Circuits



TM: A single program that works for every input length
Circuits: A program tailored to a specific input length
Motivation:

-that's what computers really are

-cryptography: attackers focus on specific key length

-more combinatorial, should be easier to understand (?)



Circuit definitions:

Gates basis (typically AND, OR, NOT)
Input and output gates

Fan-in, Fan-out

Size = number of gates (sometimes wires)

Depth = length of longest input-output path



Claim: Let f: {0,1}" — {0,1} be a function computed by a
circuit with s gates and fan-in h.
Then fis computed by a ciruit with O(s) gates and fan-in 2.

Proof:
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Claim: Let f: {0,1}" — {0,1} be a function computed by a
circuit with s gates and fan-in h.
Then fis computed by a ciruit with O(s) gates and fan-in 2.

Proof:
Replace AND / OR gates with fan-in h
with a binary tree of AND / OR gates

Claim: Let f: {0,1}" — {0,1} be a function.

(1) Computable with s gates = computable with s2 wires
(2) Computable with s wires =» computable with O(s) gates

Proof:

(1) s2 is maximum number of wires
(2) Each wire touches < 2 gates



Claim: Letf: {0,1}" — {0,1} be a function.
f is computable by a circuit of size O(2") gates

Proof:
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Claim: Letf: {0,1}" — {0,1} be a function.
f is computable by a circuit of size O(2") gates

Proof:

Va-fa)=1/\i % =8

There are < 2" AND gates

x; = a; takes O(1) gates. i

Exercise: 3f:{0,13" — {0,1} requiring circuits of size 22"



e How do circuits compare to TM?

e Exercise: Exhibit a function f: {0,1}* — {0,1}
that is not decidable but has circuits of polynomial size.

e \What about the other way around?
Can poly-time TM compute more than poly-size circuits?



e Poly-size circuits are at least as powerful as poly-size TM

Theorem: Let f € TIME(t(n)).
Then V n, f on inputs of length n computable with t2 (n) gates

Corollary: P has polynomial-size circuits (P < P/poly)

Beginning of proof of theorem:
Assume w.l.0.g. TM for f writes output on 1st cell.

We encode configs of TM using symbols which encode a tape
symbol, whether the head is there, and the state

So we thinkof00qg512 as00(qg51)2
where (q; 1) is one symbol



Fact: d circuit of O(t(n)) gates which given
n symbols of a configuration C produces
the n symbols of the next configuration C' .
Proof. A variant of locality of computation

Each symbol of C' is a function of ?
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Fact: d circuit of O(t(n)) gates which given
n symbols of a configuration C produces
the n symbols of the next configuration C' .
Proof. A variant of locality of computation

Each symbol of C' is a function of three symbols of C.
As we saw, that function is doable by a circuit of size O(1).

Proof of theorem:
Pile up t(n) copies of circuit from Fact
Total size = O(t? (n)) M

e Size can be improved to O(t(n) log® t(n) )



e Def: Circuit-SAT :={C:Cisacircuit: dy: C(y) =1
e Claim: Circuit-SAT is NP-complete

e Proof: Circuit-SAT € NP because ?
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e Def: Circuit-SAT :={C:Cisacircuit: dy: C(y) =1
e Claim: Circuit-SAT is NP-complete

e Proof: Circuit-SAT € NP because given C and y we can
compute C(y) in time polynomial in |C|

Suppose now Circuit-SAT € P. We show P = NP.
Let L € NP with corresponding machine M(x,y).

Here's a polynomial-time algorithm for L: Given X,
Construct following previous theorem circuit C for the
function y — M(x,y).

This circuit has size poly(|x|) because M runs in
polynomial time and |y| = poly(|x|)
Use poly-time algorithm for Circuit-SAT on C. H



Corollary: 3SAT is NP-complete.

Proof:

We just need to reduce Circuit-SAT to 3SAT.

ldea: replace each gate in the circuit with O(1) clauses

Exercise.



e Recall P < poly-size circuits (aka P/poly)

e Believed NP NOT < P/poly, which implies P # NP.

e |eading goal: prove NP NOT IN P/poly = P # NP

e \We cannot even show NP NOT in circuits of size O(n)

e \We cannot even show EXP NOT in P/poly



Exercise:

e Prove dc V k, ) .P does not have circuits of size nk

e Prove PH < EXP
e So V k, EXP does not have circuits of size nkK
Open:

e Does NP have circuits of size O(n)?



Exercise:
o Def.;: E := TIME(20()
e Open: Does E have circuits of size O(n)?

e Prove E < P/poly < EXP < P/poly



e Theorem: NP < P/poly - PH=Y% , P

e Proof: We'll show the [], P - complete problem
L:={p:Vuec{01}°3vec{01®: @ uv)=1}c2???

Where do we need to place this, to getPH=>,P ?
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e Theorem: NP < P/poly - PH=Y% , P
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L:={¢:Vue{01}®3ve{01}*:puv)=1}ey,P
NP < P/poly — { (@, u): Iv €{0,1}®: ¢ (u,v) =1} € P/poly
We can guess this circuit, but is it the right one?

How do you turn the circuit into one whose output
you can check by yourself, i.e., in poly-time?
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e Theorem: NP < P/poly - PH=Y% , P

e Proof: We'll show the [], P - complete problem
L:={¢:Vue{01}®3ve{01}*:puv)=1}ey,P
NP < P/poly — { (@, u): Iv €{0,1}®: ¢ (u,v) =1} € P/poly
We can guess this circuit, but is it the right one?

Note NP < P/poly — in P/poly can compute a satisfying
assignment v if one exists.

@EL — T poly-size circuit C : V u<{0,1}®l @ (u, C(@, u)) =1

Note ¢ (u, C( @, u) ) is computable in poly-time. B



