0$
then $w=? ?$

$S \rightarrow \varepsilon|S S| a S b \mid b S a$

Induction step: Let $|\mathrm{w}|=\mathrm{n}$.
Define c_{i} := number of a - number of b in $\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{i}}$
$c_{0}=0 \quad c_{n}=0$

If $\exists 0<\mathrm{i}<\mathrm{n}: \mathrm{c}_{\mathrm{i}}=0$
then $w=w^{\prime} w^{\prime \prime}$, where $w^{\prime}, w^{\prime \prime} \in \mathrm{L}$,

$$
\text { and }\left|w^{\prime}\right|<n,\left|w^{\prime \prime}\right|<n
$$

By induction hypothesis. $S \rightarrow{ }^{*} w^{\prime}, S \rightarrow{ }^{*} w^{\prime \prime}$. Hence $S \rightarrow$ SS $\rightarrow{ }^{*}$ w' $S \rightarrow w^{\prime} w^{\prime \prime}=w$
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Induction step: Let $|\mathrm{w}|=\mathrm{n}$.
Define c_{i} := number of $a-$ number of b in $w_{1} w_{2} \ldots w_{i}$
$c_{0}=0 \quad c_{n}=0$

If $\forall 0<\mathrm{i}<\mathrm{n}: \mathrm{c}_{\mathrm{i}}>0$
then $w=? ?$
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Induction step: Let $|\mathrm{w}|=\mathrm{n}$.
Define c_{i} := number of $a-$ number of b in $w_{1} w_{2} \ldots w_{i}$ $c_{0}=0 \quad c_{n}=0$

If $\forall 0<\mathrm{i}<\mathrm{n}: \mathrm{c}_{\mathrm{i}}>0$
then $w=a w^{\prime} b$, where $w^{\prime} \in L$ and $\left|w^{\prime}\right|<n$
By induction hypothesis. $S \rightarrow{ }^{*} w^{\prime}$
Hence $S \rightarrow a S b \rightarrow * a w ' b=w$
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Induction step: Let $|\mathrm{w}|=\mathrm{n}$.
Define c_{i} := number of $a-$ number of b in $w_{1} w_{2} \ldots w_{i}$
$c_{0}=0 \quad c_{n}=0$

If $\forall 0<\mathrm{i}<\mathrm{n}: \mathrm{c}_{\mathrm{i}}<0$
then $w=? ?$
$S \rightarrow \varepsilon|S S| a S b \mid b S a$
Induction step: Let $|\mathrm{w}|=\mathrm{n}$.
Define c_{i} := number of $a-$ number of b in $w_{1} w_{2} \ldots w_{i}$ $c_{0}=0 \quad c_{n}=0$

If $\forall 0<\mathrm{i}<\mathrm{n}: \mathrm{c}_{\mathrm{i}}<0$
then $\mathrm{w}=\mathrm{b} \mathrm{w}^{\prime} \mathrm{a}$, where $\mathrm{w}^{\prime} \in \mathrm{L}$ and $\left|\mathrm{w}^{\prime}\right|<\mathrm{n}$
By induction hypothesis. $S \rightarrow{ }^{*} w^{\prime}$
Hence $S \rightarrow b S a \rightarrow{ }^{*} b w^{\prime} a=w$

$S \rightarrow \varepsilon|S S| a S b \mid b S a$

Induction step: Let $|\mathrm{w}|=\mathrm{n}$.
Define c_{i} := number of a - number of b in $w_{1} w_{2} \ldots w_{i}$
$c_{0}=0 \quad c_{n}=0$

These three cover all cases, because two consecutive c_{i} differ by 1 . So the c_{i} cannot change sign without going through 0

DONE

