The slides are under construction.
The latest version is at http://www.ccs.neu.edu/home/viola/
Success stories of algorithms:

Shortest path (Google maps)

Pattern matching (Text editors, genome)

Fast-fourier transform (Audio/video processing)

http://cstheory.stackexchange.com/questions/19759/core-algorithms-deployed
This class:

General techniques:
- Divide-and-conquer,
- dynamic programming,
- data structures
- amortized analysis

Various topics:
- Sorting
- Matrixes
- Graphs
- Polynomials
What is an algorithm?

- Informally, an algorithm for a function $f : A \rightarrow B$ (the problem) is a simple, step-by-step, procedure that computes $f(x)$ on every input x

- Example: $A = \mathbb{N} \times \mathbb{N}$, $B = \mathbb{N}$, $f(x,y) = x + y$

- Algorithm: Kindergarten addition
What operations are simple?

- If, for, while, etc.

- Direct addressing: A[n], the n-entry of array A

- Basic arithmetic and logic on variables
 - x * y, x + y, x AND y, etc.
 - Simple in practice only if the variables are “small”.
 For example, 64 bits on current PC
 - Sometimes we get cleaner analysis if we consider them simple regardless of size of variables.
Measuring performance

- We bound the running time, or the memory (space) used.

- These are measured as a function of the input length.

- Makes sense: need to at least read the input!

- The input length is usually denoted n

- We are interested in which functions of n grow faster
Asymptotic analysis

- The exact time depends on the actual machine

- We ignore constant factors, to have more robust theory that applies to most computer

- Example:
 on my computer it takes $67n + 15$ operations,
 on yours $58n - 15$, but that's about the same

- We now give definitions that make this precise
Big-Oh

Definition:

\(f(n) = O(g(n)) \) if there are (\(\exists \)) constants \(c, n_0 \) such that

\(f(n) \leq c \cdot g(n) \), for every (\(\forall \)) \(n \geq n_0 \).

Meaning: \(f \) grows no faster than \(g \), up to constant factors
Big-Oh

Definition:

\[f(n) = O(g(n)) \] if there are (\(\exists\)) constants \(c, n_0\) such that \(f(n) \leq c \cdot g(n)\), for every (\(\forall\)) \(n \geq n_0\).

Example 1:

\[5n + 2n^2 + \log(n) = O(n^2) \] ?
Big-Oh

Definition:

\(f(n) = O(g(n)) \) if there are (\(\exists \)) constants \(c, n_0 \) such that

\(f(n) \leq c \cdot g(n) \), for every (\(\forall \)) \(n \geq n_0 \).

Example 1:

\(5n + 2n^2 + \log(n) = O(n^2) \) True

Pick \(c = ? \)
Big-Oh

Definition:

\(f(n) = O(g(n)) \) if there are (\(\exists \)) constants \(c, n_0 \) such that

\[f(n) \leq c \cdot g(n), \text{ for every } (\forall) \ n \geq n_0. \]

Example 1:

\(5n + 2n^2 + \log(n) = O(n^2) \) True

Pick \(c = 3. \) For large enough \(n, \) \(5n + \log(n) \leq n^2. \)

Any \(c > 2 \) would work.
Example 2:

$100n^2 = O(2^n)$?
Example 2:

\[100n^2 = O(2^n) \] True

Pick \(c = ? \)
Example 2:

$100n^2 = O(2^n)$ True

Pick $c = 1$.

Any $c > 0$ would work, for large enough n.
Example 3:

\[n^2 \log n = O(n^2) \]
Example 3:

\[n^2 \log n \neq O(n^2) \]

\[\forall c, \exists n_0 \exists n \geq n_0 \text{ such that } n^2 \log n > c \cdot n^2. \]

\[n > 2^c \Rightarrow n^2 \log n > n^2 c \]
Example 4:

$2^n = O(2^{n/2})$?
Example 4:

\[2^n \neq O(2^{n/2}). \]

\[\forall c, \ n_0 \ \exists \ n \geq n_0 \text{ such that } 2^n > c \cdot 2^{n/2}. \]

Pick any \(n > 2 \log c \)

\[2^n = 2^{n/2} \quad 2^{n/2} > c \cdot 2^{n/2}. \]
• \(n \log n = O(n^2) \)?
• \(n^2 = O(n^{1.5} \log 10n) \)?
• \(2^n = O(n^{1000000}) \)?
• \((\sqrt{2})^{\log n} = O(n^{1/3}) \)?
• \(n^{\log \log n} = O((\log n)^{\log n}) \)?
• \(2^n = O(4^{\log n}) \)?
• \(n! = O(2^n) \)?
• \(n! = O(n^n) \)?
• \(n2^n = O(2^n \log n) \)?
• \(n \log n = O(n^2) \).
• \(n^2 = O(n^{1.5} \log 10n) \) ?
• \(2^n = O(n^{1000000}) \) ?
• \((\sqrt{2})^{\log n} = O(n^{1/3}) \) ?
• \(n^{\log \log n} = O((\log n)^{\log n}) \) ?
• \(2^n = O(4^{\log n}) \) ?
• \(n! = O(2^n) \) ?
• \(n! = O(n^n) \) ?
• \(n2^n = O(2^n \log n) \) ?
• $n \log n = O(n^2)$.
• $n^2 \neq O(n^{1.5} \log 10n)$.
• $2^n = O(n^{1000000})$?
• $(\sqrt{2})^{\log n} = O(n^{1/3})$?
• $n^{\log \log n} = O((\log n)^{\log n})$?
• $2^n = O(4^{\log n})$?
• $n! = O(2^n)$?
• $n! = O(n^n)$?
• $n2^n = O(2^n \log n)$?
• $n \log n = O(n^2)$.
• $n^2 \neq O(n^{1.5} \log 10n)$.
• $2^n \neq O(n^{1000000})$
• $(\sqrt{2})^{\log n} = O(n^{1/3})$?
• $n^{\log \log n} = O((\log n)^{\log n})$?
• $2^n = O(4^{\log n})$?
• $n! = O(2^n)$?
• $n! = O(n^n)$?
• $n2^n = O(2^n \log n)$?
• $n \log n = O(n^2)$.
• $n^2 \neq O(n^{1.5} \log 10n)$.
• $2^n \neq O(n^{10000000})$.
• $(\sqrt{2})^{\log n} = O(n^{1/3})$? $(\sqrt{2})^{\log n} = n^{1/2} \neq O(n^{1/3})$
• $n^{\log \log n} = O((\log n)^{\log n})$?
• $2^n = O(4^{\log n})$?
• $n! = O(2^n)$?
• $n! = O(n^n)$?
• $n2^n = O(2^n \log n)$?
• $n \log n = O(n^2)$.
• $n^2 \neq O(n^{1.5} \log 10n)$.
• $2^n \neq O(n^{1000000})$.
• $(\sqrt{2})^{\log n} \neq O(n^{1/3})$.
• $n^{\log \log n} = O((\log n)^{\log n})$?
• $2^n = O(4^{\log n})$?
• $n! = O(2^n)$?
• $n! = O(n^n)$?
• $n2^n = O(2^n \log n)$?
• $n \log n = O(n^2)$.
• $n^2 \neq O(n^{1.5} \log 10n)$.
• $2^n \neq O(n^{1000000})$.
• $(\sqrt{2})^{\log n} \neq O(n^{1/3})$.
• $n^{\log \log n} = O((\log n)^{\log n})$?
• $2^n = O(4^{\log n})$?
• $n! = O(2^n)$?
• $n! = O(n^n)$?
• $n2^n = O(2^n \log n)$?
\begin{itemize}
 \item $n \log n = O(n^2)$.
 \item $n^2 \neq O(n^{1.5} \log 10n)$.
 \item $2^n \neq O(n^{1000000})$.
 \item $(\sqrt{2})^{\log n} \neq O(n^{1/3})$.
 \item $n^{\log \log n} = O((\log n)^{\log n})$.
 \item $2^n = O(4^{\log n})$?
 \item $n! = O(2^n)$?
 \item $n! = O(n^n)$?
 \item $n2^n = O(2^n \log n)$?
\end{itemize}
• \(n \log n = O(n^2) \).
• \(n^2 \neq O(n^{1.5} \log 10n) \).
• \(2^n \neq O(n^{1000000}) \).
• \((\sqrt{2})^{\log n} \neq O(n^{1/3}) \).
• \(n^{\log \log n} = O((\log n)^{\log n}) \).
• \(2^n = O(4^{\log n}) \) ? \(4^{\log n} = 2^{2\log n} \) \(2^n = 2^{2^{\log n}} \).
• \(n! = O(2^n) \) ?
• \(n! = O(n^n) \) ?
• \(n2^n = O(2^n \log n) \) ?
• \(n \log n = O(n^2) \).
• \(n^2 \neq O(n^{1.5} \log 10n) \).
• \(2^n \neq O(n^{1000000}) \).
• \((\sqrt{2}) \log n \neq O(n^{1/3}) \).
• \(n^{\log \log n} = O((\log n)^{\log n}) \).
• \(2^n \neq O(4^{\log n}) \).
• \(n! = O(2^n) \) ?
• \(n! = O(n^n) \) ?
• \(n2^n = O(2^n \log n) \) ?
• \(n \log n = O(n^2) \).
• \(n^2 \neq O(n^{1.5} \log 10n) \).
• \(2^n \neq O(n^{1000000}) \).
• \((\sqrt{2})^{\log n} \neq O(n^{1/3}) \).
• \(n^{\log \log n} = O((\log n)^{\log n}) \).
• \(2^n \neq O(4^{\log n}) \).
• \(n! \neq O(2^n) \).
 \[2.5 \sqrt{n} (n/e)^n \leq n! \leq 2.8 \sqrt{n} (n/e)^n\]
• \(n! = O(n^n) \) ?
• \(n2^n = O(2^n \log n) \) ?
• $n \log n = O(n^2)$.
• $n^2 \neq O(n^{1.5} \log 10n)$.
• $2^n \neq O(n^{1000000})$.
• $(\sqrt{2})^{\log n} \neq O(n^{1/3})$.
• $n^{\log \log n} = O((\log n)^{\log n})$.
• $2^n \neq O(4^{\log n})$.
• $n! \neq O(2^n)$.
• $n! = O(n^n)$.
• $n2^n = O(2^n \log n)$?
• $n \log n = O(n^2)$.
• $n^2 \neq O(n^{1.5} \log 10n)$.
• $2^n \neq O(n^{1000000})$.
• $(\sqrt{2})^{\log n} \neq O(n^{1/3})$.
• $n^{\log \log n} = O((\log n)^{\log n})$.
• $2^n \neq O(4^{\log n})$.
• $n! \neq O(2^n)$.
• $n! = O(n^n)$.
• $n2^n = O(2^n \log n) \neq n2^n = 2^{\log n+n}$.
• $n \log n = O(n^2)$.
• $n^2 \neq O(n^{1.5} \log 10n)$.
• $2^n \neq O(n^{1000000})$.
• $(\sqrt{2})^{\log n} \neq O(n^{1/3})$.
• $n^{\log \log n} = O((\log n)^{\log n})$.
• $2^n \neq O(4^{\log n})$.
• $n! \neq O(2^n)$.
• $n! = O(n^n)$.
• $n2^n = O(2^n \log n)$.
Big-omega

Definition:

\[f(n) = \Omega \left(g(n) \right) \text{ means } \exists c, n_0 > 0 \; \forall n \geq n_0, \; f(n) \geq c \cdot g(n). \]

Meaning: \(f \) grows no slower than \(g \), up to constant factors.
Big-omega

Definition:

\(f(n) = \Omega (g(n)) \) means

\[\exists c, n_0 > 0 \quad \forall n \geq n_0, \quad f(n) \geq c \cdot g(n). \]

Example 1:

0.01 \(n = \Omega (\log n) \) ?
Big-omega

Definition:

\(f(n) = \Omega (g(n)) \) means

\[\exists c, n_0 > 0 \quad \forall n \geq n_0, \quad f(n) \geq c \cdot g(n). \]

Example 1:

0.01 n = \Omega (\log n) True

Pick c = 1. Any c > 0 would work
Example 2:

\[\frac{n^2}{100} = \Omega(n \log n) \]
Example 2:

\[\frac{n^2}{100} = \Omega(n \log n). \]

\[c = \frac{1}{100} \text{ Again, any } c \text{ would work.} \]
Example 2:
\[n^2 / 100 = \Omega (n \log n). \]
c = 1/100 Again, any c would work.

Example 3:
\[\sqrt{n} = \Omega(n/100) \]?
Example 2:

\(n^2/100 = \Omega(n \log n) \).

\(c = 1/100 \) Again, any \(c \) would work.

Example 3:

\(\sqrt{n} \neq \Omega(n/100) \)

\(\forall c, \exists n_0 \geq n_0 \) such that , \(\sqrt{n} < c \cdot n/100 \).
Example 4:

\[2^{n/2} = \Omega(2^n) \, ? \]
Example 4:

\[2^{n/2} \neq \Omega(2^n) \]

\(\forall c, n_0 \exists n \geq n_0 \) such that \(2^{n/2} < c \cdot 2^n \).
Big-omega, Big-Oh

Note: $f(n) = \Omega(g(n)) \iff g(n) = O(f(n))$
$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n)).$$

Example:
$$10 \log n = O(n), \text{ and } n = \Omega(10 \log n).$$

$$5n = O(n), \text{ and } n = \Omega(5n)$$
Theta

Definition:

\(f(n) = \Theta (g(n)) \) means

\[\exists n_0, c_1, c_2 > 0 \quad \forall n \geq n_0, \]

\[f(n) \leq c_1 \cdot g(n) \text{ and } g(n) \leq c_2 \cdot f(n). \]

Meaning: \(f \) grows like \(g \), up to constant factors
Theta

Definition:

\[f(n) = \Theta (g(n)) \] means

\[\exists \ n_0, c_1, c_2 > 0 \ \forall \ n \geq n_0, \]

\[f(n) \leq c_1 \cdot g(n) \text{ and } g(n) \leq c_2 \cdot f(n). \]

Example:

\[n = \Theta (n + \log n) ? \]
Theta

Definition:

\[f(n) = \Theta (g(n)) \text{ means } \]
\[\exists n_0, c_1, c_2 > 0 \quad \forall n \geq n_0, \]
\[f(n) \leq c_1 \cdot g(n) \text{ and } g(n) \leq c_2 \cdot f(n). \]

Example:

\[n = \Theta (n + \log n) \text{ True} \]
\[c_1 = ?, c_2 = ? \quad n_0 = ? \quad \text{such that } \forall n \geq n_0, \]
\[n \leq c_1 (n + \log n) \text{ and } n + \log n \leq c_2 n. \]
Theta

Definition:

\[f(n) = \Theta (g(n)) \text{ means} \]

\[\exists n_0, c_1, c_2 > 0 \quad \forall n \geq n_0, \]

\[f(n) \leq c_1 \cdot g(n) \text{ and } g(n) \leq c_2 \cdot f(n). \]

Example:

\[n = \Theta (n + \log n) \text{ True} \]

\[c_1 = 1, \ c_2 = 2 \quad n_0 = 2 \quad \text{such that } \forall n \geq 2, \]

\[n \leq 1 \cdot (n + \log n) \text{ and } n + \log n \leq 2 \cdot n. \]
Theta

Definition:

\[f(n) = \Theta \left(g(n) \right) \] means

\[\exists n_0, c_1, c_2 > 0 \quad \forall n \geq n_0, \]

\[f(n) \leq c_1 \cdot g(n) \text{ and } g(n) \leq c_2 \cdot f(n). \]

Note:

\[f(n) = \Theta \left(g(n) \right) \iff f(n) = \Omega \left(g(n) \right) \text{ and } f(n) = O(g(n)) \]

\[f(n) = \Theta \left(g(n) \right) \iff g(n) = \Theta \left(f(n) \right). \]
Mixing things up

- $n + O(\log n) = O(n)$

 Means $\forall c \exists c', n_0 : \forall n > n_0 \ n + c \log n < c' \ n$

- $n^3 \log (n) = n^{O(1)}$

 Means $\exists c, n_0 : \forall n > n_0 \ n^3 \log (n) = n^c$

- $2^n + n^{O(1)} = \Theta(2^n)$

 Means $\forall c \exists c_1, c_2, n_0 : \forall n > n_0$

 $c_2 2^n \leq 2^n + n^c \leq c_1 2^n$
Sorting
Sorting problem:

- Input:
 A sequence (or array) of n numbers ($a[1], a[2], \ldots, a[n]$).
- Desired output:
 A sequence ($b[1], b[2], \ldots, b[n]$) of sorted numbers (in increasing order).

Example:

Input = (5, 17, -9, 76, 87, -57, 0).

Output = ?
Sorting problem:

- Input:
 A sequence (or array) of n numbers (a[1], a[2], …, a[n]).
- Desired output:
 A sequence (b[1], b[2], …, b[n]) of sorted numbers (in increasing order).

Example:
Input = (5, 17, -9, 76, 87, -57, 0).
Output = (-57, -9, 0, 5, 17, 76, 87).
Sorting problem:

- Input:
 A sequence (or array) of \(n \) numbers \((a[1], a[2], \ldots, a[n])\).

- Desired output:
 A sequence \((b[1], b[2], \ldots, b[n])\) of sorted numbers (in increasing order).

Who cares about sorting?

- Sorting is a basic operation that shows up in countless other algorithms
- Often when you look at data you want it sorted
- It is also used in the theory of NP-hardness!
Bubblesort:

Input (a[1], a[2], …, a[n]).

for (i=n; i > 1; i - -)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];
Bubblesort:

Input \((a[1], a[2], \ldots, a[n])\).

for \((i=n; i > 1; i - -)\)
 for \((j=1; j < i; j++\))
 if \((a[j] > a[j+1])\)
 swap \(a[j]\) and \(a[j+1]\);

Claim: Bubblesort sorts correctly
Bubblesort:
Input (a[1], a[2], …, a[n]).

for (i=n; i > 1; i - -)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], …, a'[n] be array at start of inner loop.
 Note at the end of the loop: a'[i] = ?
Bubblesort:
Input \((a[1], a[2], \ldots, a[n]) \).

for \((i=n; i > 1; i - -) \)

for \((j=1; j < i; j++) \)

if \((a[j] > a[j+1]) \)

\[\text{swap } a[j] \text{ and } a[j+1]; \]

Claim: Bubblesort sorts correctly

Proof: Fix \(i \). Let \(a'[1], \ldots, a'[n] \) be array at start of inner loop.

Note at the end of the loop: \(a'[i] = \max_{k \leq i} a'[k] \)

and the positions \(k > i \) are
Bubblesort:
Input \((a[1], a[2], \ldots, a[n])\).

for \((i=n; i > 1; i--)\)

 for \((j=1; j < i; j++)\)

 if \((a[j] > a[j+1])\)

 swap \(a[j]\) and \(a[j+1]\);

Claim: Bubblesort sorts correctly

Proof: Fix \(i\). Let \(a'[1], \ldots, a'[n]\) be array at start of inner loop.

Note at the end of the loop: \(a'[i] = \max_{k \leq i} a'[k]\)

and the positions \(k > i\) are not touched.

Since the outer loop is from \(n\) down to \(1\), the array is sorted. \(\blacksquare\)
Analysis of running time

\[T(n) = \text{number of comparisons} \]

\[i = n-1 \implies n \text{ comparisons.} \]

\[i = n-2 \implies n \text{ comparisons.} \]

\[\vdots \]

\[i = 1 \implies 1 \text{ comparison.} \]

\[T(n) = (n-1) + (n-2) + \ldots + 1 < n^2 \]

Is this tight? Is also \(T(n) = \Omega(n^2) \)?

Bubble sort:

Input \((a[1], a[2], \ldots, a[n])\).

for \((i=n; i > 1; i--)\)

\[\text{for (j=1; j < i; j++)} \]

\[\text{if (a[j] > a[j+1])} \]

\[\text{swap a[j] and a[j+1]}; \]
Analysis of running time

\[T(n) = \text{number of comparisons} \]

\[
\begin{align*}
i &= n-1 \Rightarrow n - 1 \text{ comparisons.} \\
i &= n-2 \Rightarrow n - 2 \text{ comparisons.} \\
\vdots \\
i &= 1 \Rightarrow 1 \text{ comparison.}
\end{align*}
\]

\[T(n) = (n-1) + (n-2) + \ldots + 1 = \frac{n(n-1)}{2} = \Theta(n^2) \]

Bubble sort:
Input (a[1], a[2], …, a[n]).
for (i=n; i > 1; i--)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];
Space (also known as Memory)

We need to keep track of i, j

We need an extra element to swap values of input array a.

Space = O(1)

Bubble sort:
Input (a[1], a[2], ..., a[n]).
for (i=n; i > 1; i--)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];
Bubble sort takes quadratic time

Can we sort faster?

We now see two methods that can sort in linear time,

under some assumptions
Countingsort:

Assumption: all elements of the input array are integers in the range 0 to k.

Idea: determine, for each $A[i]$, the number of elements in the input array that are smaller than $A[i]$.

This way we can put element $A[i]$ directly into its position.
// Sorts A[1..n] into array B
Countingsort (A[1..n]) {
 // Initializes C to 0
 for (i=0; i<k; i++) C[i] = 0;

 // Set C[i] = number of elements = i.
 for (i=1; i<n; i++) C[A[i]] = C[A[i]]+1;

 // Set C[i] = number of elements ≤ i.
 for (i=1; i<k; i++) C[i] = C[i]+C[i-1];

 for (i=n; i>1; i--) {
 B[C[A[i]]] = A[i]; //Place A[i] at right location
 C[A[i]] = C[A[i]]-1; //Decrease for equal elements
 }
}
Analysis of running time

\[T(n) = \text{number of operations} \]
\[= O(k) + O(n) + O(k) + O(n) \]
\[= \Theta(n + k). \]

If \(k = O(n) \) then \(T(n) = \Theta(n) \)

Countingsort \((A[1..n])\)

```plaintext
for (i =0; i<k ; i++)
    C[i] = 0;
for (i =1; i<n ; i++)
    C[A[i]] =C[A[i]] +1;
for (i =1; i<k ; i++)
    C[i] = C[i] +C[i-1] ;
for (i =n; i>1 ; i--) {
    C[A[i]] = C[A[i]] -1;
}
```
Space
O(k) for C
Recall numbers in 0..k.
O(n) for B, where output is

Total space: O(n + k)
If k = O(n) then Θ(n)

Countingsort (A[1..n])
for (i =0; i<k ; i++)
 C[i] = 0;
for (i =1; i<n ; i++)
 C[A[i]] =C[A[i]] +1;
for (i =1; i<k ; i++)
 C[i] = C[i] +C[i-1] ;
for (i =n; i>1 ; i--) {
}
Radix sort

Assumption: all elements of the input array are \(d\)-digit integers.

Idea: first sort by least significant digit, then according to the next digit, …, and finally according to the most significant digit.

It is essential to use a digit sorting algorithm that is stable: elements with the same digit appear in the output array in the same order as in the input array.

- **Fact**: Counting sort is stable.
Radixsort(A[1..n]) {
 for i that goes from least significant digit to most {
 use counting sort algorithm to sort array A on digit i
 }
}

Example:
Sort in ascending order (3,2,1,0) (two binary digits).
Radixsort(A[1..n]) {
 for i that goes from least significant digit to most {
 use counting sort algorithm to sort array A on digit i
 }
}

<table>
<thead>
<tr>
<th>0</th>
<th>d</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>7</td>
<td>b</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>9</td>
<td>b</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>10</td>
<td>e</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>11</td>
<td>a</td>
<td>c</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>d</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>7</td>
<td>e</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>9</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>11</td>
<td>b</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>

sort must be stable (arrows do not cross)

Image source: http://www.programering.com/a/MTOyYjNwATM.html
Analysis of running time

\[T(n) = \text{number of operations} \]

\[T(n) = d \cdot (\text{running time of Counting sort on } n \text{ elements}) \]
\[= \Theta(d \cdot (n+k)) \]

Example: To sort numbers in range 0.. \(n^{10} \)

\[T(n) = ? \]

(hint: think numbers in base \(n \))
Analysis of running time

\[T(n) = \text{number of operations} \]

\[T(n) = d \cdot (\text{running time of Counting sort on } n \text{ elements}) \]
\[= \Theta(d \cdot (n+k)) \]

Example: To sort numbers in range \(0..n^{10} \)

\[T(n) = \Theta(10 \cdot n) = \Theta(n) \]

While counting sort would take \(T(n) = ? \)
Analysis of running time

T(n) = number of operations

T(n) = d \cdot (running time of Counting sort on n elements)
 = \Theta(d \cdot (n+k))

Example: To sort numbers in range 0.. n^{10}

T(n) = \Theta(10 \cdot n) = \Theta(n)

While counting sort would take T(n) = \Theta(n^{10})
We need as much space as we did for Counting sort on each digit

Space = $O(d \cdot (n+k))$

Can you improve this?

```plaintext
Radixsort(A[1..n]) {
    for i from least significant digit to most {
        use counting sort to sort array A on digit i
    }
}
```
Can we sort faster than n^2 without extra assumptions?

Next we show how to sort with $O(n \log n)$ comparisons.

We introduce a new general paradigm.
Deleted scenes
● **3SAT problem:** Given a 3CNF formula such as

$$\phi := (x \lor y \lor z) \land (\neg x \lor \neg y \lor z) \land (x \lor y \lor \neg z)$$

can we set variables True/False to make \(\phi\) True? Such \(\phi\) is called **satisfiable.**

● **Theorem [3SAT is NP-complete]**

Let \(M : \{0,1\}^n \rightarrow \{0,1\}\) be an algorithm running in time \(T\)

Given \(x \in \{0,1\}^n\) we can **efficiently** compute 3CNF \(\phi : M(x) = 1 \iff \phi\) satisfiable

● **How efficient?**
Theorem [3SAT is NP-complete]

Let $M : \{0,1\}^n \rightarrow \{0,1\}$ be an algorithm running in time T.

Given $x \in \{0,1\}^n$ we can efficiently compute 3CNF φ:

$M(x) = 1 \iff \varphi$ satisfiable

Standard proof: φ has $\Theta(T^2)$ variables (and size), $x_{i,j}$

\[
\begin{array}{cccc}
 x_{1,1} & x_{1,2} & \cdots & x_{1,T} \\
 \vdots & \ddots & \ddots & \ddots \\
 x_{i,1} & x_{i,2} & \cdots & x_{i,T}
\end{array}
\]

row i = memory, state at time $i=1..T$

φ ensures that memory and state evolve according to M.
Theorem [3SAT is NP-complete]

Let \(M : \{0,1\}^n \rightarrow \{0,1\} \) be an algorithm running in time \(T \).

Given \(x \in \{0,1\}^n \) we can efficiently compute 3CNF \(\varphi : \)

\[
M(x) = 1 \iff \varphi \text{ satisfiable}
\]

Better proof: \(\varphi \) has \(O(T \log^{O(1)} T) \) variables (and size),

\[
C_i := x_{i, 1} \ x_{i, 2} \ldots \ x_{i, \log T} = \text{state and what algorithm reads, writes at time } i = 1 \ldots T
\]

Note only 1 memory location is represented per time step.

How do you check \(C_i \) correct? What does \(\varphi \) do?
Theorem [3SAT is NP-complete]

Let $M : \{0,1\}^n \rightarrow \{0,1\}$ be an algorithm running in time T. Given $x \in \{0,1\}^n$ we can efficiently compute $3\text{CNF } \varphi : M(x) = 1 \iff \varphi$ satisfiable.

Better proof: φ has $O(T \log^{O(1)} T)$ variables (and size), $C_i := x_{i,1} x_{i,2} \cdots x_{i,\log T}$ = state and what algorithm reads, writes at time $i = 1..T$

φ : Check C_{i+1} follows from C_i assuming read correct

Compute $C'_i := C_i$ sorted on memory location accessed

Check C'_{i+1} follows from C'_i assuming state correct
Theorem [3SAT is NP-complete]

Let \(M : \{0,1\}^n \rightarrow \{0,1\} \) be an algorithm running in time \(T \) for some \(n \). Given \(x \in \{0,1\}^n \), we can efficiently compute \(\exists \text{CNF} \phi \).

\[
M(x) = 1 \iff \phi \text{ satisfiable}
\]

Better proof: \(\phi \) has \(O(T \log^{O(1)} T) \) variables (and size),

\[
C_i := x_{i1}, x_{i2}, \ldots, x_{i \log T} = \text{state and what algorithm reads, writes at time } i = 1.. T
\]

\(\phi : \text{Check } C_{i+1} \text{ follows from } C_i \) assuming read correct

Let \(C'_i \) be \(C_i \) sorted on memory location accessed

\(\text{Check } C'_{i+1} \text{ follows from } C'_{i} \) assuming state