Misc

What's a reduction?
Tapes,
NTIME, NEXP,
Padding,
PH
What is a reduction from A to B? It's the concept that if you can do B, then you can also do A.

For example, buying a house reduces to becoming millionaire;

seeing the Colosseum reduces to flying to Rome.
• **Def1:** (What we gave) A reduces to B as $B \in P \implies A \in P$

• In the proofs we have seen the key of this was exhibiting a polynomial-time map: $R : \forall x, \ x \in A \leftrightarrow R(x) \in B$

• **Def2:** A reduction from A to B is R as above.

• **Claim:** Def2 \implies Def1.

• **Problem with Def2:** only captures very specific way to show that $B \in P \implies A \in P$.

For example, (computing satisfying assignments) reduces to 3SAT? Holds for Def1 but not known for Def 2.
Tapes
• So far, 1-tape TM

• Def.: A k-tape TM is a TM with k tapes. We are only concerned with $k = O(1)$. Each tape has its own head moving independently.

$$\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k$$
• $L := \{x : x \in \{0,1\}^* : x = x^R\}$ Palindromes

• Fact: L not in 1-tape $TIME(o(n^2))$

• Fact: $L \in TIME(O(n))$ on 2-tape.

• Proof:

 ?
• $L := \{ x : x \in \{0,1\}^* : x = x^R \}$ Palindromes

• Fact: L not in 1-tape $\text{TIME}(o(n^2))$

• Fact: $L \in \text{TIME}(O(n))$ on 2-tape.

• Proof:

 Copy input on second tape.
 Bring head on 1st tape at the beginning.
 Bring head on 2nd tape at the end.

 Compare symbol-by-symbol moving 1st head forward and 2nd backward.
• Although P on your laptop and P on TM is the same, for running time n, n^2, etc. not even k-tape is an adequate model of your laptop

What's missing?
• Although P on your laptop and P on TM is the same, for running time n, n^2, etc. not even k-tape is an adequate model of your laptop.

 What's missing?

 The ability to jump quickly to a memory location.

• Def.: A random-access TM (RATM) is a k-tape machine where each tape has an associated indexing tape. In one time step TM may move i-th head to the cell indexed by the indexing tape, in binary.

• This models well your laptop up to polylog factors.
• $L := \{ (i,x) : \text{the i-th bit of } x \text{ is 1} \}$

• L requires 1-tape time?

(Think of an expression in terms of $|i|$)
• \(L := \{ (i,x) : \text{the } i\text{-th bit of } x \text{ is } 1 \} \)

• \(L \) requires 1-tape time \(\Omega(2^{|i|}) \)

• \(L \) can be decided on a RATM in time \(? \)
• L := \{ (i,x) : the i-th bit of x is 1 \}

• L requires 1-tape time \(\Omega(2^{|i|}) \)

• L can be decided on a RATM in time \(O(|i|) \)
Exercise:

Argue in no more than 10 lines that

polynomial-time on TM
= polynomial-time on k-tape TM
= polynomial-time on RATM
Next: non-determinism
Non-deterministic TM: δ maps to subset of $Q \times \Gamma \times \{L,R\}$

Accept if there is a computation path that leads to accept.

Def1: $\text{NTIME}(t(n)) = \{ L : L \text{ is decided by a non-deterministic TM that runs in time } \leq t(n) \}$

Def2: $\text{NTIME}(t(n)) = \{ L : \exists M : \forall x \text{ of length } n \ x \in L \iff \exists y, |y| \leq t(n), \ M(x,y) \text{ accepts in } \leq t(n) \}$

● Exercise: Prove the two definitions are equivalent (feel free to use multiple tapes, if that helps)
Def: $\text{NEXP} := \text{NTIME}(2^{\text{poly}(n)})$

Theorem: $P=NP \Rightarrow \text{EXP} = \text{NEXP}$

Proof: Example of padding technique

Let $L \in \text{NTIME}(T(n))$ where $m = 2^{n^c}$.

Let $L' := \{ (x,0^{T(n)}) : x \in L, |x| = n \}$

Note $L' \in \text{NTIME}(\ ?)$
● Def: $\text{NEXP} := \text{NTIME}(2^{\text{poly}(n)})$

● Theorem: $\text{P=NP} \implies \text{EXP} = \text{NEXP}$

● Proof: Example of padding technique

Let $L \in \text{NTIME}(T(n))$ where $m = 2^{/(n^c)}$.

Let $L' := \{(x,0^{T(n)}) : x \in L, |x| = n\}$

Note $L' \in \text{NTIME}(O(n)) \subseteq \text{P}$. So let M solve L' in poly time.

EXP algorithm for L:
$M' := \text{“On input } x; \text{ “}$
Def: \(\text{NEXP} := \text{NTIME}(2^{\text{poly}(n)}) \)

Theorem: \(\text{P} = \text{NP} \implies \text{EXP} = \text{NEXP} \)

Proof: Example of padding technique

Let \(L \in \text{NTIME}(T(n)) \) where \(m = 2^{n^c} \).

Let \(L' := \{ (x,0^{T(n)}) : x \in L, |x| = n \} \)

Note \(L' \in \text{NTIME}(O(n)) \subseteq \text{P} \). So let \(M \) solve \(L' \) in poly time.

\text{EXP} \ algorithm for \(L \):
\[M' := \text{"On input } x; \text{ Replace } x \text{ with } (x,0^{T(n)}); \text{ Run } M." \]

\(M'(x) = M(x,0^{T(n)}) = \text{accept } \iff x \in L \)

\(M' \) runs in time \(O(T(n)) + \text{poly}(T(n)) \).
• Padding:

Equivalences propagate “upward”

Intuition: if you have an equivalence between resources, then when you have even more of those resources the equivalence will continue to hold

Contrapositive of padding

Differences propagate “downward”

EXP \neq NEXP \Rightarrow P \neq NP
Given formula φ:

- $\text{NP} = \sum_1 P = \exists y : M(x,y) = 1$
- $\text{co-NP} = \prod_1 P = \forall y : M(x,y) = 1$
- $\sum_2 P = \exists y \forall z : M(x,y,z) = 1$
- $\prod_2 P = \forall y \exists z : M(x,y,z) = 1$
- $\sum_3 P = \exists y \forall z \exists w : M(x,y,z,w) = 1$
- etc.

Def:

$\sum_i P = \{ L : \exists \text{ poly-time } M, \text{ polynomial } q(n) :$

- $x \in L \iff \exists y_1 \in \{0,1\}^{q(n)} \forall y_2 \in \{0,1\}^{q(n)} \ldots \forall y_{i+1} \in \{0,1\}^{q(n)}$

- $M(x,y_1,y_2,\ldots,y_{i+1}) = 1\}$

Polynomial-time hierarchy $\text{PH} := U_c \sum_c P = U_c \prod_c P$
Theorem: $P = NP \implies P = PH$

Proof:
Theorem: $P = NP \implies P = PH$

Proof: We prove by induction on i that $\sum_i P \cup \prod_i P \subseteq P$

W.l.o.g. let $L \in \sum_{i+1} P$, so \exists poly-time M, polynomial $q(n)$:

$x \in L \iff \exists y_1 \in \{0,1\}^{q(n)} \forall y_2 \in \{0,1\}^{q(n)} \ldots Q y_{i+1} \in \{0,1\}^{q(n)}$

$M(x, y_1, y_2, \ldots, y_{i+1}) = 1$

Consider $L' := \{ (x, y_1) : \forall y_2 \in \{0,1\}^{q(n)} \ldots Q y_{i+1} \in \{0,1\}^{q(n)}$

$M(x, y_1, y_2, \ldots, y_{i+1}) = 1 \}$

$L' \in \ ?$
Theorem: \(P = NP \implies P = PH \)

Proof: We prove by induction on \(i \) that \(\sum_i P \cup \prod_i P \subseteq P \)

W.l.o.g. let \(L \in \sum_{i+1} P \), so \(\exists \) poly-time \(M \), polynomial \(q(n) \):
\[x \in L \iff \exists y_1 \in \{0,1\}^{q(n)} \forall y_2 \in \{0,1\}^{q(n)} \ldots Q y_{i+1} \in \{0,1\}^{q(n)} \]
\[M(x, y_1, y_2, \ldots, y_{i+1}) = 1 \]

Consider \(L' := \{(x, y_1) : \forall y_2 \in \{0,1\}^{q(n)} \ldots Q y_{i+1} \in \{0,1\}^{q(n)} \]
\[M(x, y_1, y_2, \ldots, y_{i+1}) = 1 \} \)

\(L' \in \prod_i P \subseteq P \). Let poly-time machine \(M' \) solve \(L' \).

So \(x \in L \iff \exists y_1 \in \{0,1\}^{q(n)} : M'(x, y_1) = 1 \)

And so \(L \in ? \)
Theorem: $P = NP \rightarrow P = PH$

Proof: We prove by induction on i that $\sum_i P \cup \prod_i P \subseteq P$

W.l.o.g. let $L \in \sum_{i+1} P$, so \exists poly-time M, polynomial $q(n)$:

$$x \in L \iff \exists y_1 \in \{0,1\}^{q(n)} \forall y_2 \in \{0,1\}^{q(n)} ... Q y_{i+1} \in \{0,1\}^{q(n)} M(x, y_1, y_2, ..., y_{i+1}) = 1$$

Consider $L' := \{(x, y_1) : \forall y_2 \in \{0,1\}^{q(n)} ... Q y_{i+1} \in \{0,1\}^{q(n)} M(x, y_1, y_2, ..., y_{i+1}) = 1 \}$

$L' \in \prod_i P \subseteq P$. Let poly-time machine M' solve L'.

So $x \in L \iff \exists y_1 \in \{0,1\}^{q(n)} : M'(x, y_1) = 1$

And so $L \in NP \rightarrow L \in P$
Exercise:

$\prod_2 P \subseteq \sum_2 P \rightarrow PH = \sum_2 P$

Terminology: “The polynomial-time hierarchy collapses” means $\exists c : PH = \sum_c P$.