
  

● All languages
● Decidable

Turing machines
● NP
● P
● Context-free

Context-free grammars, push-down automata
● Regular

Automata, non-deterministic automata, 
regular expressions

Big picture



  

Recall:

Theorem: L := {0n 1n : n ≥ 0} is not regular

But it is often needed to recognize this language
Example: Programming language syntax have 
matching brackets, not regular.

Next: Introduce context-free languages



  

Why study context-free languages

●  Practice with more powerful model 

● Programming languages: Syntax of C++, Java, etc. 
is specified by context-free grammar

● Other reasons: human language has structures 
that can be modeled as context-free language
English is not a regular language



  

Example: Context-free grammar G, Σ = {0,1}
                S → 0 S 1
                S → ε

Two substitution rules (a.k.a. productions)   →
Variables = {S}, Terminals = {0,1}

Derivation of 0011 in grammar:
S ⇒ 0S1 ⇒ 00S11 ⇒ 0011

L(G) = {0n 1n : n ≥ 0}



  

Example: Context-free grammar G, Σ = {0,1}
S → A
S → B
A → 0 A 1
A → ε
B → 1 B 0
B → ε

L(G) = L(A) U L(B)
        = {0n 1n : n ≥ 0} U {1n 0n : n ≥ 0}

Next: A convention to write this more compactly



  

Example: Context-free grammar G, Σ = {0,1}
S → A | B
A → 0 A 1 | ε
B → 1 B 0 | ε

Convention: Write A → w|w' for
                    A → w and A → w'



  

Definition: A context-free grammar (CFG) G is
a 4 tuple (V, Σ, R, S) where
●  V is a finite set of variables
●  Σ is a finite set of terminals   (V ∩ Σ = ∅)
●  R is a finite set of rules, where each rule is
A → w                A ∈ V, w ∈ (V U Σ)*

● S ∈ V is the start variable



  

Example
The language L = {ambn : m > n} 
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = {  S → aS  |  aT
          T → aTb  |  ε  }
          
          

Derive aaab:
S → ?



  

Example
The language L = {ambn : m > n} 
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = {  S → aS  |  aT
          T → aTb  |  ε  }
          
          

Derive aaab:
S → aS
   → ?



  

Example
The language L = {ambn : m > n} 
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = {  S → aS  |  aT
          T → aTb  |  ε  }
          
          

Derive aaab:
S → aS
   → aaT
   → ?



  

Example
The language L = {ambn : m > n} 
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = {  S → aS  |  aT
          T → aTb  |  ε  }
          
          

Derive aaab:
S → aS
   → aaT
   → aaaTb
   → ?



  

Example
The language L = {ambn : m > n} 
is described by the CFG G = (V, Σ, R, S)
where:

V = {S, T}
Σ = {a, b}
R = {  S → aS  |  aT
          T → aTb  |  ε  }
          
          

Derive aaab:
S → aS
   → aaT
   → aaaTb
   → aaab



  

Definition: Let G = (V, Σ, R, S) be a CFG
we write uAv ⇒ uwv and say uAv yields uwv
                                             if A → w is a rule
We say u derives v, written u ⇒* v, if
●  u = v, or
●  ∃ u1, u2, … , uk   k ≥ 1 :
u ⇒ u1 ⇒ u2 ⇒ … ⇒ uk = v

The language of the grammar is L(G) = {w : S ⇒* w}



  

Definition:  A language L is context-free if
                  ∃ CFG G : L(G) = L



  

Example: 

Give a CFG for  L = { x#y :   x,y in {0,1}*  |x| ≠ |y| }

G =   S →  BL              
         S →  RB             
         L   →  BL  |  A      
         R  →  RB  |  A      
         A   →  BAB  |  #   
         B  →   0  |  1         Remark: B ⇒* ?

To understand, explain what each piece does!

∑ = {0,1,#}
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Example: 

Give a CFG for  L = { x#y :   x,y in {0,1}*  |x| ≠ |y| }

G =   S →  BL              
         S →  RB             
         L   →  BL  |  A      
         R  →  RB  |  A      Remark: R ⇒* ?
         A   →  BAB  |  #    Remark: A ⇒* x#y : |x|=|y| 
         B  →   0  |  1         Remark: B ⇒* 0,  B ⇒* 1

∑ = {0,1,#}



  

Example: 

Give a CFG for  L = { x#y :   x,y in {0,1}*  |x| ≠ |y| }

G =   S →  BL              
         S →  RB             
         L   →  BL  |  A      Remark: L ⇒* ?
         R  →  RB  |  A      Remark: R ⇒* x#y : |x| ≤ |y| 
         A   →  BAB  |  #    Remark: A ⇒* x#y : |x|=|y| 
         B  →   0  |  1         Remark: B ⇒* 0,  B ⇒* 1

∑ = {0,1,#}



  

Example: 

Give a CFG for  L = { x#y :   x,y in {0,1}*  |x| ≠ |y| }

G =   S →  BL              
         S →  RB             Remark: RB ⇒* ?
         L   →  BL  |  A      Remark: L ⇒* x#y :  |x| ≥ |y| 
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Example: 

Give a CFG for  L = { x#y :   x,y in {0,1}*  |x| ≠ |y| }

G =   S →  BL              Remark: BL ⇒* ?
         S →  RB             Remark: RB ⇒* x#y :  |x| < |y| 
         L   →  BL  |  A      Remark: L ⇒* x#y :  |x| ≥ |y| 
         R  →  RB  |  A      Remark: R ⇒* x#y : |x| ≤ |y| 
         A   →  BAB  |  #    Remark: A ⇒* x#y : |x|=|y| 
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Example: 

Give a CFG for  L = { x#y :   x,y in {0,1}*  |x| ≠ |y| }

G =   S →  BL              Remark: BL ⇒* x#y :  |x| > |y| 
         S →  RB             Remark: RB ⇒* x#y :  |x| < |y| 
         L   →  BL  |  A      Remark: L ⇒* x#y :  |x| ≥ |y| 
         R  →  RB  |  A      Remark: R ⇒* x#y : |x| ≤ |y| 
         A   →  BAB  |  #    Remark: A ⇒* x#y : |x|=|y| 
         B  →   0  |  1         Remark: B ⇒* 0,  B ⇒* 1

L(G) = L

∑ = {0,1,#}



  

Example: CFG for expressions in programming 
languages

Task: recognize strings like 0 + 0 + 1 x (1 + 0)

S → S+S | S x S | ( S ) | 0 | 1

S →  S + S  →  0 + S  →  0 + S + S  →  0 + 0 + S
       → 0 + 0 + S x S  →  0 + 0 + 1 x S
       → 0 + 0 + 1 x (S)  →  0 + 0 + 1 x (S + S)
       →  0 + 0 + 1 x (1 + S)  →  0 + 0 + 1 x (1 + 0)



  

We have seen: CFG, definition, and examples

Next: Ambiguity



  

● Ambiguity: Some string may have multiple 
derivations in a CFG

● Ambiguity is a problem for compilers:

Compilers use derivation to give meaning to strings.

Example: meaning of 1+0x0  ∑* is its value, 1  ∈ ∈ ℕ

If there are two different derivations,
the value may not be well defined.



  

Example: The string 1+0x0 has two derivations in
S → S+S | S x S | ( S ) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → ?



  

Example: The string 1+0x0 has two derivations in
S → S+S | S x S | ( S ) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → SxS → ?
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Example: The string 1+0x0 has two derivations in
S → S+S | S x S | ( S ) | 0 | 1

One derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another derivation:
S → SxS → Sx0 → S+Sx0 → S+0x0 → 1+0x0



  

We now want to define CFG with no ambiguity

Definition: A derivation is leftmost if at every step 
the leftmost variable is expanded

Example: the 1st previous derivation was leftmost
   S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Definition: A CFG G is un-ambiguous if no string 
has two different leftmost derivations.



  

Example
The CFG       S → S+S | S x S | ( S ) | 0 | 1
is ambiguous because 1+0x0 has two distinct 
leftmost derivations

One leftmost derivation:
S → S+S → 1+S → 1+SxS → 1+0xS → 1+0x0

Another leftmost derivation:
S → SxS → S+SxS → 1+SxS → 1+0xS → 1+0x0



  

Example Instead of using CFG 
S → S+S | S x S | ( S ) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → ?
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Example Instead of using CFG 
S → S+S | S x S | ( S ) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → S + T → T + T → F + T → 1 + T 
          → 1 + T x F → ?



  

Example Instead of using CFG 
S → S+S | S x S | ( S ) | 0 | 1

we may use un-ambiguous grammar
S → S + T | T
T → T x F | F
F → 0 | 1 | (S)

Unique leftmost derivation of 1+0x0:
S → S + T → T + T → F + T → 1 + T 
          → 1 + T x F → 1 + 0 x F → 1 + 0 x 0



  

MultiplicativeExpression:

UnaryExpression

MultiplicativeExpression * UnaryExpression

MultiplicativeExpression / UnaryExpression

MultiplicativeExpression % UnaryExpression

AdditiveExpression:

MultiplicativeExpression

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression

Actual Java specification grammar snippet
Cumbersome but un-ambiguous



  

Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then
not A    is regular ?
A U B   is regular ?
A o B   is regular ?
A*        is regular ?                



  

Next: understand power of context-free languages

Study closure under not, U, o, *

Recall from regular langues: If A, B are regular then
not A    regular
A U B   regular
A o B   regular
A*        regular



  

Suppose A, B are context-free:
  A = L(GA) for CFG GA=(VA, Σ, RA, SA)
  B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about 
A U B      S → ?
A o B       
A*            



  

Suppose A, B are context-free:
  A = L(GA) for CFG GA=(VA, Σ, RA, SA)
  B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about 
A U B      S → SA|SB Context-free

A o B       S → ?
A*            



  

Suppose A, B are context-free:
  A = L(GA) for CFG GA=(VA, Σ, RA, SA)
  B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about 
A U B      S → SA|SB Context-free
A o B       S → SA SB Context-free

A*            S → ?



  

Suppose A, B are context-free:
  A = L(GA) for CFG GA=(VA, Σ, RA, SA)
  B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about 
A U B      S → SA|SB Context-free
A o B       S → SA SB Context-free
A*            S → SSA | ε Context-free

Above all context-free!
In general, (not A) is NOT context-free



  

Suppose A, B are context-free:
  A = L(GA) for CFG GA=(VA, Σ, RA, SA)
  B = L(GB) for CFG GB=(VB, Σ, RB, SB)

What about 
A U B      S → SA|SB Context-free
A o B       S → SA SB Context-free
A*            S → SSA | ε Context-free

Above also shows regular  context-free⇨

Context-free languages contain regular languages



  

Example: Context Free UNION

Give a CFG for  L = { x#y :   x,y in {0,1}*
                                             |x| ≠ |y|  OR  x = yR }

yR is the reverse of y:
001R      = 100
11010R =  01011
1R          = 1

∑ = {0,1,#}



  

Example: Context Free UNION

Give a CFG for  L = { x#y :   x,y in {0,1}*
                                             |x| ≠ |y|  OR  x = yR }
Write L = L

1
 U L

2
, where

L
1
 = { x#y : |x| ≠ |y| }                 L

2
 = { x#y : x = yR }

∑ = {0,1,#}



  

Example: Context Free UNION

Give a CFG for  L = { x#y :   x,y in {0,1}*
                                             |x| ≠ |y|  OR  x = yR }
Write L = L

1
 U L

2
, where

L
1
 = { x#y : |x| ≠ |y| }                 L

2
 = { x#y : x = yR }

G
1
=   S

1
 →  BL  |  RB

         L   →  BL  |  A      Remark: L ⇒* x#y :  |x| ≥ |y| 
         R  →  RB  |  A      Remark: R ⇒* x#y : |x| ≤ |y| 
         A   →  BAB  |  #    Remark: A ⇒* x#y : |x|=|y| 
         B  →   0  |  1

∑ = {0,1,#}



  

Example: Context Free UNION

Give a CFG for  L = { x#y :   x,y in {0,1}*
                                             |x| ≠ |y|  OR  x = yR }
Write L = L

1
 U L

2
, where

L
1
 = { x#y : |x| ≠ |y| }                 L

2
 = { x#y : x = yR }

G
1
=   S

1
 →  BL  |  RB

         L   →  BL  |  A
         R  →  RB  |  A
         A   →  BAB  |  #
         B  →   0  |  1

G
2
=  S

2
 →  0S

2
0  |  1S

2
1  |  #

∑ = {0,1,#}



  

Example: Context Free UNION

Give a CFG for  L = { x#y :   x,y in {0,1}*
                                             |x| ≠ |y|  OR  x = yR }
Write L = L

1
 U L

2
, where

L
1
 = { x#y : |x| ≠ |y| }                 L

2
 = { x#y : x = yR }

G
2
=  S

2
 →  0S

2
0  |  1S

2
1  |  #G

1
=   S

1
 →  BL  |  RB

         L   →  BL  |  A
         R  →  RB  |  A
         A   →  BAB  |  #
         B  →   0  |  1

Let G = S → S
1
  |  S

2

Then, L(G
1
) = L

1
  &  L(G

2
) = L

2

      ⇒ L(G) = L
1
 U L

2
 = L

∑ = {0,1,#}



  

Example: Context Free CONCATENATION

Give a CFG for  L = { 0m1m0n1n :  m even  and  n odd}



  

Example: Context Free CONCATENATION
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Write L = L
1
 o L

2
, where

L
1
 = { 0m1m  :  m even}                 L

2
 = { 0n1n  :  n odd}



  

Example: Context Free CONCATENATION

Give a CFG for  L = { 0m1m0n1n :  m even  and  n odd}

Write L = L
1
 o L

2
, where

L
1
 = { 0m1m  :  m even}                 L

2
 = { 0n1n  :  n odd}

G
1
=   S

1
 →  00S

1
11  |  ε



  

Example: Context Free CONCATENATION

Give a CFG for  L = { 0m1m0n1n :  m even  and  n odd}

Write L = L
1
 o L

2
, where

L
1
 = { 0m1m  :  m even}                 L

2
 = { 0n1n  :  n odd}

G
1
=   S

1
 →  00S

1
11  |  ε G

2
=   S

2
 →  00S

2
11  |  01



  

Example: Context Free CONCATENATION

Give a CFG for  L = { 0m1m0n1n :  m even  and  n odd}

Write L = L
1
 o L

2
, where

L
1
 = { 0m1m  :  m even}                 L

2
 = { 0n1n  :  n odd}

G
1
=   S

1
 →  00S

1
11  |  ε G

2
=   S

2
 →  00S

2
11  |  01

Let G = S → S
1
S

2

Then, L(G
1
) = L

1
  &  L(G

2
) = L

2

      ⇒ L(G) = L
1
 o L

2
 = L



  

Example: Context Free STAR

Give a CFG for  
L = { w in {0,1}* : w = w

1 
w

2 
▪▪▪ w

k
 , k ≥ 0

 where each w
i
 is a palindrome }

● A string w is a palindrome if w = wR

  That is, w reads the same forwards and backwards

● Example: 00100,  1001,  and  0   are palindromes;
                 0011,  01   are not



  

Example: Context Free STAR

Give a CFG for  
L = { w in {0,1}* : w = w

1 
w

2 
▪▪▪ w

k
 , k ≥ 0

 where each w
i
 is a palindrome }

Write L = L
1
*, where   L

1
 = {w : w is a palindrome}

Note: In fact, L = {0,1}*, but we will not use that.



  

Example: Context Free STAR

Give a CFG for  
L = { w in {0,1}* : w = w

1 
w

2 
▪▪▪ w

k
 , k ≥ 0

 where each w
i
 is a palindrome }

Write L = L
1
*, where   L

1
 = {w : w is a palindrome}

G
1
=   S

1
 →  0S

1
0  |  1S

1
1  |  0  |  1  |  ε



  

Example: Context Free STAR

Give a CFG for  
L = { w in {0,1}* : w = w

1 
w

2 
▪▪▪ w

k
 , k ≥ 0

 where each w
i
 is a palindrome }

Write L = L
1
*, where   L

1
 = {w : w is a palindrome}

G
1
=   S

1
 →  0S

1
0  |  1S

1
1  |  0  |  1  |  ε

Let G = S → SS
1
 | ε.      Then, L(G

1
) = L

1
 

                                               ⇒ L(G) = L
1
* = L.



  

Beyond regular

A string and its reversal with C in middle:
S → 0S0 | 1S1 | C
Example: S * 0001C1000⇨

More generally, to get strings of the form Ak C Bk    
use rules: S → A S B | C



  

Example: Σ = {0,1,#}, wR is reverse of w
 L = {w # x : wR is a substring of x}

    Useful to rewrite L as:



  

Example: Σ = {0,1,#}, wR is reverse of w
 L = {w # x : wR is a substring of x}

    = { w#x wR y : w,x,y ∈ {0,1}* }

G :=
  S → CB
  C → 0C0 | 1C1 | #B      
  B → 0 B | 1 B | ε            Remark: B ⇒* ?



  

Example: Σ = {0,1,#}, wR is reverse of w
 L = {w # x : wR is a substring of x}

    = { w#x wR y : w,x,y ∈ {0,1}* }

G :=
  S → CB
  C → 0C0 | 1C1 | #B      Remark: C ⇒* ?
  B → 0 B | 1 B | ε            Remark: B ⇒* {0,1}*



  

Example: Σ = {0,1,#}, wR is reverse of w
 L = {w # x : wR is a substring of x}

    = { w#x wR y : w,x,y ∈ {0,1}* }

G :=
  S → CB
  C → 0C0 | 1C1 | #B      Remark: C ⇒* w#{0,1}*wR

  B → 0 B | 1 B | ε            Remark: B ⇒* {0,1}*

L(G) = L



  

CFG vs. automata

CFG ⇔ non-deterministic pushdown automata (PDA)

A PDA is simply an NFA with a stack.

q
1

q
2

x, y → z

This means:  “read x from the input;
  pop y off the stack;
  push z onto the stack”

Any of x,y,z may be ε.



  

Example:   PDA for L = {0n1n : n ≥ 0}

q
1

q
2

q
3

q
0 ε, ε → $ ε, ε → ε ε, $ → ε

0, ε → 0 1, 0 → ε

The $ is a special symbol to recognize end of stack

Idea:
q

1 
: read and push 0s onto stack until no more

q
2 
: read 1s and match with 0s popped from stack     



  

Unlike the case for regular automata,
non-deterministic PDA are strictly more powerful
than deterministic PDA.

Compilers must work with deterministic PDA,
an important subclass of context-free languages



  

Intuition: If L involves regular expressions and/or 
nested matchings then probably context-free.
If not, probably not.

{ 0n 1n : n ≥ 0 } CF :       000 111                 nested

{w w : w ∈ Σ*} not CF:  1101 1101         not nested

{0n1n2n : n≥0} not CF: 00 11 22             not nested

Non-context-free languages



  

There is a pumping lemma for context-free 
languages.

Similar to the one for regular, but
simultaneously “pump” string in two parts:
w = u vi x yi z

Non-context-free languages



  

Context-free pumping lemma:
L is CF language ⇒ ∃ p ≥0

∀ w ∈ L, |w| ≥ p
∃ u,v,x,y,z : 
     w= uvxyz, |vy|> 0, |vxy|≤ p
∀ i ≥ 0 : uvixyiz ∈ L



  

Context-free pumping lemma:
L is CF language ⇒ ∃ p ≥0

∀ w ∈ L, |w| ≥ p
∃ u,v,x,y,z : 
     w= uvxyz, |vy|> 0, |vxy|≤ p
∀ i ≥ 0 : uvixyiz ∈ LProof idea:

Let G be CFG : L(G) = L
If w ∈ L is very long, derivation repeats a variable V  
                               (like repeat states in regular P.L.)
vxy = piece of w that V derives: V * vxy⇨

Because V repeated once, can repeat it again



  

Context-free pumping lemma:
L is CF language ⇒ ∃ p ≥0

∀ w ∈ L, |w| ≥ p
∃ u,v,x,y,z : 
     w= uvxyz, |vy|> 0, |vxy|≤ p
∀ i ≥ 0 : uvixyiz ∈ L

Useful to prove L NOT context-free.
Use contrapositive:
                  L context-free language ⇒ A
                                 same as
                   (not A) ⇒ L not context-free

A



  

Context-free pumping lemma (contrapositive)

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : 
    w = uvxyz, |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

not A

                                                        ⇒ L not context-free

To prove L not context-free it is enough to prove not A

Not A is the stuff in the box.



  

Context-free pumping lemma (contrapositive)

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z : 
    w = uvxyz, |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

                                                        ⇒ L not context-free

Adversary picks p,
You pick w  L of length ∈ ≥ p,
Adversary decomposes w = uvxyz, |vy| > 0, |vxy| ≤ p
You pick i ≥ 0
Finally, you win if uvixyiz ∉ L



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {an bn cn : n ≥ 0} is not context-free.
Proof:
Adversary moves p
You move w := ap bp cp

Adversary moves u,v,x,y,z
You move i := 2
You must show uvvxyyz ∉ L:
  vy misses at least one symbol in ∑ = {a,b,c}
    since ?



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {an bn cn : n ≥ 0} is not context-free.
Proof:
Adversary moves p
You move w := ap bp cp

Adversary moves u,v,x,y,z
You move i := 2
You must show uvvxyyz ∉ L:
  vy misses at least one symbol in ∑ = {a,b,c}
    since between as and cs there are p bs, and |vy| ≤ p
  so uvvxyyz ????



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {an bn cn : n ≥ 0} is not context-free.
Proof:
Adversary moves p
You move w := ap bp cp

Adversary moves u,v,x,y,z
You move i := 2
You must show uvvxyyz ∉ L:
  vy misses at least one symbol in ∑ = {a,b,c}
    since between as and cs there are p bs, and |vy| ≤ p
  so uvvxyyz has too few of that symbol, so  L∉
DONE



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof:
Adversary moves p
You move w := ap bp cp

Adversary moves u,v,x,y,z

So far, same as {an bn cn : n ≥ 0}.
But now we need a few cases.
Our choice of i depends on u,v,x,y,z



  

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof (cont.):
You have w = apbpcp, with w = uvxyz, |vy|> 0, |vxy|≤ p.
You must pick i ≥ 0 and show uvixyiz ∉ L.
If no a's in vy: ?



  

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof (cont.):
You have w = apbpcp, with w = uvxyz, |vy|> 0, |vxy|≤ p.
You must pick i ≥ 0 and show uvixyiz ∉ L.
If no a's in vy: uv0xy0z has fewer b's or c's than a's.
If no c's in vy: ?



  

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof (cont.):
You have w = apbpcp, with w = uvxyz, |vy|> 0, |vxy|≤ p.
You must pick i ≥ 0 and show uvixyiz ∉ L.
If no a's in vy: uv0xy0z has fewer b's or c's than a's.
If no c's in vy: uv2xy2z has more a's or b's than c's.
If no b's in vy:
      ?



  

Theorem: L := {ai bj ck : 0 ≤ i ≤ j ≤ k } is not context-free.
Proof (cont.):
You have w = apbpcp, with w = uvxyz, |vy|> 0, |vxy|≤ p.
You must pick i ≥ 0 and show uvixyiz ∉ L.
If no a's in vy: uv0xy0z has fewer b's or c's than a's.
If no c's in vy: uv2xy2z has more a's or b's than c's.
If no b's in vy:
      You fall in a previous case, since |vxy| ≤ p

                                                                          DONE



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s  : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Note: To prove L not regular we moved w = 0p 1 0p 1

That move does not work for context-free!



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s  : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Adversary moves u,v,x,y,z
Three cases:
 vxy in 1st half of w: ?



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s  : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Adversary moves u,v,x,y,z
Three cases:
 vxy in 1st half of w: 2nd half of uv2xy2z starts with 1, 

  but uv2xy2z still starts with 0.
 vxy in 2nd half of w: ?



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s  : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Adversary moves u,v,x,y,z
Three cases:
 vxy in 1st half of w: 2nd half of uv2xy2z starts with 1, 

  but uv2xy2z still starts with 0.
 vxy in 2nd half of w: 1st half of uv2xy2z ends with 0, 

   but uv2xy2z still ends with 1.
 vxy touches midpoint: ?



  

∀ p ≥0
∃ w ∈ L, |w| ≥ p
∀ u,v,x,y,z :  w = uvxyz, 
                 |vy|> 0, |vxy|≤ p
∃ i ≥ 0 : uvixyiz ∉ L

Theorem: L := {s s  : s ∈ {0,1}* } is not context-free.

Proof:
Adversary moves p
You move w := 0p 1p 0p 1p

Adversary moves u,v,x,y,z
Three cases:
 vxy in 1st half of w: 2nd half of uv2xy2z starts with 1, 

  but uv2xy2z still starts with 0.
 vxy in 2nd half of w: 1st half of uv2xy2z ends with 0, 

   but uv2xy2z still ends with 1.
 vxy touches midpoint: 
    uv0xy0z  = 0p 1i 0j 1p with either i < p or j < p. DONE



  

L := { w ∈ {a,b}* : w has same number of a and b}

Grammar for L

??



  

L := { w ∈ {a,b}* : w has same number of a and b}

Grammar for L

S → ε | SS | aSb | bSa

Not clear why this works.

It requires a proof.



  

Proofs by induction

Let P(n) be any claim
To prove “  n ≥ 0, P(n) is true” it suffices to prove∀

Base case: P(0) is true

Induction step:  n :  (  ∀ (  i < n, P(i) )∀  =>  P(n)  )
                                 Induction hypothesis

You can replace “0” by any fixed value



  

Example:   P(n) = ∑ i=0
n  i = n(n+1)/2

Claim:  n ≥ 0, P(n)∀

Proof by induction:
Base case: P(0)
          0 = 0(1)/2 = 0 is true

Induction step:  n :  (  ∀ (  i < n, P(i)∀  ) =>  P(n)  )

  ∑ i=0
n  i = ??



  

Example:   P(n) = ∑ i=0
n  i = n(n+1)/2

Claim:  n ≥ 0, P(n)∀

Proof by induction:
Base case: P(0)
          0 = 0(1)/2 = 0 is true

Induction step:  n :  (  ∀ (  i < n, P(i)∀  ) =>  P(n)  )

  ∑ i=0
n  i = ∑ i=0

n-1  i + n = (n-1)n/2 + n = n(n+1)/2



  

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w  {a,b}* , S →* w  if and only if w   L∈ ∈

Proof of “only if”: Suppose S →* w.  Must show w  L.∈

This fact is self-evident.

We show a proof by induction nevertheless,

as a warm-up for the other direction,

which is not self-evident.



  

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w  {a,b}* , S →* w  if and only if w   L∈ ∈

Proof of “only if”: Suppose S →* w.  Must show w  L.∈

Let P(n) = any w  {S,a,b}* such that S →* w in ∈ n steps  

                 has same number of a and b.

Base case (n=1): ??



  

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w  {a,b}* , S →* w  if and only if w   L∈ ∈

Proof of “only if”: Suppose S →* w.  Must show w  L.∈

Let P(n) = any w  {S,a,b}* such that S →* w in ∈ n steps  

                 has same number of a and b.

Base case (n=1): ε, SS, aSb, bSa have same number.

Induction step: Suppose S →* w' → w

                         where S →* w' in n-1 steps.

By induction hypothesis, ??



  

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w  {a,b}* , S →* w  if and only if w   L∈ ∈

Proof of “only if”: Suppose S →* w.  Must show w  L.∈

Let P(n) = any w  {S,a,b}* such that S →* w in ∈ n steps  

                 has same number of a and b.

Base case (n=1): ε, SS, aSb, bSa have same number.

Induction step: Suppose S →* w' → w

                         where S →* w' in n-1 steps.

By induction hypothesis, w' has same number of a, b.

Since any rule adds same number of a and b, w has too.



  

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w  {a,b}* , S →* w  if and only if w   L∈ ∈

Proof of “if”: Suppose w  L.  Must show S →* w∈

Let P(n) =  w  {S,a,b}*, |w| = n, S →* w.∀ ∈

Base case: w = ε.  Use rule ??



  

L := { w ∈ {a,b}* : w has same number of a and b}

S → ε | SS | aSb | bSa

Claim: For any w  {a,b}* , S →* w  if and only if w   L∈ ∈

Proof of “if”: Suppose w  L.  Must show S →* w∈

Let P(n) =  w  {S,a,b}*, |w| = n, S →* w.∀ ∈

Base case: w = ε.  Use rule S → ε

Induction step: Let |w| = n.

This step is more complicated, and is the

“creative step” of this proof.



  

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi 

c0 = 0  cn = ??



  

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi 

c0 = 0  cn = 0

If  0 < i < n : c∃ i = 0

then w = ??



  

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi 

c0 = 0  cn = 0

If  0 < i < n : c∃ i = 0

then w = w' w'', where w', w''  L,∈

and |w'| <n, |w''| < n

By induction hypothesis.  S → * w', S → * w''.

Hence S → SS → * w' S → w' w'' = w



  

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi 

c0 = 0  cn = 0

If  0 < i < n : c∀ i > 0

then w = ??



  

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi 

c0 = 0  cn = 0

If  0 < i < n : c∀ i > 0

then w = a w' b, where w'  L and |w'| < n∈

By induction hypothesis.  S → * w'

Hence S → aSb → * a w' b = w



  

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi 

c0 = 0  cn = 0

If  0 < i < n : c∀ i < 0

then w = ??



  

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi 

c0 = 0  cn = 0

If  0 < i < n : c∀ i < 0

then w = b w' a, where w'  L and |w'| < n∈

By induction hypothesis.  S →* w'

Hence S → bSa → * b w' a = w



  

S → ε | SS | aSb | bSa

Induction step: Let |w| = n.
Define ci := number of a - number of b in w1 w2 … wi 

c0 = 0  cn = 0

These three cover all cases, because two consecutive 
     ci differ by 1.  So the ci cannot change sign without  

     going through 0

                                                                             DONE


