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Success stories of algorithms:

Shortest path  (Google maps)

Pattern matching  (Text editors, genome)

Fast-fourier transform  (Audio/video processing)

http://cstheory.stackexchange.com/questions/19759/core-algorithms-deployed



  

This class:

General techniques:
Divide-and-conquer,
dynamic programming,
data structures
amortized analysis

Various topics:
Sorting
Matrixes
Graphs
Polynomials



  

What is an algorithm?
● Informally,

an algorithm for a function f : A → B (the problem) 
is a simple, step-by-step, procedure
that computes f(x) on every input x

● Example: A = NxN  B = N ,  f(x,y) = x+y

● Algorithm: Kindergarten addition



  

What operations are simple?
● If, for, while, etc.

● Direct addressing: A[n], the n-entry of array A

● Basic arithmetic and logic on variables
–  x * y, x + y, x AND y, etc.
– Simple in practice only if the variables are “small”.

For example, 64 bits on current PC
– Sometimes we get cleaner analysis if we consider 

them simple regardless of size of variables.



  

Measuring performance
● We bound the running time, or the memory (space) used.

● These are measured as a function of the input length.

● Makes sense: need to at least read the input!

● The input length is usually denoted n

● We are interested in which functions of n grow faster



  

n

n log(n)

n log2(n)

n2 n1.52n



  

Asymptotic analysis
● The exact time depends on the actual machine

● We ignore constant factors, to have more robust 
theory that applies to most computer

● Example:
on my computer it takes 67 n + 15 operations,
on yours 58 n – 15, but that's about the same

● We now give definitions that make this precise



  

Big-Oh

Definition:
f(n) = O(g(n)) if there are ( ) constants ∃ c, n0 such that

f(n) ≤ c∙g(n), for every ( ) n ∀ ≥ n0.

Meaning: f grows no faster than g, up to constant factors



  

Big-Oh

Definition:
f(n) = O(g(n)) if there are ( ) constants ∃ c, n0 such that

f(n) ≤ c∙g(n), for every ( ) n ∀ ≥ n0.

Example 1:
5n + 2n2 + log(n) = O(n2) ?



  

Big-Oh

Definition:
f(n) = O(g(n)) if there are ( ) constants ∃ c, n0 such that

f(n) ≤ c∙g(n), for every ( ) n ∀ ≥ n0.

Example 1:
5n + 2n2 + log(n) = O(n2)  True

Pick c = ?



  

Big-Oh

Definition:
f(n) = O(g(n)) if there are ( ) constants ∃ c, n0 such that

f(n) ≤ c∙g(n), for every ( ) n ∀ ≥ n0.

Example 1:
5n + 2n2 + log(n) = O(n2)  True

Pick c = 3.  For large enough n, 5n + log(n) ≤ n2.
Any c > 2 would work.



  

Example 2:
100n2 = O(2n) ?



  

Example 2:
100n2 = O(2n) True

Pick c = ?



  

Example 2:
100n2 = O(2n) True

Pick c = 1.

Any c > 0 would work, for large enough n.



  

Example 3:
n2 log n = O(n2) ?



  

Example 3:
n2 log n ≠ O(n2)

∀c, n0  ∃ n ≥ n0 such that n2 log n > c n2. 

n > 2c   n⇨ 2  log n > n2 c



  

Example 4:
2n = O(2n/2) ?



  

Example 4:
2n ≠ O(2n/2).

∀c, n0  ∃ n ≥ n0 such that  2n > c∙2n/2.

Pick any n > 2 log c

2n  = 2n/2  2n/2 > c∙2n/2.



  

● n log n = O(n2) ?
● n2  = O(n1.5 log10n) ?
● 2n  = O(n1000000) ?
● (√2)log n= O(n1/3) ? 
● nlog log n = O((log n)log n ) ?
● 2n  = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2  = O(n1.5 log10n) ?
● 2n  = O(n1000000) ?
● (√2)log n= O(n1/3) ? 
● nlog log n = O((log n)log n ) ?
● 2n  = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  = O(n1000000) ?
● (√2)log n= O(n1/3) ? 
● nlog log n = O((log n)log n ) ?
● 2n  = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000)
● (√2)log n= O(n1/3) ? 
● nlog log n = O((log n)log n ) ?
● 2n  = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000).
● (√2)log n= O(n1/3) ? (√2)log n= n1/2≠ O(n1/3)
● nlog log n = O((log n)log n ) ?
● 2n  = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ) ?
● 2n  = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ) ? 
● 2n  = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

nlog log n =

 2 logn. log log n =

(log n)log n .



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ).  
● 2n  = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ).  
● 2n  = O(4log n) ? 4log n=22log n     2n=22.
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

log n



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ).  
● 2n  ≠ O(4log n). 
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ).  
● 2n  ≠ O(4log n). 
● n! ≠ O(2n).      2.5 √n (n/e)n ≤ n! ≤ 2.8 √n (n/e)n

● n! = O(nn) ?
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ).  
● 2n  ≠ O(4log n). 
● n! ≠ O(2n).
● n! = O(nn).
● n2n = O(2n log n) ?



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ).  
● 2n  ≠ O(4log n). 
● n! ≠ O(2n).
● n! = O(nn).
● n2n = O(2n log n) ? n2n = 2log n+n. 



  

● n log n = O(n2).
● n2   ≠ O(n1.5 log10n).
● 2n  ≠ O(n1000000). 
● (√2)log n ≠ O(n1/3). 
● nlog log n = O((log n)log n ).  
● 2n  ≠ O(4log n). 
● n! ≠ O(2n).
● n! = O(nn).
● n2n = O(2n log n).



  

Big-omega

Definition:
f(n) = Ω (g(n)) means

∃ c, n0 > 0   ∀ n ≥ n0,    f(n) ≥ c∙g(n).

Meaning: f grows no slower than g, up to constant factors



  

Big-omega

Definition:
f(n) = Ω (g(n)) means

∃ c, n0 > 0   ∀ n ≥ n0,    f(n) ≥ c∙g(n).

Example 1:
0.01 n = Ω (log n) ?



  

Big-omega

Definition:
f(n) = Ω (g(n)) means

∃ c, n0 > 0   ∀ n ≥ n0,    f(n) ≥ c∙g(n).

Example 1:
0.01 n = Ω (log n) True

Pick c = 1.  Any c > 0 would work



  

Example 2:
n2/100 = Ω (n log n)?



  

Example 2:
n2/100 = Ω (n log n).
c = 1/100 Again, any c would work.



  

Example 2:
n2/100 = Ω (n log n).
c = 1/100 Again, any c would work.

Example 3:
√n = Ω(n/100) ?



  

Example 2:
n2/100 = Ω (n log n).
c = 1/100 Again, any c would work.

Example 3:
√n ≠ Ω(n/100) 

∀c, n0  ∃ n ≥ n0 such that , √n < c∙n/100.



  

Example 4:
2n/2 = Ω(2n) ?



  

Example 4:
2n/2 ≠ Ω(2n)

∀c, n0  ∃ n ≥ n0 such that  2n/2 < c∙2n.



  

Big-omega, Big-Oh 

Note:  f(n) = Ω (g(n))  g(n) = O (f(n))

            f(n) = O (g(n))  g(n) = Ω (f(n)).

Example:
10 log n = O (n), and n = Ω (10 log n).

5n = O(n), and n = Ω(5n)



  

Theta 

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0   ∀ n ≥ n0,    

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Meaning: f grows like g, up to constant factors

 



  

Theta 

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0   ∀ n ≥ n0,    

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Example:
n = Θ (n + log n) ?
 



  

Theta 

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0   ∀ n ≥ n0,    

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Example:
n = Θ (n + log n) True

c1 = ?, c2 = ? n0= ?  such that ∀n ≥ n0,

 n ≤ c1(n + log n) and n + log n ≤ c2n.

 



  

Theta 

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0   ∀ n ≥ n0,    

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Example:
n = Θ (n + log n) True

c1 = 1, c2 = 2 n0= 2  such that ∀n ≥ 2,

 n ≤ 1 (n + log n) and n + log n ≤ 2 n.
 



  

Theta 

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0   ∀ n ≥ n0,    

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Note:
f(n) = Θ (g(n))  f(n) = Ω (g(n)) and f(n) = O(g(n))

f(n) = Θ (g(n))  g(n)= Θ (f(n)).  



  

Mixing things up
●  n + O(log n) = O(n)
    Means  ∀ c   ∃ c', n0 :  n > n∀ 0   n + c log n <  c' n

● n3 log (n) = nO(1) 

  Means  ∃ c, n0 :  n > n∀ 0   n3 log (n) = nc 

● 2n + nO(1)  = Θ(2n)
    Means  ∀ c  ∃ c1, c2, n0 :  n > n∀ 0 

                         c2 2n ≤ 2n + nc  ≤  c1 2n



  

Sorting



  

Sorting problem:
● Input: 

A sequence (or array) of n numbers (a[1], a[2], …, a[n]).
● Desired output:

 A sequence (b[1], b[2], …, b[n]) of sorted numbers
(in increasing order).

Example:
Input = (5, 17, -9, 76, 87, -57, 0).
Output = ?



  

Sorting problem:
● Input: 

A sequence (or array) of n numbers (a[1], a[2], …, a[n]).
● Desired output:

 A sequence (b[1], b[2], …, b[n]) of sorted numbers
(in increasing order).

Example:
Input = (5, 17, -9, 76, 87, -57, 0).
Output = (-57, -9, 0, 5, 17, 76, 87).



  

Sorting problem:
● Input: 

A sequence (or array) of n numbers (a[1], a[2], …, a[n]).
● Desired output:

 A sequence (b[1], b[2], …, b[n]) of sorted numbers
(in increasing order).

Who cares about sorting?
● Sorting is a basic operation that shows up in 
   countless other algorithms
● Often when you look at data you want it sorted
● It is also used in the theory of NP-hardness!



  

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
   for (j=1; j < i; j++)
     if (a[j] > a[j+1])
       swap a[j] and a[j+1];



  

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
   for (j=1; j < i; j++)
     if (a[j] > a[j+1])
       swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly



  

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
   for (j=1; j < i; j++)
     if (a[j] > a[j+1])
       swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof:  Fix i.  Let a'[1], …, a'[n] be array at start of inner loop.
    Note at the end of the loop: a'[i] = ?



  

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
   for (j=1; j < i; j++)
     if (a[j] > a[j+1])
       swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof:  Fix i.  Let a'[1], …, a'[n] be array at start of inner loop.
    Note at the end of the loop: a'[i] = max k ≤ i a'[k]

    and the positions k > i are 



  

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
   for (j=1; j < i; j++)
     if (a[j] > a[j+1])
       swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof:  Fix i.  Let a'[1], …, a'[n] be array at start of inner loop.
    Note at the end of the loop: a'[i] = max k ≤ i a'[k]

    and the positions k > i are not touched.
Since the outer loop is from n down to 1, the array is sorted. 



  

Analysis of running time
T(n) = number of comparisons

i = n-1   n -1 comparisons.⇨

i = n-2  n -2 comparisons.⇨

…
i = 1      1 comparison.⇨

T(n) = (n-1) + (n-2) + … + 1 < n2

Is this tight? Is also T(n) = Ω(n2) ?

 Bubble sort:

 Input (a[1], a[2], …, a[n]).

  for (i=n; i > 1; i--)

     for (j=1; j < i; j++)

       if (a[j] > a[j+1])

         swap a[j] and a[j+1];



  

Analysis of running time
T(n) = number of comparisons

i = n-1   n -1 comparisons.⇨

i = n-2  n -2 comparisons.⇨

…
i = 1      1 comparison.⇨

T(n) = (n-1) + (n-2) + … + 1 = n(n-1)/2 = Θ(n2)

 Bubble sort:

 Input (a[1], a[2], …, a[n]).

  for (i=n; i > 1; i--)

     for (j=1; j < i; j++)

       if (a[j] > a[j+1])

         swap a[j] and a[j+1];



  

Space (also known as Memory)

We need to keep track of i, j

We need an extra element
to  swap values of input array a.

Space = O(1)

 Bubble sort:

 Input (a[1], a[2], …, a[n]).

  for (i=n; i > 1; i--)

     for (j=1; j < i; j++)

       if (a[j] > a[j+1])

         swap a[j] and a[j+1];



  

Bubble sort takes quadratic time

Can we sort faster?

We now see two methods that can sort in linear time,

under some assumptions



  

Countingsort:

Assumption: all elements of the input array are integers 
in the range 0 to k.

Idea: determine, for each A[i], the number of elements in 
the input array that are smaller than A[i].

This way we can put element A[i] directly into its position.



  

// Sorts A[1..n] into array B
Countingsort (A[1..n]) {
  // Initializes C to 0
  for (i=0; k ; i++)   C[i] = 0;

  // Set C[i] = number of elements = i.
  for (i=1; n ; i++)  C[ A[ i ] ] =C[ A[ i ] ]+1;
   
  // Set C[i] = number of elements ≤ i.
  for (i=1; k ; i++)  C[i] = C[i]+C[i-1] ;

  for (i=n; 1 ; i - -) {
    B[ C[ A[ i ] ] ] = A[ i ] ;  //Place A[i] at right location
    C[ A[ i ] ] = C[ A[ i ] ]-1; //Decrease for equal elements
  }



  

Analysis of running time
T(n) = number of operations
       = O(k) + O(n) + O(k) + O(n)
       = Θ(n + k).

If k = O(n) then T(n) = Θ(n)

 Countingsort (A[1..n])

   for (i =0; i<k ; i++)   

       C[i] = 0; 

   for (i =1; i<n ; i++)  

       C[A[i]] =C[A[i]] +1;

  for (i =1; i<k ; i++)  

       C[i] = C[i] +C[i-1] ;

  for (i =n; i>1 ; i--) {

     B[ C[ A[ i ] ] ] = A[ i ] ;

     C[ A[ i ] ] = C[ A[ i ] ] -1;

  }



  

Space
O(k) for C
Recall numbers in 0..k.

O(n) for B, where output is

Total space: O(n + k)
If k = O(n) then Θ(n)

 Countingsort (A[1..n])

   for (i =0; i<k ; i++)   

       C[i] = 0; 

   for (i =1; i<n ; i++)  

       C[A[i]] =C[A[i]] +1;

  for (i =1; i<k ; i++)  

       C[i] = C[i] +C[i-1] ;

  for (i =n; i>1 ; i--) {

     B[ C[ A[ i ] ] ] = A[ i ] ;

     C[ A[ i ] ] = C[ A[ i ] ] -1;

  }



  

Radix sort

Assumption: all elements of the input array are d-digit 
integers.

Idea: first sort by least significant digit,
then according to the next digit,
…,
and finally according to the most significant digit. 

It is essential to use a digit sorting algorithm that is stable: 
elements with the same digit appear in the output array in 
the same order as in the input array.

● Fact: Counting sort is stable.



  

Radixsort(A[1..n]) {
  for i that goes from least significant digit to most {
    use counting sort algorithm to sort array A on digit i
  }
}

Example:
Sort in ascending order (3,2,1,0) (two binary digits).
  



  

Radixsort(A[1..n]) {
  for i that goes from least significant digit to most {
    use counting sort algorithm to sort array A on digit i
  }
}  

Image source: http://www.programering.com/a/MTOyYjNwATM.html



  

Analysis of running time

T(n) = number of operations

T(n) = d•(running time of Counting sort on n elements)
        = Θ(d•(n+k))

Example: To sort numbers in range 0.. n10 
                T(n) = ? 
                                  (hint: think numbers in base n)

 Radixsort(A[1..n])  {

   for i from least significant 

         digit to most {

    use counting sort to 

    sort array A on digit i

     }

  }  



  

Analysis of running time

T(n) = number of operations

T(n) = d•(running time of Counting sort on n elements)
        = Θ(d•(n+k))

Example: To sort numbers in range 0.. n10 
                T(n) = Θ(10 n) = Θ(n)
                 While counting sort would take T(n) = ?

 Radixsort(A[1..n])  {

   for i from least significant 

         digit to most {

    use counting sort to 

    sort array A on digit i

     }

  }  



  

Analysis of running time

T(n) = number of operations

T(n) = d•(running time of Counting sort on n elements)
        = Θ(d•(n+k))

Example: To sort numbers in range 0.. n10

                T(n) = Θ(10 n) = Θ(n)

                 While counting sort would take T(n) = Θ(n10 )

 Radixsort(A[1..n])  {

   for i from least significant 

         digit to most {

    use counting sort to 

    sort array A on digit i

     }

  }  



  

Space

We need as much space as we did 
for Counting sort on each digit

Space = O(d • (n+k)) 

Can you improve this?

 Radixsort(A[1..n])  {

   for i from least significant 

         digit to most {

    use counting sort to 

    sort array A on digit i

     }

  }  



  

Can we sort faster than n2 without extra assumptions?

Next we show how to sort with O(n log n) comparisons

We introduce a new general paradigm



  

Deleted scenes



  

● 3SAT problem: Given a 3CNF formula such as
       φ := (x V y V z)  Λ  (¬x V ¬y V z)  Λ  (x V y V ¬z)

   can we set variables True/False to make φ True?
   Such φ is called satisfiable.

● Theorem [3SAT is NP-complete]

   Let M : {0,1}n → {0,1} be an algorithm running in time T

   Given x  {0,1}∈ n  we can efficiently compute 3CNF φ :
                        M(x) = 1    φ satisfiable

● How efficient?



  

● Theorem [3SAT is NP-complete]

   Let M : {0,1}n → {0,1} be an algorithm running in time T

   Given x  {0,1}∈ n  we can efficiently compute 3CNF φ :
                        M(x) = 1    φ satisfiable

● Standard proof: φ has Θ(T2) variables (and size), xi, j   

   x1, 1  x1, 2   ….      x1, T                                      

                 …
   xi, 1   xi, 2   ….       xi, T    row i = memory, state at time i=1..T

   φ ensures that memory and state evolve according to M



  

● Theorem [3SAT is NP-complete]

   Let M : {0,1}n → {0,1} be an algorithm running in time T

   Given x  {0,1}∈ n  we can efficiently compute 3CNF φ :
                        M(x) = 1    φ satisfiable

● Better proof: φ has O(T logO(1) T ) variables (and size),
    Ci  := xi, 1 xi, 2 ….   xi, log T   =  state and what algorithm  

                                                  reads, writes at time i = 1.. T

   Note only 1 memory location is represented per time step.

   How do you check Ci correct? What does φ do?



  

● Theorem [3SAT is NP-complete]

   Let M : {0,1}n → {0,1} be an algorithm running in time T

   Given x  {0,1}∈ n  we can efficiently compute 3CNF φ :
                        M(x) = 1    φ satisfiable

● Better proof: φ has O(T logO(1) T ) variables (and size),
    Ci  := xi, 1 xi, 2 ….   xi, log T   =  state and what algorithm  

                                                  reads, writes at time i = 1.. T

   φ : Check Ci+1 follows from Ci  assuming read correct

        Compute C'i := Ci sorted on memory location accessed

        Check C'i+1 follows from C'i  assuming state correct



  

● Theorem [3SAT is NP-complete]

   Let M : {0,1}n → {0,1} be an algorithm running in time T

   Given x  {0,1}∈ n  we can efficiently compute 3CNF φ :
                        M(x) = 1    φ satisfiable

● Better proof: φ has O(T logO(1) T ) variables (and size),
    Ci  := xi, 1 xi, 2 ….   xi, log T   =  state and what algorithm  

                                                  reads, writes at time i = 1.. T

   φ : Check Ci+1 follows from Ci  assuming read correct

        Let C'i be Ci sorted on memory location accessed

        Check C'i+1 follows from C'i  assuming state

THAT'S WHY
SORTING MATTERS!


