Randomized Complexity Classes
• We allow TM to toss coins/throw dice etc. We write \(M(x,R) \) for output of \(M \) on input \(x \), coin tosses \(R \)

• Def: \(L \in \text{RP} \iff \exists \text{ poly-time randomized } M : \)
 \[
 x \in L \implies \Pr_R [M(x,R)=1] \geq 1/2 \\
 x \notin L \implies \Pr_R [M(x,R)=1] = 0

 \]

• Def: \(L \in \text{BPP} \iff \exists \text{ poly-time randomized } M : \)
 \[
 x \in L \implies \Pr_R [M(x,R)=1] \geq 2/3 \\
 x \notin L \implies \Pr_R [M(x,R)=1] \leq 1/3

 \]

• Exercise: For RP, can replace 1/2 with 1/n^c , or 1- 1/2^m for m = n^c , for any c

 For BPP, can replace (2/3,1/3) = (1/2 + 1/n^c , 1/2-1/n^c) or (1-1/2^m , 1/2^m).
Exercise: The following are equivalent:

1) \(L \in \text{RP} \cap \text{co-RP} \)

2) There is a randomized poly-time machine \(M \) for \(L \):
 \(\forall x, \forall R, M(x,R) \in \{L(x), ?\} \),
 \(\forall x, \Pr_R [M(x,R) = ?] \leq 1/2 \)

3) There is a randomized machine \(M \) for \(L \):
 \(\forall x, \forall R, M(x,R) = L(x) \)
 the expected running time of \(M \) on \(x \) is poly(n)

This class is known as ZPP.
• Claim: $P \subseteq ZPP \subseteq RP \subseteq BPP$
• Proof: By definition. ■

• Claim: $RP \subseteq NP$
Proof: ?
• Claim: \(P \subseteq ZPP \subseteq RP \subseteq BPP \)
• Proof: By definition.

• Claim: \(RP \subseteq NP \)
Proof: The witness is the random string

• Big open question, is \(P = ZPP = RP = BPP \)?
Surprisingly, this is believed to be the case
Claim: BPP ⊆ P/poly

Proof:
Let $L \in BPP$.
Let $M(x,R)$ be a randomized poly-time TM deciding L.

Make the error $< 2^{-n}$.

Note that for every x, $\Pr_R [L(x) \neq M(x,R)] < 2^{-n}$

So by the probabilistic method,
• **Claim:** \(\text{BPP} \subseteq \text{P/poly} \)

• **Proof:**
 Let \(L \in \text{BPP} \).
 Let \(M(x, R) \) be a randomized poly-time TM deciding \(L \).

 Make the error < \(2^{-n} \).

 Note that for every \(x \), \(\Pr_R \left[L(x) \neq M(x, R) \right] < 2^{-n} \)

 So by the probabilistic method, there exists some string \(R^* : L(x) = M(x, R^*) \ \forall \ x \).

 The circuit corresponding to \(M(x, R^*) \) is the desired circuit.

 Upshot: Randomness is only “useful” for TM, not for circuits.
• Claim: BPP \subseteq \sum_2 P
• Claim: $\text{BPP} \subseteq \Sigma_2 \text{P}$

• Proof: Let $M(x,R)$ toss $|R| = r$ coins, and have error $< 1/r^2$

 Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of

 \[A := \{ R \in \{0,1\}^r : M(x,R) = 1 \} \]

 For $s \in \{0,1\}^r$, the **s-shift** is $s+A := \{ s \oplus a : a \in A \} \subseteq \{0,1\}^r$

 We'll show the answer to this question is equivalent to $x \in L$

 We then show this question can be asked in $\Sigma_2 \text{P}$
• Claim: \(\text{BPP} \subseteq \sum_2 \text{P} \)

• Proof: Let \(M(x,R) \) toss \(|R| = r\) coins, and have error \(< 1/r^2\)

Fix \(x \) and ask: Can we cover \(\{0,1\}^r \) with \(r \) shifts of

\[
A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}
\]

For \(s \in \{0,1\}^r \), the \(s \)-shift is \(s + A := \{ s \ \text{XOR} \ a : a \in A \} \subseteq \{0,1\}^r \)

• \(x \notin L \), we show we cannot cover. Note \(|A| \leq \?\)
• Claim: $\text{BPP} \subseteq \sum_2 \text{P}$

• Proof: Let $M(x,R)$ toss $|R| = r$ coins, and have error $< 1/r^2$

Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of $A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}$?

For $s \in \{0,1\}^r$, the s-shift is $s+A := \{ s \text{ XOR } a : a \in A \} \subseteq \{0,1\}^r$

• $x \notin L$, we show we cannot cover. Note $|A| \leq 2^r / r^2$.

$\forall s_1, \ldots, s_r : |s_1+A \cup s_2+A \cup \ldots \cup s_r+A| \leq ?$
• Claim: \(\text{BPP} \subseteq \sum_2 \text{P} \)

• Proof: Let \(M(x,R) \) toss \(|R| = r\) coins, and have error < \(1/r^2\)

Fix \(x\) and ask: Can we cover \(\{0,1\}^r\) with \(r\) shifts of

\[
A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}
\]

For \(s \in \{0,1\}^r\), the \(s\)-shift is \(s + A := \{ s \oplus a : a \in A \} \subseteq \{0,1\}^r\)

• \(x \notin L\), we show we cannot cover. Note \(|A| \leq 2^r / r^2\).

\[\forall s_1, \ldots, s_r : |s_1 + A \cup s_2 + A \cup \ldots \cup s_r + A| \leq r \cdot |A| \leq ?\]
• Claim: \(\text{BPP} \subseteq \sum_2 \text{P} \)

• Proof: Let \(M(x,R) \) toss \(|R| = r \) coins, and have error \(< 1/r^2 \)

 Fix \(x \) and ask: Can we cover \(\{0,1\}^r \) with \(r \) shifts of

 \[
 A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}
 \]

 For \(s \in \{0,1\}^r \), the \(s\)-shift is \(s + A := \{ s \oplus a : a \in A \} \subseteq \{0,1\}^r \)

• \(x \notin L \), we show we cannot cover. Note \(|A| \leq 2^r / r^2 \).

 \[
 \forall s_1, \ldots, s_r : |s_1 + A \cup s_2 + A \cup \ldots \cup s_r + A| \leq r |A| \leq r \frac{2^r}{r^2} < 2^r
 \]

• \(x \in L \), we show we can cover.

 Idea pick the shifts at random and show \(\Pr[\text{do not cover}] < ? \)
• Claim: $\text{BPP} \subseteq \sum_2 \text{P}$

• Proof: Let $M(x,R)$ toss $|R| = r$ coins, and have error $< 1/r^2$

 Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of $A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}$?

 For $s \in \{0,1\}^r$, the s-shift is $s+A := \{ s \oplus a : a \in A \} \subseteq \{0,1\}^r$

• $x \notin L$, we show we cannot cover. Note $|A| \leq 2^r / r^2$. $\forall s_1, \ldots, s_r : |s_1+A \cup s_2+A \cup \ldots \cup s_r+A| \leq r |A| \leq r 2^r / r^2 < 2^r$

• $x \in L$, we show we can cover.

 Idea: pick the shifts at random and show $\Pr[\text{do not cover}] < 1$:

 $\Pr_{s_1, \ldots, s_r} [\exists y \in \{0,1\}^r : y \notin U_r s_r + A] \leq \ ?$
• Claim: $\text{BPP} \subseteq \sum_2 \text{P}$

• Proof: Let $M(x, R)$ toss $|R| = r$ coins, and have error $< 1/r^2$

Fix x and ask: **Can we cover** $\{0,1\}^r$ with r shifts of

$$A := \{ R \in \{0,1\}^r : M(x, R) = 1 \} \ ?$$

For $s \in \{0,1\}^r$, the s-shift is $s + A := \{ s \text{ XOR } a : a \in A \}$ ⊆ $\{0,1\}^r$

• $x \notin L$, we show we cannot cover. Note $|A| \leq 2^r / r^2$.

$\forall s_1, \ldots, s_r : |s_1 + A \cup s_2 + A \cup \ldots \cup s_r + A| \leq r |A| \leq r 2^r / r^2 < 2^r$

• $x \in L$, we show we can cover.

Idea: pick the shifts at random and show $\Pr[\text{do not cover}] < 1$:

$$\Pr_{s_1, \ldots, s_r} \left[\exists y \in \{0,1\}^r : y \notin \cup_r s_r + A \right] \leq$$

$$\sum_y \Pr_{s_1, \ldots, s_r} [y \notin \cup_r s_r + A] = ?$$
• Claim: $\text{BPP} \subseteq \sum_2 \text{P}$

• Proof: Let $M(x,R)$ toss $|R| = r$ coins, and have error $< 1/r^2$

 Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of

 $A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}$?

 For $s \in \{0,1\}^r$, the s-shift is $s+A := \{ s \oplus a : a \in A \} \subseteq \{0,1\}^r$

• $x \not\in L$, we show we cannot cover. Note $|A| \leq 2^r / r^2$.

 $\forall s_1, \ldots, s_r : |s_1+A \cup s_2+A \cup \ldots \cup s_r+A| \leq r |A| \leq r 2^r / r^2 < 2^r$

• $x \in L$, we show we can cover.

 Idea: pick the shifts at random and show $\text{Pr}[\text{do not cover}] < 1$:

 $\text{Pr}_{s_1, \ldots, s_r} [\exists y \in \{0,1\}^r : y \not\in U_r s_r + A] \leq$

 $\sum_y \text{Pr}_{s_1, \ldots, s_r}[y \not\in U_r s_r + A] = \sum_y (\text{Pr}_s[y \not\in s + A])^r \leq ?$
• Claim: \(\text{BPP} \subseteq \sum_2 \text{P} \)

• Proof: Let \(M(x,R) \) toss \(|R| = r \) coins, and have error \(< 1/r^2 \)

Fix \(x \) and ask: Can we cover \(\{0,1\}^r \) with \(r \) shifts of

\[A := \{ R \in \{0,1\}^r : M(x,R) = 1 \} \]?

For \(s \in \{0,1\}^r \), the \(s \)-shift is \(s + A := \{ s \oplus a : a \in A \} \subseteq \{0,1\}^r \)

• \(x \not\in L \), we show we cannot cover. Note \(|A| \leq 2^r / r^2 \).

\[\forall s_1, \ldots, s_r : |s_1 + A \cup s_2 + A \cup \ldots \cup s_r + A| \leq r \cdot |A| \leq r \cdot 2^r / r^2 < 2^r \]

• \(x \in L \), we show we can cover.

Idea: pick the shifts at random and show \(\Pr[\text{do not cover}] < 1 \):

\[\Pr_{s_1, \ldots, s_r} \left[\exists y \in \{0,1\}^r : y \not\in U_r s_r + A \right] \leq \]

\[\sum_y \Pr_{s_1, \ldots, s_r} [y \not\in U_r s_r + A] = \sum_y (\Pr_s [y \not\in s + A])^r \leq \sum_y (1/r^2)^r < 1 \]

So \(M(x,R) = 1 \iff ? \)
• **Claim:** \(\text{BPP} \subseteq \Sigma_2 \text{P} \)

• **Proof:** Let \(M(x,R) \) toss \(|R| = r\) coins, and have error \(< 1/r^2\)

Fix \(x \) and ask: **Can we cover \(\{0,1\}^r \) with \(r \) shifts of**

\[
A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}
\]

For \(s \in \{0,1\}^r \), the **\(s \)-shift** is \(s+A := \{ s \oplus a : a \in A \} \)

• \(x \not\in L \), we show we cannot cover. Note \(|A| \leq 2^r / r^2\).

\[
\forall s_1, \ldots, s_r : |s_1+A \cup s_2+A \cup \ldots \cup s_r+A| \leq r |A| \leq r 2^r / r^2 < 2^r
\]

• \(x \in L \), we show we can cover.

Idea: pick the shifts at random and show \(\Pr[\text{do not cover}] < 1 \):

\[
\Pr_{s_1,\ldots,s_r} [\exists y \in \{0,1\}^r : y \not\in U_r s_r + A] \leq \sum_y \Pr_{s_1,\ldots,s_r}[y \not\in U_r s_r + A] = \sum_y (\Pr_s[y \not\in s + A])^r \leq \sum_y (1/r^2)^r < 1
\]

So \(M(x,R) = 1 \iff \exists s_1, \ldots, s_r : \forall y \in \{0,1\}^r \), \(y \in U_r s_r + A \)

\[
\iff \exists s_1, \ldots, s_r : \forall y \in \{0,1\}^r , \forall_{i=1}^r M(x, y + s_i)=1
\]
• Corollary: $P = NP \Rightarrow P = BPP$.

• Proof:

 ?
Corollary: $P = NP \Rightarrow P = BPP$.

Proof:

$P = NP \Rightarrow P = PH$, and so

$P \subseteq BPP \subseteq PH = P$.