

Algorithms Slides

Emanuele Viola

2009 – present

Released under Creative Commons License
“Attribution-Noncommercial-No Derivative Works 3.0 United States”
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Also, let me know if you use them.

Index

The slides are under construction.
The latest version is at http://www.ccs.neu.edu/home/viola/

Success stories of algorithms:

Shortest path (Google maps)

Pattern matching (Text editors, genome)

Fast-fourier transform (Audio/video processing)

http://cstheory.stackexchange.com/questions/19759/core-algorithms-deployed

This class:

General techniques:
Divide-and-conquer,
dynamic programming,
data structures
amortized analysis

Various topics:
Sorting
Matrixes
Graphs
Polynomials

What is an algorithm?
● Informally,

an algorithm for a function f : A → B (the problem)
is a simple, step-by-step, procedure
that computes f(x) on every input x

● Example: A = NxN B = N , f(x,y) = x+y

● Algorithm: Kindergarten addition

What operations are simple?
● If, for, while, etc.

● Direct addressing: A[n], the n-entry of array A

● Basic arithmetic and logic on variables
– x * y, x + y, x AND y, etc.
– Simple in practice only if the variables are “small”.

For example, 64 bits on current PC
– Sometimes we get cleaner analysis if we consider

them simple regardless of size of variables.

Measuring performance
● We bound the running time, or the memory (space) used.

● These are measured as a function of the input length.

● Makes sense: need to at least read the input!

● The input length is usually denoted n

● We are interested in which functions of n grow faster

n

n log(n)

n log2(n)

n2 n1.52n

Asymptotic analysis
● The exact time depends on the actual machine

● We ignore constant factors, to have more robust
theory that applies to most computer

● Example:
on my computer it takes 67 n + 15 operations,
on yours 58 n – 15, but that's about the same

● We now give definitions that make this precise

Big-Oh

Definition:
f(n) = O(g(n)) if there are () constants ∃ c, n0 such that

f(n) ≤ c∙g(n), for every () n ∀ ≥ n0.

Meaning: f grows no faster than g, up to constant factors

Big-Oh

Definition:
f(n) = O(g(n)) if there are () constants ∃ c, n0 such that

f(n) ≤ c∙g(n), for every () n ∀ ≥ n0.

Example 1:
5n + 2n2 + log(n) = O(n2) ?

Big-Oh

Definition:
f(n) = O(g(n)) if there are () constants ∃ c, n0 such that

f(n) ≤ c∙g(n), for every () n ∀ ≥ n0.

Example 1:
5n + 2n2 + log(n) = O(n2) True

Pick c = ?

Big-Oh

Definition:
f(n) = O(g(n)) if there are () constants ∃ c, n0 such that

f(n) ≤ c∙g(n), for every () n ∀ ≥ n0.

Example 1:
5n + 2n2 + log(n) = O(n2) True

Pick c = 3. For large enough n, 5n + log(n) ≤ n2.
Any c > 2 would work.

Example 2:
100n2 = O(2n) ?

Example 2:
100n2 = O(2n) True

Pick c = ?

Example 2:
100n2 = O(2n) True

Pick c = 1.

Any c > 0 would work, for large enough n.

Example 3:
n2 log n = O(n2) ?

Example 3:
n2 log n ≠ O(n2)

∀c, n0 ∃ n ≥ n0 such that n2 log n > c n2.

n > 2c n⇨ 2 log n > n2 c

Example 4:
2n = O(2n/2) ?

Example 4:
2n ≠ O(2n/2).

∀c, n0 ∃ n ≥ n0 such that 2n > c∙2n/2.

Pick any n > 2 log c

2n = 2n/2 2n/2 > c∙2n/2.

● n log n = O(n2) ?
● n2 = O(n1.5 log10n) ?
● 2n = O(n1000000) ?
● (√2)log n= O(n1/3) ?
● nlog log n = O((log n)log n) ?
● 2n = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 = O(n1.5 log10n) ?
● 2n = O(n1000000) ?
● (√2)log n= O(n1/3) ?
● nlog log n = O((log n)log n) ?
● 2n = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n = O(n1000000) ?
● (√2)log n= O(n1/3) ?
● nlog log n = O((log n)log n) ?
● 2n = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000)
● (√2)log n= O(n1/3) ?
● nlog log n = O((log n)log n) ?
● 2n = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n= O(n1/3) ? (√2)log n= n1/2≠ O(n1/3)
● nlog log n = O((log n)log n) ?
● 2n = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n) ?
● 2n = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n) ?
● 2n = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

nlog log n =

 2 logn. log log n =

(log n)log n .

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n).
● 2n = O(4log n) ?
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n).
● 2n = O(4log n) ? 4log n=22log n 2n=22.
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

log n

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n).
● 2n ≠ O(4log n).
● n! = O(2n) ?
● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n).
● 2n ≠ O(4log n).
● n! ≠ O(2n). 2.5 √n (n/e)n ≤ n! ≤ 2.8 √n (n/e)n

● n! = O(nn) ?
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n).
● 2n ≠ O(4log n).
● n! ≠ O(2n).
● n! = O(nn).
● n2n = O(2n log n) ?

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n).
● 2n ≠ O(4log n).
● n! ≠ O(2n).
● n! = O(nn).
● n2n = O(2n log n) ? n2n = 2log n+n.

● n log n = O(n2).
● n2 ≠ O(n1.5 log10n).
● 2n ≠ O(n1000000).
● (√2)log n ≠ O(n1/3).
● nlog log n = O((log n)log n).
● 2n ≠ O(4log n).
● n! ≠ O(2n).
● n! = O(nn).
● n2n = O(2n log n).

Big-omega

Definition:
f(n) = Ω (g(n)) means

∃ c, n0 > 0 ∀ n ≥ n0, f(n) ≥ c∙g(n).

Meaning: f grows no slower than g, up to constant factors

Big-omega

Definition:
f(n) = Ω (g(n)) means

∃ c, n0 > 0 ∀ n ≥ n0, f(n) ≥ c∙g(n).

Example 1:
0.01 n = Ω (log n) ?

Big-omega

Definition:
f(n) = Ω (g(n)) means

∃ c, n0 > 0 ∀ n ≥ n0, f(n) ≥ c∙g(n).

Example 1:
0.01 n = Ω (log n) True

Pick c = 1. Any c > 0 would work

Example 2:
n2/100 = Ω (n log n)?

Example 2:
n2/100 = Ω (n log n).
c = 1/100 Again, any c would work.

Example 2:
n2/100 = Ω (n log n).
c = 1/100 Again, any c would work.

Example 3:
√n = Ω(n/100) ?

Example 2:
n2/100 = Ω (n log n).
c = 1/100 Again, any c would work.

Example 3:
√n ≠ Ω(n/100)

∀c, n0 ∃ n ≥ n0 such that , √n < c∙n/100.

Example 4:
2n/2 = Ω(2n) ?

Example 4:
2n/2 ≠ Ω(2n)

∀c, n0 ∃ n ≥ n0 such that 2n/2 < c∙2n.

Big-omega, Big-Oh

Note: f(n) = Ω (g(n)) g(n) = O (f(n))

 f(n) = O (g(n)) g(n) = Ω (f(n)).

Example:
10 log n = O (n), and n = Ω (10 log n).

5n = O(n), and n = Ω(5n)

Theta

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0 ∀ n ≥ n0,

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Meaning: f grows like g, up to constant factors

Theta

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0 ∀ n ≥ n0,

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Example:
n = Θ (n + log n) ?

Theta

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0 ∀ n ≥ n0,

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Example:
n = Θ (n + log n) True

c1 = ?, c2 = ? n0= ? such that ∀n ≥ n0,

 n ≤ c1(n + log n) and n + log n ≤ c2n.

Theta

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0 ∀ n ≥ n0,

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Example:
n = Θ (n + log n) True

c1 = 1, c2 = 2 n0= 2 such that ∀n ≥ 2,

 n ≤ 1 (n + log n) and n + log n ≤ 2 n.

Theta

Definition:
f(n) = Θ (g(n)) means

∃ n0, c1, c2> 0 ∀ n ≥ n0,

f(n) ≤ c1∙g(n) and g(n) ≤ c2∙f(n).

Note:
f(n) = Θ (g(n)) f(n) = Ω (g(n)) and f(n) = O(g(n))

f(n) = Θ (g(n)) g(n)= Θ (f(n)).

Mixing things up
● n + O(log n) = O(n)
 Means ∀ c ∃ c', n0 : n > n∀ 0 n + c log n < c' n

● n3 log (n) = nO(1)

 Means ∃ c, n0 : n > n∀ 0 n3 log (n) = nc

● 2n + nO(1) = Θ(2n)
 Means ∀ c ∃ c1, c2, n0 : n > n∀ 0

 c2 2n ≤ 2n + nc ≤ c1 2n

Sorting

Sorting problem:
● Input:

A sequence (or array) of n numbers (a[1], a[2], …, a[n]).
● Desired output:

 A sequence (b[1], b[2], …, b[n]) of sorted numbers
(in increasing order).

Example:
Input = (5, 17, -9, 76, 87, -57, 0).
Output = ?

Sorting problem:
● Input:

A sequence (or array) of n numbers (a[1], a[2], …, a[n]).
● Desired output:

 A sequence (b[1], b[2], …, b[n]) of sorted numbers
(in increasing order).

Example:
Input = (5, 17, -9, 76, 87, -57, 0).
Output = (-57, -9, 0, 5, 17, 76, 87).

Sorting problem:
● Input:

A sequence (or array) of n numbers (a[1], a[2], …, a[n]).
● Desired output:

 A sequence (b[1], b[2], …, b[n]) of sorted numbers
(in increasing order).

Who cares about sorting?
● Sorting is a basic operation that shows up in
 countless other algorithms
● Often when you look at data you want it sorted
● It is also used in the theory of NP-hardness!

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], …, a'[n] be array at start of inner loop.
 Note at the end of the loop: a'[i] = ?

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], …, a'[n] be array at start of inner loop.
 Note at the end of the loop: a'[i] = max k ≤ i a'[k]

 and the positions k > i are

Bubblesort:
Input (a[1], a[2], …, a[n]).
 for (i=n; i > 1; i - -)
 for (j=1; j < i; j++)
 if (a[j] > a[j+1])
 swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], …, a'[n] be array at start of inner loop.
 Note at the end of the loop: a'[i] = max k ≤ i a'[k]

 and the positions k > i are not touched.
Since the outer loop is from n down to 1, the array is sorted.

Analysis of running time
T(n) = number of comparisons

i = n-1 n -1 comparisons.⇨

i = n-2 n -2 comparisons.⇨

…
i = 1 1 comparison.⇨

T(n) = (n-1) + (n-2) + … + 1 < n2

Is this tight? Is also T(n) = Ω(n2) ?

 Bubble sort:

 Input (a[1], a[2], …, a[n]).

 for (i=n; i > 1; i--)

 for (j=1; j < i; j++)

 if (a[j] > a[j+1])

 swap a[j] and a[j+1];

Analysis of running time
T(n) = number of comparisons

i = n-1 n -1 comparisons.⇨

i = n-2 n -2 comparisons.⇨

…
i = 1 1 comparison.⇨

T(n) = (n-1) + (n-2) + … + 1 = n(n-1)/2 = Θ(n2)

 Bubble sort:

 Input (a[1], a[2], …, a[n]).

 for (i=n; i > 1; i--)

 for (j=1; j < i; j++)

 if (a[j] > a[j+1])

 swap a[j] and a[j+1];

Space (also known as Memory)

We need to keep track of i, j

We need an extra element
to swap values of input array a.

Space = O(1)

 Bubble sort:

 Input (a[1], a[2], …, a[n]).

 for (i=n; i > 1; i--)

 for (j=1; j < i; j++)

 if (a[j] > a[j+1])

 swap a[j] and a[j+1];

Bubble sort takes quadratic time

Can we sort faster?

We now see two methods that can sort in linear time,

under some assumptions

Countingsort:

Assumption: all elements of the input array are integers
in the range 0 to k.

Idea: determine, for each A[i], the number of elements in
the input array that are smaller than A[i].

This way we can put element A[i] directly into its position.

// Sorts A[1..n] into array B
Countingsort (A[1..n]) {
 // Initializes C to 0
 for (i=0; k ; i++) C[i] = 0;

 // Set C[i] = number of elements = i.
 for (i=1; n ; i++) C[A[i]] =C[A[i]]+1;

 // Set C[i] = number of elements ≤ i.
 for (i=1; k ; i++) C[i] = C[i]+C[i-1] ;

 for (i=n; 1 ; i - -) {
 B[C[A[i]]] = A[i] ; //Place A[i] at right location
 C[A[i]] = C[A[i]]-1; //Decrease for equal elements
 }

Analysis of running time
T(n) = number of operations
 = O(k) + O(n) + O(k) + O(n)
 = Θ(n + k).

If k = O(n) then T(n) = Θ(n)

 Countingsort (A[1..n])

 for (i =0; i<k ; i++)

 C[i] = 0;

 for (i =1; i<n ; i++)

 C[A[i]] =C[A[i]] +1;

 for (i =1; i<k ; i++)

 C[i] = C[i] +C[i-1] ;

 for (i =n; i>1 ; i--) {

 B[C[A[i]]] = A[i] ;

 C[A[i]] = C[A[i]] -1;

 }

Space
O(k) for C
Recall numbers in 0..k.

O(n) for B, where output is

Total space: O(n + k)
If k = O(n) then Θ(n)

 Countingsort (A[1..n])

 for (i =0; i<k ; i++)

 C[i] = 0;

 for (i =1; i<n ; i++)

 C[A[i]] =C[A[i]] +1;

 for (i =1; i<k ; i++)

 C[i] = C[i] +C[i-1] ;

 for (i =n; i>1 ; i--) {

 B[C[A[i]]] = A[i] ;

 C[A[i]] = C[A[i]] -1;

 }

Radix sort

Assumption: all elements of the input array are d-digit
integers.

Idea: first sort by least significant digit,
then according to the next digit,
…,
and finally according to the most significant digit.

It is essential to use a digit sorting algorithm that is stable:
elements with the same digit appear in the output array in
the same order as in the input array.

● Fact: Counting sort is stable.

Radixsort(A[1..n]) {
 for i that goes from least significant digit to most {
 use counting sort algorithm to sort array A on digit i
 }
}

Example:
Sort in ascending order (3,2,1,0) (two binary digits).

Radixsort(A[1..n]) {
 for i that goes from least significant digit to most {
 use counting sort algorithm to sort array A on digit i
 }
}

Image source: http://www.programering.com/a/MTOyYjNwATM.html

Analysis of running time

T(n) = number of operations

T(n) = d•(running time of Counting sort on n elements)
 = Θ(d•(n+k))

Example: To sort numbers in range 0.. n10
 T(n) = ?
 (hint: think numbers in base n)

 Radixsort(A[1..n]) {

 for i from least significant

 digit to most {

 use counting sort to

 sort array A on digit i

 }

 }

Analysis of running time

T(n) = number of operations

T(n) = d•(running time of Counting sort on n elements)
 = Θ(d•(n+k))

Example: To sort numbers in range 0.. n10
 T(n) = Θ(10 n) = Θ(n)
 While counting sort would take T(n) = ?

 Radixsort(A[1..n]) {

 for i from least significant

 digit to most {

 use counting sort to

 sort array A on digit i

 }

 }

Analysis of running time

T(n) = number of operations

T(n) = d•(running time of Counting sort on n elements)
 = Θ(d•(n+k))

Example: To sort numbers in range 0.. n10

 T(n) = Θ(10 n) = Θ(n)

 While counting sort would take T(n) = Θ(n10)

 Radixsort(A[1..n]) {

 for i from least significant

 digit to most {

 use counting sort to

 sort array A on digit i

 }

 }

Space

We need as much space as we did
for Counting sort on each digit

Space = O(d • (n+k))

Can you improve this?

 Radixsort(A[1..n]) {

 for i from least significant

 digit to most {

 use counting sort to

 sort array A on digit i

 }

 }

Can we sort faster than n2 without extra assumptions?

Next we show how to sort with O(n log n) comparisons

We introduce a new general paradigm

Deleted scenes

● 3SAT problem: Given a 3CNF formula such as
 φ := (x V y V z) Λ (¬x V ¬y V z) Λ (x V y V ¬z)

 can we set variables True/False to make φ True?
 Such φ is called satisfiable.

● Theorem [3SAT is NP-complete]

 Let M : {0,1}n → {0,1} be an algorithm running in time T

 Given x {0,1}∈ n we can efficiently compute 3CNF φ :
 M(x) = 1 φ satisfiable

● How efficient?

● Theorem [3SAT is NP-complete]

 Let M : {0,1}n → {0,1} be an algorithm running in time T

 Given x {0,1}∈ n we can efficiently compute 3CNF φ :
 M(x) = 1 φ satisfiable

● Standard proof: φ has Θ(T2) variables (and size), xi, j

 x1, 1 x1, 2 …. x1, T

 …
 xi, 1 xi, 2 …. xi, T row i = memory, state at time i=1..T

 φ ensures that memory and state evolve according to M

● Theorem [3SAT is NP-complete]

 Let M : {0,1}n → {0,1} be an algorithm running in time T

 Given x {0,1}∈ n we can efficiently compute 3CNF φ :
 M(x) = 1 φ satisfiable

● Better proof: φ has O(T logO(1) T) variables (and size),
 Ci := xi, 1 xi, 2 …. xi, log T = state and what algorithm

 reads, writes at time i = 1.. T

 Note only 1 memory location is represented per time step.

 How do you check Ci correct? What does φ do?

● Theorem [3SAT is NP-complete]

 Let M : {0,1}n → {0,1} be an algorithm running in time T

 Given x {0,1}∈ n we can efficiently compute 3CNF φ :
 M(x) = 1 φ satisfiable

● Better proof: φ has O(T logO(1) T) variables (and size),
 Ci := xi, 1 xi, 2 …. xi, log T = state and what algorithm

 reads, writes at time i = 1.. T

 φ : Check Ci+1 follows from Ci assuming read correct

 Compute C'i := Ci sorted on memory location accessed

 Check C'i+1 follows from C'i assuming state correct

● Theorem [3SAT is NP-complete]

 Let M : {0,1}n → {0,1} be an algorithm running in time T

 Given x {0,1}∈ n we can efficiently compute 3CNF φ :
 M(x) = 1 φ satisfiable

● Better proof: φ has O(T logO(1) T) variables (and size),
 Ci := xi, 1 xi, 2 …. xi, log T = state and what algorithm

 reads, writes at time i = 1.. T

 φ : Check Ci+1 follows from Ci assuming read correct

 Let C'i be Ci sorted on memory location accessed

 Check C'i+1 follows from C'i assuming state

THAT'S WHY
SORTING MATTERS!

