

● All languages
● Decidable

Turing machines
● NP
● P
● Context-free

Context-free grammars, push-down automata
● Regular

Automata, non-deterministic automata,
regular expressions

Big picture

Recall:

Theorem: L := {0n 1n : n ≥ 0} is not regular

But it is often needed to recognize this language
Example: Programming language syntax have
matching brackets, not regular.

Next: Introduce context-free languages

Why study context-free languages

● Practice with more powerful model

● Programming languages: Syntax of C++, Java, etc.
is specified by context-free grammar

● Other reasons: human language has structures
that can be modeled as context-free language
English is not a regular language

Example: Context-free grammar G, Σ = {0,1}
 S → 0 S 1
 S → ε

Two substitution rules (a.k.a. productions) →
Variables = {S}, Terminals = {0,1}

Derivation of 0011 in grammar:
S ⇒ 0S1 ⇒ 00S11 ⇒ 0011

L(G) = {0n 1n : n ≥ 0}

Example: Context-free grammar G, Σ = {0,1}
S → A
S → B
A → 0 A 1
A → ε
B → 1 B 0
B → ε

L(G) = L(A) U L(B)
 = {0n 1n : n ≥ 0} U {1n 0n : n ≥ 0}

Next: A convention to write this more compactly

Example: Context-free grammar G, Σ = {0,1}
S → A | B
A → 0 A 1 | ε
B → 1 B 0 | ε

Convention: Write A → w|w' for
 A → w and A → w'

Definition: A context-free grammar (CFG) G is
a 4 tuple (V, Σ, R, S) where
● V is a finite set of variables
● Σ is a finite set of terminals (V ∩ Σ = ∅)
● R is a finite set of rules, where each rule is
A → w A ∈ V, w ∈ (V U Σ)*

● S ∈ V is the start variable

Example
The language L = {ambn : m > n}
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = { S → aS | aT
 T → aTb | ε }

Derive aaab:
S → ?

Example
The language L = {ambn : m > n}
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = { S → aS | aT
 T → aTb | ε }

Derive aaab:
S → aS
 → ?

Example
The language L = {ambn : m > n}
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = { S → aS | aT
 T → aTb | ε }

Derive aaab:
S → aS
 → aaT
 → ?

Example
The language L = {ambn : m > n}
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = { S → aS | aT
 T → aTb | ε }

Derive aaab:
S → aS
 → aaT
 → aaaTb
 → ?

Example
The language L = {ambn : m > n}
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = { S → aS | aT
 T → aTb | ε }

Derive aaab:
S → aS
 → aaT
 → aaaTb
 → aaab

Definition: Let G = (V, Σ, R, S) be a CFG
we write uAv ⇒ uwv and say uAv yields uwv
 if A → w is a rule
We say u derives v, written u ⇒* v, if
● u = v, or
● ∃ u1, u2, … , uk k ≥ 1 :
u ⇒ u1 ⇒ u2 ⇒ … ⇒ uk = v

The language of the grammar is L(G) = {w : S ⇒* w}

Definition: A language L is context-free if
 ∃ CFG G : L(G) = L

Example:

Give a CFG for L = { x#y : x,y in {0,1}* |x| ≠ |y| }

G = S → BL
 S → RB
 L → BL | A
 R → RB | A
 A → BAB | #
 B → 0 | 1 Remark: B ⇒* ?

To understand, explain what each piece does!

∑ = {0,1,#}

Example:

Give a CFG for L = { x#y : x,y in {0,1}* |x| ≠ |y| }

G = S → BL
 S → RB
 L → BL | A
 R → RB | A
 A → BAB | # Remark: A ⇒* ?
 B → 0 | 1 Remark: B ⇒* 0, B ⇒* 1

∑ = {0,1,#}

Example:

Give a CFG for L = { x#y : x,y in {0,1}* |x| ≠ |y| }

G = S → BL
 S → RB
 L → BL | A
 R → RB | A Remark: R ⇒* ?
 A → BAB | # Remark: A ⇒* x#y : |x|=|y|
 B → 0 | 1 Remark: B ⇒* 0, B ⇒* 1

∑ = {0,1,#}

Example:

Give a CFG for L = { x#y : x,y in {0,1}* |x| ≠ |y| }

G = S → BL
 S → RB
 L → BL | A Remark: L ⇒* ?
 R → RB | A Remark: R ⇒* x#y : |x| ≤ |y|
 A → BAB | # Remark: A ⇒* x#y : |x|=|y|
 B → 0 | 1 Remark: B ⇒* 0, B ⇒* 1

∑ = {0,1,#}

Example:

Give a CFG for L = { x#y : x,y in {0,1}* |x| ≠ |y| }

G = S → BL
 S → RB Remark: RB ⇒* ?
 L → BL | A Remark: L ⇒* x#y : |x| ≥ |y|
 R → RB | A Remark: R ⇒* x#y : |x| ≤ |y|
 A → BAB | # Remark: A ⇒* x#y : |x|=|y|
 B → 0 | 1 Remark: B ⇒* 0, B ⇒* 1

∑ = {0,1,#}

Example:

Give a CFG for L = { x#y : x,y in {0,1}* |x| ≠ |y| }

G = S → BL Remark: BL ⇒* ?
 S → RB Remark: RB ⇒* x#y : |x| < |y|
 L → BL | A Remark: L ⇒* x#y : |x| ≥ |y|
 R → RB | A Remark: R ⇒* x#y : |x| ≤ |y|
 A → BAB | # Remark: A ⇒* x#y : |x|=|y|
 B → 0 | 1 Remark: B ⇒* 0, B ⇒* 1

∑ = {0,1,#}

Example:

Give a CFG for L = { x#y : x,y in {0,1}* |x| ≠ |y| }

G = S → BL Remark: BL ⇒* x#y : |x| > |y|
 S → RB Remark: RB ⇒* x#y : |x| < |y|
 L → BL | A Remark: L ⇒* x#y : |x| ≥ |y|
 R → RB | A Remark: R ⇒* x#y : |x| ≤ |y|
 A → BAB | # Remark: A ⇒* x#y : |x|=|y|
 B → 0 | 1 Remark: B ⇒* 0, B ⇒* 1

L(G) = L

∑ = {0,1,#}

Example: CFG for expressions in programming
languages

Task: recognize strings like 0 + 0 + 1 x (1 + 0)

S → S+S | S x S | (S) | 0 | 1

S → S + S → 0 + S → 0 + S + S → 0 + 0 + S
 → 0 + 0 + S x S → 0 + 0 + 1 x S
 → 0 + 0 + 1 x (S) → 0 + 0 + 1 x (S + S)
 → 0 + 0 + 1 x (1 + S) → 0 + 0 + 1 x (1 + 0)

We have seen: CFG, definition, and examples

Next: Ambiguity

● Ambiguity: Some string may have multiple
derivations in a CFG

● Ambiguity is a problem for compilers:

Compilers use derivation to give meaning to strings.

Example: meaning of 1+0x0 ∑* is its value, 1 ∈ ∈ ℕ

If there are two different derivations,
the value may not be well defined.

Example: The string 1+0x0 has two derivations in
S → S+S | S x S | (S) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → ?

Example: The string 1+0x0 has two derivations in
S → S+S | S x S | (S) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → SxS → ?

Example: The string 1+0x0 has two derivations in
S → S+S | S x S | (S) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → SxS → Sx0 → ?

Example: The string 1+0x0 has two derivations in
S → S+S | S x S | (S) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → SxS → Sx0 → S+Sx0 → ?

Example: The string 1+0x0 has two derivations in
S → S+S | S x S | (S) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → SxS → Sx0 → S+Sx0 → S+0x0 → ?

Example: The string 1+0x0 has two derivations in
S → S+S | S x S | (S) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → SxS → Sx0 → S+Sx0 → S+0x0 → 1+0x0

We now want to define CFG with no ambiguity

Definition: A derivation is leftmost if at every step
the leftmost variable is expanded

Example: the 1st previous derivation was leftmost
 S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Definition: A CFG G is un-ambiguous if no string
has two different leftmost derivations.

Example
The CFG S → S+S | S x S | (S) | 0 | 1
is ambiguous because 1+0x0 has two distinct
leftmost derivations

One leftmost derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another leftmost derivation:
S → SxS → S+SxS → 1+SxS → 1+0xS → 1+0x0

Example Instead of using CFG
S → S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → ?

Example Instead of using CFG
S → S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → S + T → ?

Example Instead of using CFG
S → S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → S + T → T + T → ?

Example Instead of using CFG
S → S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → S + T → T + T → F + T → ?

Example Instead of using CFG
S → S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → S + T → T + T → F + T → 1 + T
 → ?

Example Instead of using CFG
S → S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → S + T → T + T → F + T → 1 + T
 → 1 + T x F → ?

Example Instead of using CFG
S → S+S | S x S | (S) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → S + T → T + T → F + T → 1 + T
 → 1 + T x F → 1 + 0 x F → 1 + 0 x 0

MultiplicativeExpression:

UnaryExpression

MultiplicativeExpression * UnaryExpression

MultiplicativeExpression / UnaryExpression

MultiplicativeExpression % UnaryExpression

AdditiveExpression:

MultiplicativeExpression

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

Actual Java specification grammar snippet
Cumbersome but un-ambiguous

Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then
not A is regular ?
A U B is regular ?
A o B is regular ?
A* is regular ?

Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then
not A regular
A U B regular
A o B regular
A* regular

Suppose A, B are context-free:
 A = L(GA) for CFG GA=(VA, Σ, RA, SA)
 B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about
A U B S → ?
A o B
A*

Suppose A, B are context-free:
 A = L(GA) for CFG GA=(VA, Σ, RA, SA)
 B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about
A U B S → SA|SB Context-free

A o B S → ?
A*

Suppose A, B are context-free:
 A = L(GA) for CFG GA=(VA, Σ, RA, SA)
 B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about
A U B S → SA|SB Context-free
A o B S → SA SB Context-free

A* S → ?

Suppose A, B are context-free:
 A = L(GA) for CFG GA=(VA, Σ, RA, SA)
 B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about
A U B S → SA|SB Context-free
A o B S → SA SB Context-free
A* S → SSA | ε Context-free

Above all context-free!
In general, (not A) is NOT context-free

Suppose A, B are context-free:
 A = L(GA) for CFG GA=(VA, Σ, RA, SA)
 B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about
A U B S → SA|SB Context-free
A o B S → SA SB Context-free
A* S → SSA | ε Context-free

Above also shows regular context-free⇨

Context-free languages contain regular languages

Example: Context Free UNION

Give a CFG for L = { x#y : x,y in {0,1}*
 |x| ≠ |y| OR x = yR }

yR is the reverse of y:
001R = 100
11010R = 01011
1R = 1

∑ = {0,1,#}

Example: Context Free UNION

Give a CFG for L = { x#y : x,y in {0,1}*
 |x| ≠ |y| OR x = yR }
Write L = L

1
 U L

2
, where

L
1
 = { x#y : |x| ≠ |y| } L

2
 = { x#y : x = yR }

∑ = {0,1,#}

Example: Context Free UNION

Give a CFG for L = { x#y : x,y in {0,1}*
 |x| ≠ |y| OR x = yR }
Write L = L

1
 U L

2
, where

L
1
 = { x#y : |x| ≠ |y| } L

2
 = { x#y : x = yR }

G
1
= S

1
 → BL | RB

 L → BL | A Remark: L ⇒* x#y : |x| ≥ |y|
 R → RB | A Remark: R ⇒* x#y : |x| ≤ |y|
 A → BAB | # Remark: A ⇒* x#y : |x|=|y|
 B → 0 | 1

∑ = {0,1,#}

Example: Context Free UNION

Give a CFG for L = { x#y : x,y in {0,1}*
 |x| ≠ |y| OR x = yR }
Write L = L

1
 U L

2
, where

L
1
 = { x#y : |x| ≠ |y| } L

2
 = { x#y : x = yR }

G
1
= S

1
 → BL | RB

 L → BL | A
 R → RB | A
 A → BAB | #
 B → 0 | 1

G
2
= S

2
 → 0S

2
0 | 1S

2
1 | #

∑ = {0,1,#}

Example: Context Free UNION

Give a CFG for L = { x#y : x,y in {0,1}*
 |x| ≠ |y| OR x = yR }
Write L = L

1
 U L

2
, where

L
1
 = { x#y : |x| ≠ |y| } L

2
 = { x#y : x = yR }

G
2
= S

2
 → 0S

2
0 | 1S

2
1 | #G

1
= S

1
 → BL | RB

 L → BL | A
 R → RB | A
 A → BAB | #
 B → 0 | 1

Let G = S → S
1
 | S

2

Then, L(G
1
) = L

1
 & L(G

2
) = L

2

 ⇒ L(G) = L
1
 U L

2
 = L

∑ = {0,1,#}

Example: Context Free CONCATENATION

Give a CFG for L = { 0m1m0n1n : m even and n odd}

Example: Context Free CONCATENATION

Give a CFG for L = { 0m1m0n1n : m even and n odd}

Write L = L
1
 o L

2
, where

L
1
 = { 0m1m : m even} L

2
 = { 0n1n : n odd}

Example: Context Free CONCATENATION

Give a CFG for L = { 0m1m0n1n : m even and n odd}

Write L = L
1
 o L

2
, where

L
1
 = { 0m1m : m even} L

2
 = { 0n1n : n odd}

G
1
= S

1
 → 00S

1
11 | ε

Example: Context Free CONCATENATION

Give a CFG for L = { 0m1m0n1n : m even and n odd}

Write L = L
1
 o L

2
, where

L
1
 = { 0m1m : m even} L

2
 = { 0n1n : n odd}

G
1
= S

1
 → 00S

1
11 | ε G

2
= S

2
 → 00S

2
11 | 01

Example: Context Free CONCATENATION

Give a CFG for L = { 0m1m0n1n : m even and n odd}

Write L = L
1
 o L

2
, where

L
1
 = { 0m1m : m even} L

2
 = { 0n1n : n odd}

G
1
= S

1
 → 00S

1
11 | ε G

2
= S

2
 → 00S

2
11 | 01

Let G = S → S
1
S

2

Then, L(G
1
) = L

1
 & L(G

2
) = L

2

 ⇒ L(G) = L
1
 o L

2
 = L

Example: Context Free STAR

Give a CFG for
L = { w in {0,1}* : w = w

1
w

2
▪▪▪ w

k
 , k ≥ 0

 where each w
i
 is a palindrome }

● A string w is a palindrome if w = wR

 That is, w reads the same forwards and backwards

● Example: 00100, 1001, and 0 are palindromes;
 0011, 01 are not

Example: Context Free STAR

Give a CFG for
L = { w in {0,1}* : w = w

1
w

2
▪▪▪ w

k
 , k ≥ 0

 where each w
i
 is a palindrome }

Write L = L
1
*, where L

1
 = {w : w is a palindrome}

Note: In fact, L = {0,1}*, but we will not use that.

Example: Context Free STAR

Give a CFG for
L = { w in {0,1}* : w = w

1
w

2
▪▪▪ w

k
 , k ≥ 0

 where each w
i
 is a palindrome }

Write L = L
1
*, where L

1
 = {w : w is a palindrome}

G
1
= S

1
 → 0S

1
0 | 1S

1
1 | 0 | 1 | ε

Example: Context Free STAR

Give a CFG for
L = { w in {0,1}* : w = w

1
w

2
▪▪▪ w

k
 , k ≥ 0

 where each w
i
 is a palindrome }

Write L = L
1
*, where L

1
 = {w : w is a palindrome}

G
1
= S

1
 → 0S

1
0 | 1S

1
1 | 0 | 1 | ε

Let G = S → SS
1
 | ε. Then, L(G

1
) = L

1

 ⇒ L(G) = L
1
* = L.

Beyond regular

A string and its reversal with C in middle:
S → 0S0 | 1S1 | C
Example: S * 0001C1000⇨

More generally, to get strings of the form Ak C Bk
use rules: S → A S B | C

Example: Σ = {0,1,#}, wR is reverse of w
 L = {w # x : wR is a substring of x}

 Useful to rewrite L as:

Example: Σ = {0,1,#}, wR is reverse of w
 L = {w # x : wR is a substring of x}

 = { w#x wR y : w,x,y ∈ {0,1}* }

G :=
 S → CB
 C → 0C0 | 1C1 | #B
 B → 0 B | 1 B | ε Remark: B ⇒* ?

Example: Σ = {0,1,#}, wR is reverse of w
 L = {w # x : wR is a substring of x}

 = { w#x wR y : w,x,y ∈ {0,1}* }

G :=
 S → CB
 C → 0C0 | 1C1 | #B Remark: C ⇒* ?
 B → 0 B | 1 B | ε Remark: B ⇒* {0,1}*

Example: Σ = {0,1,#}, wR is reverse of w
 L = {w # x : wR is a substring of x}

 = { w#x wR y : w,x,y ∈ {0,1}* }

G :=
 S → CB
 C → 0C0 | 1C1 | #B Remark: C ⇒* w#{0,1}*wR

 B → 0 B | 1 B | ε Remark: B ⇒* {0,1}*

L(G) = L

CFG vs. automata

CFG ⇔ non-deterministic pushdown automata (PDA)

A PDA is simply an NFA with a stack.

q
1

q
2

x, y → z

This means: “read x from the input;
 pop y off the stack;
 push z onto the stack”

Any of x,y,z may be ε.

Example: PDA for L = {0n1n : n ≥ 0}

q
1

q
2

q
3

q
0 ε, ε → $ ε, ε → ε ε, $ → ε

0, ε → 0 1, 0 → ε

The $ is a special symbol to recognize end of stack

Idea:
q

1
: read and push 0s onto stack until no more

q
2
: read 1s and match with 0s popped from stack

Unlike the case for regular automata,
non-deterministic PDA are strictly more powerful
than deterministic PDA.

Compilers must work with deterministic PDA,
an important subclass of context-free languages

Intuition: If L involves regular expressions and/or
nested matchings then probably context-free.
If not, probably not.

{ 0n 1n : n ≥ 0 } CF : 000 111 nested

{w w : w ∈ Σ*} not CF: 1101 1101 not nested

{0n1n2n : n≥0} not CF: 00 11 22 not nested

Non-context-free languages

There is a pumping lemma for context-free
languages.

Similar to the one for regular, but
simultaneously “pump” string in two parts:
w = u vi x yi z

Non-context-free languages

Context-free pumping lemma:
L is CF language ⇒ ∃ p ≥0

∀ w ∈ L, |w| ≥ p
∃ u,v,x,y,z :
 w= uvxyz, |vy|> 0, |vxy|≤ p
∀ i ≥ 0 : uvixyiz ∈ L

Context-free pumping lemma:
L is CF language ⇒ ∃ p ≥0

∀ w ∈ L, |w| ≥ p
∃ u,v,x,y,z :
 w= uvxyz, |vy|> 0, |vxy|≤ p
∀ i ≥ 0 : uvixyiz ∈ LProof idea:

Let G be CFG : L(G) = L
If w ∈ L is very long, derivation repeats a variable V
 (like repeat states in regular P.L.)
vxy = piece of w that V derives: V * vxy⇨

Because V repeated once, can repeat it again

Context-free pumping lemma:
L is CF language ⇒ ∃ p ≥0

∀ w ∈ L, |w| ≥ p
∃ u,v,x,y,z :
 w= uvxyz, |vy|> 0, |vxy|≤ p
∀ i ≥ 0 : uvixyiz ∈ L

Useful to prove L NOT context-free.
Use contrapositive:
 L context-free language ⇒ A
 same as
 (not A) ⇒ L not context-free

A

Context-free pumping lemma (contrapositive)

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :
 w = uvxyz, |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

not A

 ⇒ L not context-free

To prove L not context-free it is enough to prove not A

Not A is the stuff in the box.

Context-free pumping lemma (contrapositive)

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :
 w = uvxyz, |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

 ⇒ L not context-free

Adversary picks p,
You pick w L of length ∈ ≥ p,
Adversary decomposes w = uvxyz, |vy| > 0, |vxy| ≤ p
You pick i ≥ 0
Finally, you win if uvixyiz ∉ L

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {an bn cn : n ≥ 0} is not context-free.
Proof:
Adversary moves p
You move w := ap bp cp

Adversary moves u,v,x,y,z
You move i := 2
You must show uvvxyyz ∉ L:
 vy misses at least one symbol in ∑ = {a,b,c}
 since ?

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {an bn cn : n ≥ 0} is not context-free.
Proof:
Adversary moves p
You move w := ap bp cp

Adversary moves u,v,x,y,z
You move i := 2
You must show uvvxyyz ∉ L:
 vy misses at least one symbol in ∑ = {a,b,c}
 since between as and cs there are p bs, and |vy| ≤ p
 so uvvxyyz ????

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {an bn cn : n ≥ 0} is not context-free.
Proof:
Adversary moves p
You move w := ap bp cp

Adversary moves u,v,x,y,z
You move i := 2
You must show uvvxyyz ∉ L:
 vy misses at least one symbol in ∑ = {a,b,c}
 since between as and cs there are p bs, and |vy| ≤ p
 so uvvxyyz has too few of that symbol, so L∉
DONE

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof:
Adversary moves p
You move w := ap bp cp

Adversary moves u,v,x,y,z

So far, same as {an bn cn : n ≥ 0}.
But now we need a few cases.
Our choice of i depends on u,v,x,y,z

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof (cont.):
You have w = apbpcp, with w = uvxyz, |vy|> 0, |vxy|≤ p.
You must pick i ≥ 0 and show uvixyiz ∉ L.
If no a's in vy: ?

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof (cont.):
You have w = apbpcp, with w = uvxyz, |vy|> 0, |vxy|≤ p.
You must pick i ≥ 0 and show uvixyiz ∉ L.
If no a's in vy: uv0xy0z has fewer b's or c's than a's.
If no c's in vy: ?

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof (cont.):
You have w = apbpcp, with w = uvxyz, |vy|> 0, |vxy|≤ p.
You must pick i ≥ 0 and show uvixyiz ∉ L.
If no a's in vy: uv0xy0z has fewer b's or c's than a's.
If no c's in vy: uv2xy2z has more a's or b's than c's.
If no b's in vy:
 ?

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof (cont.):
You have w = apbpcp, with w = uvxyz, |vy|> 0, |vxy|≤ p.
You must pick i ≥ 0 and show uvixyiz ∉ L.
If no a's in vy: uv0xy0z has fewer b's or c's than a's.
If no c's in vy: uv2xy2z has more a's or b's than c's.
If no b's in vy:
 You fall in a previous case, since |vxy| ≤ p

 DONE

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Note: To prove L not regular we moved w = 0p 1 0p 1

That move does not work for context-free!

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Adversary moves u,v,x,y,z
Three cases:
 vxy in 1st half of w: ?

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Adversary moves u,v,x,y,z
Three cases:
 vxy in 1st half of w: 2nd half of uv2xy2z starts with 1,

 but uv2xy2z still starts with 0.
 vxy in 2nd half of w: ?

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Adversary moves u,v,x,y,z
Three cases:
 vxy in 1st half of w: 2nd half of uv2xy2z starts with 1,

 but uv2xy2z still starts with 0.
 vxy in 2nd half of w: 1st half of uv2xy2z ends with 0,

 but uv2xy2z still ends with 1.
 vxy touches midpoint: ?

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : w = uvxyz,
 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Adversary moves u,v,x,y,z
Three cases:
 vxy in 1st half of w: 2nd half of uv2xy2z starts with 1,

 but uv2xy2z still starts with 0.
 vxy in 2nd half of w: 1st half of uv2xy2z ends with 0,

 but uv2xy2z still ends with 1.
 vxy touches midpoint:
 uv0xy0z = 0p 1i 0j 1p with either i < p or j < p. DONE

L := { w ∈ {a,b}* : w has same number of a and b}

Grammar for L

??

L := { w ∈ {a,b}* : w has same number of a and b}

Grammar for L

S → ε | SS | aSb | bSa

Not clear why this works.

It requires a proof.

Proofs by induction

Let P(n) be any claim
To prove “ n ≥ 0, P(n) is true” it suffices to prove∀

Base case: P(0) is true

Induction step: n : (∀ (i < n, P(i))∀ => P(n))
 Induction hypothesis

You can replace “0” by any fixed value

Example: P(n) = ∑ i=0
n i = n(n+1)/2

Claim: n ≥ 0, P(n)∀

Proof by induction:
Base case: P(0)
 0 = 0(1)/2 = 0 is true

Induction step: n : (∀ (i < n, P(i)∀) => P(n))

 ∑ i=0
n i = ??

Example: P(n) = ∑ i=0
n i = n(n+1)/2

Claim: n ≥ 0, P(n)∀

Proof by induction:
Base case: P(0)
 0 = 0(1)/2 = 0 is true

Induction step: n : (∀ (i < n, P(i)∀) => P(n))

 ∑ i=0
n i = ∑ i=0

n-1 i + n = (n-1)n/2 + n = n(n+1)/2

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w {a,b}* , S →* w if and only if w L∈ ∈

Proof of “only if”: Suppose S →* w. Must show w L.∈

This fact is self-evident.

We show a proof by induction nevertheless,

as a warm-up for the other direction,

which is not self-evident.

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w {a,b}* , S →* w if and only if w L∈ ∈

Proof of “only if”: Suppose S →* w. Must show w L.∈

Let P(n) = any w {S,a,b}* such that S →* w in ∈ n steps

 has same number of a and b.

Base case (n=1): ??

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w {a,b}* , S →* w if and only if w L∈ ∈

Proof of “only if”: Suppose S →* w. Must show w L.∈

Let P(n) = any w {S,a,b}* such that S →* w in ∈ n steps

 has same number of a and b.

Base case (n=1): ε, SS, aSb, bSa have same number.

Induction step: Suppose S →* w' → w

 where S →* w' in n-1 steps.

By induction hypothesis, ??

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w {a,b}* , S →* w if and only if w L∈ ∈

Proof of “only if”: Suppose S →* w. Must show w L.∈

Let P(n) = any w {S,a,b}* such that S →* w in ∈ n steps

 has same number of a and b.

Base case (n=1): ε, SS, aSb, bSa have same number.

Induction step: Suppose S →* w' → w

 where S →* w' in n-1 steps.

By induction hypothesis, w' has same number of a, b.

Since any rule adds same number of a and b, w has too.

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w {a,b}* , S →* w if and only if w L∈ ∈

Proof of “if”: Suppose w L. Must show S →* w∈

Let P(n) = w {S,a,b}*, |w| = n, S →* w.∀ ∈

Base case: w = ε. Use rule ??

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w {a,b}* , S →* w if and only if w L∈ ∈

Proof of “if”: Suppose w L. Must show S →* w∈

Let P(n) = w {S,a,b}*, |w| = n, S →* w.∀ ∈

Base case: w = ε. Use rule S → ε

Induction step: Let |w| = n.

This step is more complicated, and is the

“creative step” of this proof.

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi

c0 = 0 cn = ??

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi

c0 = 0 cn = 0

If 0 < i < n : c∃ i = 0

then w = ??

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi

c0 = 0 cn = 0

If 0 < i < n : c∃ i = 0

then w = w' w'', where w', w'' L,∈

and |w'| <n, |w''| < n

By induction hypothesis. S → * w', S → * w''.

Hence S → SS → * w' S → w' w'' = w

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi

c0 = 0 cn = 0

If 0 < i < n : c∀ i > 0

then w = ??

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi

c0 = 0 cn = 0

If 0 < i < n : c∀ i > 0

then w = a w' b, where w' L and |w'| < n∈

By induction hypothesis. S → * w'

Hence S → aSb → * a w' b = w

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi

c0 = 0 cn = 0

If 0 < i < n : c∀ i < 0

then w = ??

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi

c0 = 0 cn = 0

If 0 < i < n : c∀ i < 0

then w = b w' a, where w' L and |w'| < n∈

By induction hypothesis. S →* w'

Hence S → bSa → * b w' a = w

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi

c0 = 0 cn = 0

These three cover all cases, because two consecutive
 ci differ by 1. So the ci cannot change sign without

 going through 0

 DONE

