Algorithms Slides

Emanuele Viola

2009 — present

Released under Creative Commons License
“Attribution-Noncommercial-No Derivative Works 3.0 United States”
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Also, let me know if you use them.

Index

The slides are under construction.
The latest version is at http://www.ccs.neu.edu/home/viola/

Success stories of algorithms:
Shortest path (Google maps)
Pattern matching (Text editors, genome)

Fast-fourier transform (Audio/video processing)

http://cstheory.stackexchange.com/questions/19759/core-algorithms-deployed

This class:

General techniques:

Various topics:

Divide-and-conquier,
dynamic programming,
data structures
amortized analysis

Sorting
Matrixes
Graphs
Polynomials

What is an algorithm?

* Informally,

an algorithm for a function f : A — B (the problem)
IS a simple, step-by-step, procedure

that computes f(x) on every input x
« Example: A=NxN B =N, f(x,y) = x+y

[19
+ 999

VI

» Algorithm: Kindergarten addition

What operations are simple?

e |f, for, while, etc.
» Direct addressing: A[n], the n-entry of array A

e Basic arithmetic and logic on variables
- x*y,x+y, XxAND Yy, etc.
- Simple in practice only if the variables are “small”.
For example, 64 bits on current PC

- Sometimes we get cleaner analysis if we consider
them simple regardless of size of variables.

Measuring performance

We bound the running time, or the memory (space) used.
These are measured as a function of the input length.
Makes sense: need to at least read the input!

The input length is usually denoted n

We are interested in which functions of n grow faster

[— 18000

= 16000

[— §4000

[— J2000

Asymptotic analysis

 The exact time depends on the actual machine

* We ignore constant factors, to have more robust
theory that applies to most computer

 Example:
on my computer it takes 67 n + 15 operations,

on yours 38 n — 195, but that's about the same

* We now give definitions that make this precise

Big-Oh

Definition:
f(n) = O(g(n)) if there are () constants c, ny such that

f(n) < c-g(n), for every (V) nzn,.

Meaning: f grows no faster than g, up to constant factors

Big-Oh

Definition:
f(n) = O(g(n)) if there are () constants c, ny such that

f(n) < c-g(n), for every (V) nzn,.

Example 1.
5n + 2n2 + log(n) = O(n?) ?

Big-Oh

Definition:
f(n) = O(g(n)) if there are () constants c, ny such that

f(n) < c-g(n), for every (V) nzn,.

Example 1.
5n + 2n? + log(n) = O(n?) True

Pickc="7?

Big-Oh

Definition:
f(n) = O(g(n)) if there are () constants c, ny such that

f(n) < c-g(n), for every (V) nzn,.

Example 1.
5n + 2n? + log(n) = O(n?) True

Pick ¢ = 3. For large enough n, 5n + log(n) < n?.

Any c > 2 would work.

Example 2:
100n2 = O(2") ?

Example 2:
100n2 = O(2") True

Pickc="7?

Example 2:
100n2 = O(2") True

Pick c = 1.

Any c > 0 would work, for large enough n.

Example 3:
nZlog n = O(n?) ?

Example 3.
nZlog n # O(n?)

(c, n, On 2 n_ such that n®log n > ¢ n?.

n>2%> n?logn>n?c

Example 4.
2" = O(2"2) 2

Example 4.
2" # O(2"2).

(Oc, n, On 2 n_ such that 2"> ¢-2M/2

Pickanyn>2logc
oNn = on/2 on/2 5 ~.on/2

nlog n = O(n?) ?

n2 = O(n1-2log10n) ?

on = O(n1000000) 7

(\/Z)Iog N— O(n1/3) ?

nlog log n — O((log n)Iog ny 2
on — O(4|og ny 2

n!=0(2") 7

n! =0O(n") ?

n2" = O(2"leg Ny 2

n log n = O(n?).

n2 = O(n1-2log10n) ?

on = O(n1000000) 7

(\/Z)Iog N— O(n1/3) ?

nlog log n — O((log n)Iog ny 2
on — O(4|og ny 2

n!=0(2") 7

n! =0O(n") ?

n2" = O(2"leg Ny 2

n log n = O(n?).

n2 # O(n1-2log10n).

on = O(n1000000) 7

(\/Z)Iog N— O(n1/3) ?

nlog log n — O((log n)Iog ny 2
on — O(4|og ny 2

n!=0(2") 7

n! =0O(n") ?

n2" = O(2"leg Ny 2

n log n = O(n?).

n2 # O(n1-2log10n).

2N # O(n1000000)

(\/Z)Iog N— O(n1/3) ?

nlog log n — O((log n)Iog ny 2
on — O(4|og ny 2

n!=0(2") 7

n! =0O(n") ?

n2" = O(2"leg Ny 2

* nlog n = O(n?).

* n? # O(n"°log10n).

¢ 2N 4 O(n1000000)_

. (\/Z)Iog N— O(n1/3) ? (\/z)log N= n1/2+ O(n1/3)
e nloglogn— O((log n)Iog n) ?

e 2N = O(4Iog n) ?

*nl=0(2M ?

*nl=0(n")?

* n2N = O(2" log ny 7

n log n = O(n?).

n2 # O(n1-2log10n).

2N # O(n1000000)

(\/z)log n O(n1/3).

nlog log n — O((log n)Iog ny 2
2" = O(4leg M) 2

n! =0(2") 7

n! =O(n") ?

n2n = O(2"leg Ny 2

n log n = O(n?).

n2 # O(n1-2log10n).

2N # O(n1000000)

(\/Z)Iog n O(n1/3).

nlog log n — O((log n)Iog ny 2
2" = O(4leg M) 2

n! =0(2") 7

n! =O(n") ?

n2n = O(2"leg Ny 2

nloglog n —

2 logn. log log n =

(log n)logn

n log n = O(n?).

n2 # O(n1-2log10n).
2N # O(n1000000)
(\/z)log n O(n1/3).
nlog log n = O((log n)Iog n).
2" = O(4leg M) 2
n! =0(2") 7

n! =O(n") ?

n2n = O(2"leg Ny 2

n log n = O(n?).

n2 # O(n1-2log10n).

2N # O(n 1000000y,

(N2)leg N O(n1/3).

nlog log n = O((log n)Iog n).

on — O(4Iog n) 2 4log n=92log n
n! =QO(2M) ?

n! =O(n") ?

n2n = O(2"leg Ny 2

log n

2N=22

n log n = O(n?).

n2 # O(n1-2log10n).
2N # O(n1000000)
(\/z)log n O(n1/3).
nlog log n = O((log n)Iog n).
2N # O(4'°09 Ny,
n! =0(2") 7
n! =O(n") ?

n2n = O(2"leg Ny 2

n log n = O(n?).

n2 # O(n1-2log10n).

2N # O(n1000000)

(\/z)log n O(n1/3).

nlog log n = O((log n)Iog ny,

2N # O(4l09 Ny,

nl #O(2M. 2.5+n (n/e)"<n!<2.8n (n/e)"
n! =O(n") ?

n2n = O(2"leg Ny 2

n log n = O(n?).

n2 # O(n1-2log10n).
2N # O(n 1000000y,
(\/z)log n O(n1/3).
nlog log n = O((log n)Iog n).
2N # O(4'°09 Ny,

n! # O(2M).

n! = O(nM).

n2" = O(2n log ny 7

n log n = O(n?).

n? # O(n1-1og10n).

on + O(n1OOOOOO)_

(\/Z)Iog n O(n1/3).

nlog log n = O((log n)Iog n).

2N # O(4l09 Ny,

n! # O(2").

n! = O(nM).

n2" = O(2n log Ny 2 n2N = olog n+n

n log n = O(n?).

n2 # O(n1-2log10n).
2N # O(n 1000000y,
(\/z)log n O(n1/3).
nlog log n = O((log n)Iog n).
2N # O(4'°09 Ny,

n! # O(2M).

n! = O(nM).

n2" = O(2n log ny.

Big-omega

Definition:
f(n) = Q (g(n)) means

Oc,n,>0 On=z2n, f(n)zcg(n)

Meaning: f grows no slower than g, up to constant factors

Big-omega

Definition:
f(n) = Q (g(n)) means

Oc,n,>0 On=z2n, f(n)zcg(n)

Example 1:
0.01n=Q (logn)?

Big-omega

Definition:
f(n) = Q (g(n)) means

Oc,n,>0 On=z2n, f(n)zcg(n)

Example 1:
0.01 n=Q (log n) True

Pick c = 1. Any c > 0 would work

Example 2:
n2/100 = Q (n log n)?

Example 2:
n2/100 = Q (n log n).
c = 1/100 Again, any c would work.

Example 2:
n2/100 = Q (n log n).
c = 1/100 Again, any ¢ would work.

Example 3:
Vn = Q(n/100) ?

Example 2:
n2/100 = Q (n log n).
c = 1/100 Again, any c would work.

Example 3.
Vn # Q(n/100)

Oc, n, On = n, such that , Vn < ¢:n/100.

Example 4.
22 = Q(2n) ?

Example 4.
22 2 (2"

Oc, n, On 2 n_ such that 2"2 < ¢-2".

Big-omega, Big-Oh

Note: f(n) = Q (g(n)) < g(n) = O (f(n))
f(n) = O (g(n)) < g(n) = Q (i(n)).

Example:
10logn =0 (n),and n =Q (10 log n).

5n = O(n), and n = Q(5n)

Theta

Definition:
f(n) = © (g(n)) means
On, c,c>0 Onz2n,

f(n) = c,-g(n) and g(n) < c,f(n).

Meaning: f grows like g, up to constant factors

Theta

Definition:

f(n) = © (g(n)) means
On, c,c>0 Onz2n,
f(n) = c,-g(n) and g(n) < c,f(n).
Example:
n=0(n+logn)?

Theta

Definition:

f(n) = © (g(n)) means

On, c,c>0 Onz2n,

f(n) = c,-g(n) and g(n) < c,f(n).
Example:

n=0 (n+logn)True
c,=7,¢c,=?7n,=7 suchthatn=n,

n<c/(n+logn)andn+logn=<c,n.

Theta

Definition:

f(n) = © (g(n)) means

On, c,c>0 Onz2n,

f(n) = c,-g(n) and g(n) < c,f(n).
Example:

n=0 (n+logn)True

C =’,02=2n0=2 such that On = 2,

n<1(n+logn)andn+logn<2n.

Theta

Definition:
f(n) = © (g(n)) means
On, c,c>0 Onz2n,

f(n) = c,-g(n) and g(n) < c,f(n).

Note:
f(n) = © (g(n)) < f(n) = Q (g(n)) and f(n) = O(g(n))

f(n) = © (g(n)) < g(n)= O (f(n)).

Mixing things up

e n + O(log n) = O(n)
Means V¢ dc,ny:Vn>ny, n+clogn< c'n

e n° log (n) = nO(")

. 3 _
Means J ¢, n,: V n>ny n”log(n)=n°

e 2"+ nO() = (2N
Means V ¢ 3 ¢, Cy, Ny V n>ng

022'“S2”+nC < cy 2"

Sorting

Sorting problem:
* Input:

A sequence (or array) of n numbers (a[1], a[2], ..., a[n]).
* Desired output:

A sequence (b[1], b[2], ..., b[n]) of sorted numbers

(in increasing order).

Example:
Input = (5, 17, -9, 76, 87, -57, 0).
Output = ?

Sorting problem:
* Input:

A sequence (or array) of n numbers (a[1], a[2], ..., a[n]).
* Desired output:

A sequence (b[1], b[2], ..., b[n]) of sorted numbers

(in increasing order).

Example:
Input = (5, 17, -9, 76, 87, -57, 0).
Output = (-57, -9, 0, 5, 17, 76, 87).

Sorting problem:
* Input:
A sequence (or array) of n numbers (a[1], a[2], ..., a[n]).

e Desired output:

A sequence (b[1], b[2], ..., b[n]) of sorted numbers
(in increasing order).

Who cares about sorting?

e Sorting is a basic operation that shows up in
countless other algorithms

e Often when you look at data you want it sorted

e |t is also used in the theory of NP-hardness!

Bubblesort:
Input (a[1], a[2], ..., a[n]).
for (i=n;1>1;1--)
for (j=1;] <1i; j++)
it (a[j] > afj+1])
swap a[j] and a[j+1];

Bubblesort:
Input (a[1], a[2], ..., a[n]).
for (i=n;1>1;1--)
for (j=1;] <1i; j++)
it (a[j] > afj+1])
swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly

Bubblesort:
Input (a[1], a[2], ..., a[n]).
for (i=n;1>1;1--)
for (j=1;] <1i; j++)
it (af] > afj+1])

swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fixi. Leta'[1], ..., a'[n] be array at start of inner loop.
Note at the end of the loop: a'[i] = ?

Bubblesort:
Input (a[1], a[2], ..., a[n]).
for (i=n;1>1;1--)
for (j=1;j <i; j*++)
it (af] > afj+1])

swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fixi. Leta'[1], ..., a'[n] be array at start of inner loop.
Note at the end of the loop: a'[i] = max | .; a'K]

and the positions k > i are

Bubblesort:
Input (a[1], a[2], ..., a[n]).
for (i=n;1>1;1--)
for (j=1;j <i; j*++)
it (af] > afj+1])

swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fixi. Leta'[1], ..., a'[n] be array at start of inner loop.
Note at the end of the loop: a'[i] = max | .; a'K]

and the positions k > i are not touched.
Since the outer loop is from n down to 1, the array is sorted. Il

Analysis of running time

T(n) = number of comparisons

| = n-1> n-1comparisons.
| = n-2 > n -2 comparisons.

1=1 = 1 comparison.

T(n)=(n-1) + (n-2) + ... + 1 < n?
Is this tight? Is also T(n) = Q(n?) ?

Bubble sort:
Input (a[1], a[2], ..., a[n]).
for (i=n;i>1;i--)
for (j=1;] <i; j++)
if (afj] > a[j+1])

swap a[j] and a[j+1];

Bubble sort:
Input (a[1], a[2], ..., a[n]).

for (i=n;i>1;i--)

Analysis of running time

T(n) = number of comparisons
for (j=1;) <1; j++)
if (afj] > a[j+1])

swap a[j] and a[j+1];

n-1 = n -1 comparisons.
| = n-2 > n -2 comparisons.

1=1 = 1 comparison.

T(n) = (n-1) + (n-2) + ... + 1 = n(n-1)/2 = O(n?)

Bubble sort:
Input (a[1], a[2], ..., a[n]).
for (i=n; i > 1; i--)
for (j=1;j <i; j++)
if (afj] > afj+1])
We need an extra element swap a[j] and a[j+1];

Space (also known as Memory)

We need to keep track of i, |

to swap values of input array a.

Space = O(1)

Bubble sort takes quadratic time

Can we sort faster?

We now see two methods that can sort in linear time,

under some assumptions

Countingsort:

Assumption: all elements of the input array are integers
in the range 0 to k.

|dea: determine, for each AJi], the number of elements Iin
the input array that are smaller than AJi].

This way we can put element AJi] directly into its position.

/[Sorts A[1..n] into array B
Countingsort (A[1..n]) {

// Initializes C to O

for (i=0; k ; i++) CJi] = 0;

// Set C[i] = number of elements = i.
for (i=1; n; i++) C[A[i]]=C[A[i]]*+1;

// Set CJ[i] = number of elements < 1.
for (i=1; k ; i++) CJi] = C[i]+C[i-1] ;

for (i=n; 1 ;1--){
B[C[A[I]]]=A[1]; //Place AJi] at right location
C[A[1]]=C[A[1]]-1; //Decrease for equal elements
}

Analysis of running time Countingsort (A[1..n])

for (i =0; i<k ; i++)
C[i] = 0;

for (i =1; i<n ; i++)
CIA[]] =C[Al[i]] +1;

for (i =1; i<k ; i++)

If k = O(n) then T(n) = ©O(n) Cli] = C[i] +C[i-1] :

T(n) = number of operations
= O(k) + O(n) + O(k) + O(n)
= Q(n + k).

for (i =n; i>1 ; i--) {
BIC[ALI]]]=A[1];
C[A[1]]=C[A[i]]-1;
}

Space Countingsort (A[1..n])
O(k) for C for (i =0; i<k ; i++)
C[i] = 0;
for (i =1; i<n ; i++)
CI[A[]] =C[A[i]] +1;
O(n) for B, where output is for (i =1; i<k ; i++)
C[i] = C[i] +C[i-1] ;
for (i =n; i>1;i--) {
BI[C[ALiI]]]=Ali];
Total space: O(n + k) CIA[i1]=C[A[i]]-1;

If k = O(n) then O(n))

Recall numbers in 0. .k.

Radix sort

Assumption: all elements of the input array are d-digit
iIntegers.

|dea: first sort by least significant digit,
then according to the next digit,

and finally according to the most significant digit.
It is essential to use a digit sorting algorithm that is stable:
elements with the same digit appear in the output array in

the same order as in the input array.

e Fact: Counting sort is stable.

Radixsort(A[1..n]) {
for i that goes from least significant digit to most {
use counting sort algorithm to sort array A on digit |

;
;

Example:
Sort in ascending order (3,2,1,0) (two binary digits).

Radixsort(A[1..n]) {

for i that goes from least significant digit to most {

use counting sort algorithm to sort array A on digit |

J

;

10
11

sort must be stable
(arrows do not cross)

Image source: http://www.programering.com/a/MTOyYYjNwATM.html

Analysis of running time

T(n) = number of operations

Radixsort(A[1..n]) {
for i from least significant
digit to most {
use counting sort to

sort array A on digit |

}
}

T(n) = d+(running time of Counting sort on n elements)

= O(d*(n+k))

Example: To sort numbers in range 0.. n10

T(n) = ?

(hint: think numbers in base n)

Analysis of running time Radixsort(A[1..n]) {

for i from least significant

_ digit to most {

T(n) = number of operations .
use counting sort to

sort array A on digit |

}
}

T(n) = d+(running time of Counting sort on n elements)
= O(d+(n+k))

Example: To sort numbers in range 0.. n10
T(n) =0(10 n) = O(n)
While counting sort would take T(n) = ?

Analysis of running time Radixsort(A[1..n]) {

for i from least significant

_ digit to most {

T(n) = number of operations .
use counting sort to

sort array A on digit |

}
}

T(n) = d+(running time of Counting sort on n elements)
= O(d+(n+k))

Example: To sort numbers in range 0.. n10
T(n) =0(10 n) = O(n)
While counting sort would take T(n) = ©(n'9)

Space Radixsort(A[1..n]) {
for i from least significant

_ digit to most {
We need as much space as we did

: .. use counting sort to
for Counting sort on each digit 7

sort array A on digit |

}

Space = O(d * (n+k)) \

Can you improve this?

Can we sort faster than n? without extra assumptions?
Next we show how to sort with O(n log n) comparisons

We introduce a new general paradigm

Deleted scenes

e 3SAT problem: Given a 3CNF formula such as
¢=xxVyVz) A ("xVwyVz) A (xVyV 7z)

can we set variables True/False to make ¢ True?
Such ¢ is called satisfiable.

e Theorem [3SAT is NP-complete]
Let M : {0,1}" — {0,1} be an algorithm running in time T

Given x € {0,1}" we can efficiently compute 3CNF ¢ :
M(x) =1 €=> @ satisfiable

e How efficient?

e Theorem [3SAT is NP-complete]
Let M : {0,1}" — {0,1} be an algorithm running in time T

Given x € {0,1}" we can efficiently compute 3CNF ¢ :
M(x) =1 €= ¢ satisfiable

e Standard proof; ¢ has O(T?2) variables (and size), X| |

row | = memory, state at time i=1..T

¢ ensures that memory and state evolve according to M

e Theorem [3SAT is NP-complete]
Let M : {0,1}" — {0,1} be an algorithm running in time T

Given x € {0,1}" we can efficiently compute 3CNF ¢ :
M(x) =1 €= ¢ satisfiable

e Better proof: ¢ has O(T log®") T) variables (and size),

C, = Xi 1% 2 XilogT = state and what algorithm

reads, writes attime i =1.. T

Note only 1 memory location is represented per time step.

How do you check C; correct? What does ¢ do?

e Theorem [3SAT is NP-complete]
Let M : {0,1}" — {0,1} be an algorithm running in time T

Given x € {0,1}" we can efficiently compute 3CNF ¢ :
M(x) =1 €= ¢ satisfiable

e Better proof: ¢ has O(T log®") T) variables (and size),

C, = Xi 1% 2 XilogT = state and what algorithm

reads, writes attime i =1.. T

@ : Check C,, ; follows from C; assuming read correct

i+1
Compute C'. := C, sorted on memory location accessed

Check C',, ; follows from C'. assuming state correct

e Theorem [3SAT is NP-co
11" — {0,1} be

> THAT'S WHY
SORTING MATTERS!

INg T orrect

In time

Let C Arie memomMWlocation accessed

Chec follows from C'. assuming state

I+1

