
Circuits



TM: A single program that works for every input length

Circuits:  A program tailored to a specific input length

Motivation:

-that's what computers really are

-cryptography: attackers focus on specific key length

-more combinatorial, should be easier to understand (?)



Circuit definitions:

Gates basis (typically AND, OR, NOT)

Input and output gates

Fan-in, Fan-out

Size = number of gates (sometimes wires)

Depth = length of longest input-output path



Claim: Let f : {0,1}n → {0,1} be a function computed by a 
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Then f is computed by a ciruit with O(s) gates and fan-in 2.

Proof:
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Claim: Let f : {0,1}n → {0,1} be a function computed by a 
circuit with s gates and fan-in h.
Then f is computed by a ciruit with O(s) gates and fan-in 2.

Proof:
Replace AND / OR gates with fan-in h
with a binary tree of AND / OR gates

Claim: Let f : {0,1}n → {0,1} be a function.
(1) Computable with s gates  computable with s 2 wires
(2) Computable with s wires  computable with O(s) gates

Proof:
(1) s2 is maximum number of wires
(2) Each wire touches ≤ 2 gates



Claim: Let f : {0,1}n   → {0,1} be a function.
 f is computable by a circuit of size O(2n) gates

Proof:

?
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Claim: Let f : {0,1}n   → {0,1} be a function.
 f is computable by a circuit of size O(2n) gates

Proof:

Va : f(a) = 1 Λ i xi = ai 

There are ≤ 2n  AND gates

xi = ai takes O(1) gates.   

Exercise:   f : {0,1}∃ n   → {0,1} requiring circuits of size 2Ω(n)



● How do circuits compare to TM?

● Exercise: Exhibit a function f : {0,1}* → {0,1}
that is not decidable but has circuits of polynomial size.

● What about the other way around?
Can poly-time TM compute more than poly-size circuits?



● Poly-size circuits are at least as powerful as poly-size TM

Theorem: Let f  TIME(t(n)).

Then  n, f on inputs of length n computable with t∀ 2 (n) gates

Corollary:  P has polynomial-size circuits (P  P/poly)⊆

Beginning of proof of theorem:
Assume w.l.o.g. TM for f writes output on 1st cell.

We encode configs of TM using symbols which encode a tape 
symbol, whether the head is there, and the state

So  we think of 0 0 q5 1 2   as 0 0 (q5 1) 2

where (q5 1) is one symbol



Fact:  circuit of O(t(n)) gates which given∃
n symbols of a configuration C produces
the n symbols of the next configuration C' .

Proof:  A variant of locality of computation

Each symbol of C' is a function of ?
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Fact:  circuit of O(t(n)) gates which given∃
n symbols of a configuration C produces
the n symbols of the next configuration C' .

Proof:  A variant of locality of computation

Each symbol of C' is a function of three symbols of C.
As we saw, that function is doable by a circuit of size O(1). 

Proof of theorem:

Pile up t(n) copies of circuit from Fact

Total size = O(t2 (n))  

● Size can be improved to O(t(n) logc t(n) )
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● Def: Circuit-SAT := { C : C is a circuit :  y : C(y) = 1∃

● Claim: Circuit-SAT is NP-complete

● Proof: Circuit-SAT  NP because given C and y we can 
compute C(y) in time polynomial in |C|

Suppose now Circuit-SAT  P.  We show P = NP.

Let L  NP with corresponding machine M(x,y).

Here's a polynomial-time algorithm for L:  Given x,
Construct following previous theorem circuit C for the
function y → M(x,y). 
This circuit has size poly(|x|) because M runs in 
polynomial time and |y| = poly(|x|)
Use poly-time algorithm for Circuit-SAT on C.  



Corollary: 3SAT is NP-complete.

Proof:

We just need to reduce Circuit-SAT to 3SAT.

Idea: replace each gate in the circuit with O(1) clauses

Exercise.



● Recall P  poly-size circuits (aka P/poly)⊆

● Believed NP NOT  P/poly, which implies P ≠ NP.⊆

● Leading goal: prove NP NOT IN P/poly  P ≠ NP

● We cannot even show NP NOT in circuits of size O(n)

● We cannot even show EXP NOT in P/poly



Exercise:

● Prove  c  k, ∑∃ ∀ cP does not have circuits of size nk

● Prove PH  EXP⊆

● So  k, EXP does not have circuits of size n∀ k 

Open:

● Does NP have circuits of size O(n)?



Exercise:

● Def.: E := TIME(2O(n))

● Open: Does E have circuits of size O(n)?

● Prove E  P/poly ↔ EXP  P/poly⊆ ⊆



● Theorem: NP  P/poly → PH = ∑ ⊆ 2 P

● Proof:  We'll show the ∏ 2 P - complete problem

L := {φ :  u  {0,1}∀ ∈ |φ|  v  {0,1}∃ ∈ |φ| : φ (u,v) = 1 }  ????∈

Where do we need to place this, to get PH = ∑2 P ?
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● Theorem: NP  P/poly → PH = ∑ ⊆ 2 P

● Proof:  We'll show the ∏ 2 P - complete problem

L := {φ :  u  {0,1}∀ ∈ |φ|  v  {0,1}∃ ∈ |φ| : φ (u,v) = 1 }  ∑ ∈ 2 P

NP  P/poly → { (φ, u) :  v  {0,1}⊆ ∃ ∈ |φ| : φ (u,v) = 1 }  P/poly∈

We can guess this circuit, but is it the right one?

Note NP  P/poly → in P/poly can compute a satisfying ⊆
assignment v if one exists.

φ L ↔  poly-size circuit C :  u {0,1}∈ ∃ ∀ ∈ |φ|, φ (u, C( φ , u) ) = 1

Note φ (u, C( φ , u) ) is computable in poly-time.            


