Circuits
TM: A single program that works for every input length

Circuits: A program tailored to a specific input length

Motivation:

- that's what computers really are
- cryptography: attackers focus on specific key length
- more combinatorial, should be easier to understand (?)
Circuit definitions:

Gates basis (typically AND, OR, NOT)

Input and output gates

Fan-in, Fan-out

Size = number of gates (sometimes wires)

Depth = length of longest input-output path
Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function computed by a circuit with \(s \) gates and fan-in \(h \). Then \(f \) is computed by a circuit with \(O(s) \) gates and fan-in 2.

Proof:

?
Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function computed by a circuit with \(s \) gates and fan-in \(h \). Then \(f \) is computed by a circuit with \(O(s) \) gates and fan-in 2.

Proof:
Replace AND / OR gates with fan-in \(h \) with a binary tree of AND / OR gates.

Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function.
(1) Computable with \(s \) gates \(\Rightarrow \) computable with \(s^2 \) wires
(2) Computable with \(s \) wires \(\Rightarrow \) computable with \(O(s) \) gates

Proof:
(1) ?
Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function computed by a circuit with \(s \) gates and fan-in \(h \). Then \(f \) is computed by a circuit with \(O(s) \) gates and fan-in 2.

Proof:
Replace AND / OR gates with fan-in \(h \) with a binary tree of AND / OR gates.

Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function.
(1) Computable with \(s \) gates \(\Rightarrow \) computable with \(s^2 \) wires
(2) Computable with \(s \) wires \(\Rightarrow \) computable with \(O(s) \) gates

Proof:
(1) \(s^2 \) is maximum number of wires
(2) ?
Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function computed by a circuit with \(s \) gates and fan-in \(h \). Then \(f \) is computed by a circuit with \(O(s) \) gates and fan-in 2.

Proof:
Replace AND / OR gates with fan-in \(h \) with a binary tree of AND / OR gates

Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function.
(1) Computable with \(s \) gates \(\Rightarrow \) computable with \(s^2 \) wires
(2) Computable with \(s \) wires \(\Rightarrow \) computable with \(O(s) \) gates

Proof:
(1) \(s^2 \) is maximum number of wires
(2) Each wire touches \(\leq 2 \) gates
Claim: Let $f : \{0,1\}^n \to \{0,1\}$ be a function.

f is computable by a circuit of size $O(2^n)$ gates.

Proof:
Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function.

\(f \) is computable by a circuit of size \(O(2^n) \) gates

Proof:

\[V_a : f(a) = 1 \land \bigwedge_i x_i = a_i \]

There are \(\leq ? \) AND gates
Claim: Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function.
\(f \) is computable by a circuit of size \(O(2^n) \) gates.

Proof:

\[V_a : f(a) = 1 \land_i x_i = a_i \]

There are \(\leq 2^n \) AND gates.

\(x_i = a_i \) takes \(O(1) \) gates. ■

Exercise: \(\exists f : \{0,1\}^n \rightarrow \{0,1\} \) requiring circuits of size \(2^{\Omega(n)} \)
● How do circuits compare to TM?

● Exercise: Exhibit a function $f : \{0,1\}^* \rightarrow \{0,1\}$ that is not decidable but has circuits of polynomial size.

● What about the other way around? Can poly-time TM compute more than poly-size circuits?
Poly-size circuits are at least as powerful as poly-size TM

Theorem: Let \(f \in \text{TIME}(t(n)) \). Then \(\forall n, f \) on inputs of length \(n \) computable with \(t^2(n) \) gates

Corollary: \(P \) has polynomial-size circuits (\(P \subseteq P/poly \))

Beginning of proof of theorem:
Assume w.l.o.g. TM for \(f \) writes output on 1st cell.

We encode configs of TM using symbols which encode a tape symbol, whether the head is there, and the state

So we think of \(0 0 q_5 1 2 \) as \(0 0 (q_5 1) 2 \)
where \((q_5 1) \) is one symbol
Fact: \(\exists \) circuit of \(O(t(n)) \) gates which given
n symbols of a configuration \(C \) produces
the \(n \) symbols of the next configuration \(C' \).

Proof: A variant of locality of computation

Each symbol of \(C' \) is a function of ?
Fact: \(\exists \) circuit of \(O(t(n)) \) gates which given \(n \) symbols of a configuration \(C \) produces the \(n \) symbols of the next configuration \(C' \).

Proof: A variant of locality of computation

Each symbol of \(C' \) is a function of three symbols of \(C \). As we saw, that function is doable by a circuit of size \(? \).
Fact: ∃ circuit of $O(t(n))$ gates which given n symbols of a configuration C produces the n symbols of the next configuration C'.

Proof: A variant of locality of computation

Each symbol of C' is a function of three symbols of C. As we saw, that function is doable by a circuit of size $O(1)$. ■

Proof of theorem:
Fact: \(\exists \) circuit of \(O(t(n)) \) gates which given \(n \) symbols of a configuration \(C \) produces the \(n \) symbols of the next configuration \(C' \).

Proof: A variant of locality of computation

Each symbol of \(C' \) is a function of three symbols of \(C \). As we saw, that function is doable by a circuit of size \(O(1) \).

Proof of theorem:

Pile up \(t(n) \) copies of circuit from Fact

Total size = \(O(t^2(n)) \)

- Size can be improved to \(O(t(n) \log^c t(n)) \)
• **Def:** Circuit-SAT := \{ C : C is a circuit : \exists y : C(y) = 1 \}

• **Claim:** Circuit-SAT is NP-complete

• **Proof:** Circuit-SAT ∈ NP because ?
• Def: Circuit-SAT := \{ C : C is a circuit : \exists y : C(y) = 1 \}
• Claim: Circuit-SAT is NP-complete
• Proof: Circuit-SAT \in NP because given C and y we can compute C(y) in time polynomial in |C|

Suppose now Circuit-SAT \in P. We show P = NP.

Let L \in NP with corresponding machine M(x,y).

Here's a polynomial-time algorithm for L: Given x,
Def: Circuit-SAT := \{ C : C is a circuit : \exists y : C(y) = 1 \}

Claim: Circuit-SAT is NP-complete

Proof: Circuit-SAT \(\in \) NP because given \(C \) and \(y \) we can compute \(C(y) \) in time polynomial in \(|C| \)

Suppose now Circuit-SAT \(\in \) P. We show P = NP.

Let \(L \in \) NP with corresponding machine \(M(x,y) \).

Here's a polynomial-time algorithm for \(L \): Given \(x \),

1. Construct following previous theorem circuit \(C \) for the function \(y \rightarrow M(x,y) \).
2. This circuit has size poly(|\(x \)|) because ?
Def: Circuit-SAT := \{ C : C is a circuit : \exists y : C(y) = 1 \}

Claim: Circuit-SAT is NP-complete

Proof: Circuit-SAT \in NP because given C and y we can compute C(y) in time polynomial in |C|

Suppose now Circuit-SAT \in P. We show P = NP.

Let L \in NP with corresponding machine M(x,y).

Here's a polynomial-time algorithm for L: Given x,
Construct following previous theorem circuit C for the function y \rightarrow M(x,y).
This circuit has size \text{poly}(|x|) because M runs in polynomial time and |y| = \text{poly}(|x|)
Use poly-time algorithm for Circuit-SAT on C.
Corollary: 3SAT is NP-complete.

Proof:

We just need to reduce Circuit-SAT to 3SAT.

Idea: replace each gate in the circuit with $O(1)$ clauses

Exercise.
• Recall $P \subseteq \text{poly-size circuits (aka } P/\text{poly})$

• Believed $\text{NP NOT } \subseteq P/\text{poly}$, which implies $P \neq \text{NP}$.

• Leading goal: prove $\text{NP NOT IN P/poly} \Rightarrow P \neq \text{NP}$

• We cannot even show $\text{NP NOT in circuits of size } O(n)$

• We cannot even show EXP NOT in P/poly
Exercise:

● Prove \(\exists c \ \forall k, \sum_c P \) does not have circuits of size \(n^k \)

● Prove \(PH \subseteq EXP \)

● So \(\forall k, EXP \) does not have circuits of size \(n^k \)

Open:

● Does NP have circuits of size \(O(n) \)?
Exercise:

- Def.: \(E := \text{TIME}(2^{O(n)}) \)
- Open: Does \(E \) have circuits of size \(O(n) \)?
- Prove \(E \subseteq \text{P/poly} \leftrightarrow \text{EXP} \subseteq \text{P/poly} \)
• **Theorem:** NP ⊆ P/poly → PH = \(\sum_2 P \)

• **Proof:** We'll show the \(\Pi_2 P \)-complete problem

\[
L := \{ \phi : \forall u \in \{0,1\}^{|\phi|} \exists v \in \{0,1\}^{|\phi|} : \phi(u,v) = 1 \} \in \text{????}
\]

Where do we need to place this, to get PH = \(\sum_2 P \)?
• **Theorem:** $\text{NP} \subseteq \text{P/poly} \rightarrow \text{PH} = \sum_2 \text{P}$

• **Proof:** We'll show the $\prod_2 \text{P}$ - complete problem

$L := \{ \varphi : \forall u \in \{0,1\}^{\lvert \varphi \rvert} \exists v \in \{0,1\}^{\lvert \varphi \rvert} : \varphi(u,v) = 1 \} \in \sum_2 \text{P}$

$\text{NP} \subseteq \text{P/poly} \rightarrow \{ (\varphi, u) : \exists v \in \{0,1\}^{\lvert \varphi \rvert} : \varphi(u,v) = 1 \} \in \Sigma$
• Theorem: \(\text{NP} \subseteq \text{P/poly} \rightarrow \text{PH} = \sum_2 \text{P} \)

• Proof: We'll show the \(\prod_2 \text{P} \) - complete problem

\(L := \{ \varphi : \forall u \in \{0,1\}^{|\varphi|} \exists v \in \{0,1\}^{|\varphi|} : \varphi(u,v) = 1 \} \in \sum_2 \text{P} \)

\(\text{NP} \subseteq \text{P/poly} \rightarrow \{ (\varphi, u) : \exists v \in \{0,1\}^{|\varphi|} : \varphi(u,v) = 1 \} \in \text{P/poly} \)

We can guess this circuit, but is it the right one?

How do you turn the circuit into one whose output you can check by yourself, i.e., in poly-time?
• **Theorem:** $\text{NP} \subseteq \text{P/poly} \rightarrow \text{PH} = \sum_2 \text{P}$

• **Proof:** We'll show the $\prod_2 \text{P}$ - complete problem

$L := \{ \phi : \forall u \in \{0,1\}^{\lvert \phi \rvert} \exists v \in \{0,1\}^{\lvert \phi \rvert} : \phi(u,v) = 1 \} \in \sum_2 \text{P}$

$\text{NP} \subseteq \text{P/poly} \rightarrow \{ (\phi, u) : \exists v \in \{0,1\}^{\lvert \phi \rvert} : \phi(u,v) = 1 \} \in \text{P/poly}$

We can guess this circuit, but is it the right one?

Note $\text{NP} \subseteq \text{P/poly} \rightarrow$ in P/poly can compute a satisfying assignment v if one exists.

$\phi \in L \leftrightarrow \exists$ poly-size circuit C : ?
• Theorem: $\text{NP} \subseteq \text{P/poly} \rightarrow \text{PH} = \sum_2 \text{P}$

• Proof: We'll show the $\prod_2 \text{P}$ - complete problem

$L := \{ \varphi : \forall u \in \{0,1\}^{|\varphi|} \exists v \in \{0,1\}^{|\varphi|} : \varphi(u,v) = 1 \} \in \sum_2 \text{P}$

$\text{NP} \subseteq \text{P/poly} \rightarrow \{ (\varphi, u) : \exists v \in \{0,1\}^{|\varphi|} : \varphi(u,v) = 1 \} \in \text{P/poly}$

We can guess this circuit, but is it the right one?

Note $\text{NP} \subseteq \text{P/poly} \rightarrow$ in P/poly can compute a satisfying assignment v if one exists.

$\varphi \in L \leftrightarrow \exists \text{ poly-size circuit } C : \forall u \in \{0,1\}^{|\varphi|}, \varphi(u, \text{ ??????? }) = 1$
• **Theorem:** $\text{NP} \subseteq \text{P/poly} \rightarrow \text{PH} = \sum_2 \text{P}$

• **Proof:** We'll show the $\prod_2 \text{P}$-complete problem

$L := \{ \phi : \forall u \in \{0,1\}^{\text{|}\phi\text{|}} \exists v \in \{0,1\}^{\text{|}\phi\text{|}} : \phi(u,v) = 1 \} \in \sum_2 \text{P}$

$\text{NP} \subseteq \text{P/poly} \rightarrow \{ (\phi, u) : \exists v \in \{0,1\}^{\text{|}\phi\text{|}} : \phi(u,v) = 1 \} \in \text{P/poly}$

We can guess this circuit, but is it the right one?

Note $\text{NP} \subseteq \text{P/poly} \rightarrow$ in P/poly can compute a satisfying assignment v if one exists.

$\phi \in L \iff \exists \text{poly-size circuit } C : \forall u \in \{0,1\}^{\text{|}\phi\text{|}}, \phi(u, C(\phi, u)) = 1$

Note $\phi(u, C(\phi, u))$ is computable in poly-time.