Algorithms Slides

Emanuele Viola

2009 - present

Released under Creative Commons License
"Attribution-Noncommercial-No Derivative Works 3.0 United States" http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Also, let me know if you use them.

Index

The slides are under construction.
The latest version is at http://www.ccs.neu.edu/home/viola/

Success stories of algorithms:

Shortest path (Google maps)

Pattern matching (Text editors, genome)

Fast-fourier transform (Audio/video processing)
http://cstheory.stackexchange.com/questions/19759/core-algorithms-deployed

This class:

General techniques:

Divide-and-conquer, dynamic programming, data structures amortized analysis

Various topics:
Sorting
Matrixes
Graphs
Polynomials

What is an algorithm?

- Informally,
an algorithm for a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ (the problem) is a simple, step-by-step, procedure
that computes $f(x)$ on every input x
- Example: $\mathrm{A}=\mathrm{NxN}$ B $=\mathrm{N}, \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$
- Algorithm: Kindergarten addition

112
+999
1111

What operations are simple?

- If, for, while, etc.
- Direct addressing: A[n], the n-entry of array A
- Basic arithmetic and logic on variables
- $x^{*} y, x+y, x$ AND y, etc.
- Simple in practice only if the variables are "small". For example, 64 bits on current PC
- Sometimes we get cleaner analysis if we consider them simple regardless of size of variables.

Measuring performance

- We bound the running time, or the memory (space) used.
- These are measured as a function of the input length.
- Makes sense: need to at least read the input!
- The input length is usually denoted n
- We are interested in which functions of n grow faster

Asymptotic analysis

- The exact time depends on the actual machine
- We ignore constant factors, to have more robust theory that applies to most computer
- Example: on my computer it takes $67 \mathrm{n}+15$ operations, on yours $58 \mathrm{n}-15$, but that's about the same
- We now give definitions that make this precise

Big-Oh

Definition:

$f(n)=O(g(n))$ if there are (\exists) constants c, n_{0} such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$, for every $(\forall) \mathrm{n} \geq \mathrm{n}_{0}$.

Meaning: f grows no faster than g , up to constant factors

Big-Oh

Definition:
$f(n)=O(g(n))$ if there are (\exists) constants c, n_{0} such that
$\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$, for every $(\forall) \mathrm{n} \geq \mathrm{n}_{0}$.

Example 1:
$5 n+2 n^{2}+\log (n)=O\left(n^{2}\right) ?$

Big-Oh

Definition:
$f(n)=O(g(n))$ if there are (\exists) constants c, n_{0} such that
$\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$, for every $(\forall) \mathrm{n} \geq \mathrm{n}_{0}$.

Example 1:
$5 n+2 n^{2}+\log (n)=O\left(n^{2}\right)$ True

Pick $\mathrm{c}=$?

Big-Oh

Definition:
$f(n)=O(g(n))$ if there are (\exists) constants c, n_{0} such that
$\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$, for every $(\forall) \mathrm{n} \geq \mathrm{n}_{0}$.

Example 1:
$5 n+2 n^{2}+\log (n)=O\left(n^{2}\right)$ True

Pick $\mathrm{c}=3$. For large enough $\mathrm{n}, 5 \mathrm{n}+\log (\mathrm{n}) \leq \mathrm{n}^{2}$.
Any c > 2 would work.

Example 2:

$100 \mathrm{n}^{2}=\mathrm{O}\left(2^{\mathrm{n}}\right)$?

Example 2:

$100 \mathrm{n}^{2}=\mathrm{O}\left(2^{\mathrm{n}}\right)$ True

Pick $\mathrm{c}=$?

Example 2:

$100 n^{2}=O\left(2^{n}\right)$ True

Pick c = 1 .

Any c > 0 would work, for large enough n .

Example 3:

$\mathrm{n}^{2} \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$?

Example 3:

$n^{2} \log n \neq O\left(n^{2}\right)$
$\forall c, n_{0} \exists n \geq n_{0}$ such that $n^{2} \log n>c n^{2}$.
$n>2^{c} \Leftrightarrow n^{2} \log n>n^{2} c$

Example 4:

$2^{\mathrm{n}}=\mathrm{O}\left(2^{\mathrm{n} / 2}\right)$?

Example 4:

$2^{\mathrm{n}} \neq \mathrm{O}\left(2^{\mathrm{n} / 2}\right)$.
$\forall c, n_{0} \exists n \geq n_{0}$ such that $2^{n}>c \cdot 2^{n / 2}$.

Pick any $\mathrm{n}>2 \log \mathrm{c}$
$2^{n}=2^{n / 2} 2^{n / 2}>c \cdot 2^{n / 2}$.

- $\mathrm{n} \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$?
- $\mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{1.5} \log 10 \mathrm{n}\right)$?
- $2^{n}=O\left(n^{1000000}\right) ?$
- $(\sqrt{ } 2)^{\log n}=O\left(n^{1 / 3}\right) ?$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right) ?$
- $2^{n}=O\left(4^{\log n}\right) ?$
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $\mathrm{n} \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- $\mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{1.5} \log 10 \mathrm{n}\right)$?
- $2^{n}=O\left(n^{1000000}\right) ?$
- $(\sqrt{ } 2)^{\log n}=O\left(n^{1 / 3}\right)$?
- $n^{\log \log n}=O\left((\log n)^{\log n}\right) ?$
- $2^{\mathrm{n}}=\mathrm{O}\left(4^{\log \mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- n ! $=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $\mathrm{n} \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n}=O\left(n^{1000000}\right) ?$
- $(\sqrt{ } 2)^{\log n}=O\left(n^{1 / 3}\right)$?
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=\mathrm{O}\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$
- $(\sqrt{ } 2)^{\log } n^{\prime}=O\left(n^{1 / 3}\right) ?$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=O\left(4^{\log n}\right) ?$
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $\mathrm{n} \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n}=O\left(n^{1 / 3}\right) ?(\sqrt{2})^{\log n}=n^{1 / 2} \neq O\left(n^{1 / 3}\right)$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right) ?$
- $2^{n}=\mathrm{O}\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right) ?$
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
$n^{\log \log n}=$
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$?
- $2^{n}=O\left(4^{\log n}\right)$?
$2^{\log n . \log \log n}=$
- $n!=O\left(2^{n}\right) ?$
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n}=O\left(4^{\log n}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n}=O\left(4^{\log n}\right) ? 4^{\log n=2^{2 \log n} \quad 2^{n}=2^{2} \text {. }{ }^{\log n} . ~ . ~ . ~}$
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $\mathrm{n}!=\mathrm{O}\left(2^{\mathrm{n}}\right)$?
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $n!\neq O\left(2^{n}\right) . \quad 2.5 \sqrt{ }(n / e)^{n} \leq n!\leq 2.8 \sqrt{ }(n / e)^{n}$
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$?
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log } \mathrm{n}=\mathrm{O}\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $n!\neq O\left(2^{n}\right)$.
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$.
- $n 2^{n}=O\left(2^{n \log n}\right) ?$
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $n!\neq O\left(2^{n}\right)$.
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$.
- $n 2^{n}=O\left(2^{n \log n}\right) ? n 2^{n}=2^{\log n+n}$.
- $n \log n=O\left(n^{2}\right)$.
- $n^{2} \neq O\left(n^{1.5} \log 10 n\right)$.
- $2^{n} \neq O\left(n^{1000000}\right)$.
- $(\sqrt{ } 2)^{\log n} \neq O\left(n^{1 / 3}\right)$.
- $n^{\log \log n}=O\left((\log n)^{\log n}\right)$.
- $2^{n} \neq O\left(4^{\log n}\right)$.
- $n!\neq O\left(2^{n}\right)$.
- $\mathrm{n}!=\mathrm{O}\left(\mathrm{n}^{\mathrm{n}}\right)$.
- $n 2^{n}=O\left(2^{n \log n}\right)$.

Big-omega

Definition:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})) \text { means } \\
& \exists \mathrm{c}, \mathrm{n}_{0}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}, \quad \mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{~g}(\mathrm{n}) .
\end{aligned}
$$

Meaning: f grows no slower than g, up to constant factors

Big-omega

Definition:
$\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{c}, \mathrm{n}_{0}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}, \quad \mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$.

Example 1:
$0.01 \mathrm{n}=\Omega(\log \mathrm{n})$?

Big-omega

Definition:
$\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{c}, \mathrm{n}_{0}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}, \quad \mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$.

Example 1:
$0.01 \mathrm{n}=\Omega(\log \mathrm{n})$ True

Pick c = 1. Any c > 0 would work

Example 2:

$\mathrm{n}^{2} / 100=\Omega(\mathrm{n} \log \mathrm{n})$?

Example 2:

$n^{2} / 100=\Omega(n \log n)$.
$c=1 / 100$ Again, any c would work.

Example 2:

$n^{2} / 100=\Omega(n \log n)$.
$c=1 / 100$ Again, any c would work.

Example 3:
$\sqrt{ } \mathrm{n}=\Omega(\mathrm{n} / 100)$?

Example 2:

$n^{2} / 100=\Omega(n \log n)$.
$c=1 / 100$ Again, any c would work.

Example 3:
$\sqrt{n} \neq \Omega(n / 100)$
$\forall c, n_{0} \exists \mathrm{n} \geq \mathrm{n}_{0}$ such that, $\sqrt{ } \mathrm{n}<\mathrm{c} \cdot \mathrm{n} / 100$.

Example 4:
$2^{\mathrm{n} / 2}=\Omega\left(2^{\mathrm{n}}\right)$?

Example 4:

$2^{\mathrm{n} / 2} \neq \Omega\left(2^{\mathrm{n}}\right)$
$\forall c, n_{0} \exists n \geq n_{0}$ such that $2^{n / 2}<c \cdot 2^{n}$.

Big-omega, Big-Oh

Note: $f(n)=\Omega(g(n)) \Leftrightarrow g(n)=O(f(n))$

$$
f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n)) .
$$

Example:

$10 \log n=O(n)$, and $n=\Omega(10 \log n)$.
$5 n=O(n)$, and $n=\Omega(5 n)$

Theta

Definition:
$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{n}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.

Meaning: f grows like g, up to constant factors

Theta

Definition:
$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{n}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.
Example:
$\mathrm{n}=\Theta(\mathrm{n}+\log \mathrm{n})$?

Theta

Definition:
$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{n}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.
Example:
$\mathrm{n}=\Theta(\mathrm{n}+\log \mathrm{n})$ True
$\mathrm{c}_{1}=$?, $\mathrm{c}_{2}=$? $\mathrm{n}_{0}=$? such that $\forall \mathrm{n} \geq \mathrm{n}_{0}$,
$\mathrm{n} \leq \mathrm{c}_{1}(\mathrm{n}+\log \mathrm{n})$ and $\mathrm{n}+\log \mathrm{n} \leq \mathrm{c}_{2} \mathrm{n}$.

Theta

Definition:
$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{n}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.
Example:
$\mathrm{n}=\Theta(\mathrm{n}+\log \mathrm{n})$ True
$c_{1}=1, c_{2}=2 n_{0}=2$ such that $\forall n \geq 2$,
$\mathrm{n} \leq 1(\mathrm{n}+\log \mathrm{n})$ and $\mathrm{n}+\log \mathrm{n} \leq 2 \mathrm{n}$.

Theta

Definition:
$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ means
$\exists \mathrm{n}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}>0 \quad \forall \mathrm{n} \geq \mathrm{n}_{0}$,
$f(n) \leq c_{1} \cdot g(n)$ and $g(n) \leq c_{2} \cdot f(n)$.

Note:
$f(n)=\Theta(g(n)) \Leftrightarrow f(n)=\Omega(g(n))$ and $f(n)=O(g(n))$
$f(n)=\Theta(g(n)) \Leftrightarrow g(n)=\Theta(f(n))$.

Mixing things up

- $\mathrm{n}+\mathrm{O}(\log \mathrm{n})=\mathrm{O}(\mathrm{n})$

Means $\forall c \quad \exists c^{\prime}, \mathrm{n}_{0}: \forall \mathrm{n}>\mathrm{n}_{0} \mathrm{n}+\mathrm{c} \log \mathrm{n}<\mathrm{c}^{\prime} \mathrm{n}$

- $\mathrm{n}^{3} \log (\mathrm{n})=\mathrm{n}^{\mathrm{O}(1)}$

Means $\exists \mathrm{c}, \mathrm{n}_{0}: \forall \mathrm{n}>\mathrm{n}_{0} \quad \mathrm{n}^{3} \log (\mathrm{n})=\mathrm{n}^{\mathrm{c}}$

- $2^{n}+n^{O(1)}=\Theta\left(2^{n}\right)$

Means $\forall \mathrm{c} \exists \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}: \forall \mathrm{n}>\mathrm{n}_{0}$

$$
c_{2} 2^{n} \leq 2^{n}+n^{c} \leq c_{1} 2^{n}
$$

Sorting

Sorting problem:

- Input:

A sequence (or array) of n numbers (a[1], a[2], ..., a[n]).

- Desired output:

A sequence (b[1], b[2], ..., b[n]) of sorted numbers
(in increasing order).

Example:

Input = (5, 17, -9, 76, 87, -57, 0).
Output = ?

Sorting problem:

- Input:

A sequence (or array) of n numbers (a[1], a[2], ..., a[n]).

- Desired output:

A sequence (b[1], b[2], ..., b[n]) of sorted numbers
(in increasing order).

Example:

Input $=(5,17,-9,76,87,-57,0)$.
Output $=(-57,-9,0,5,17,76,87)$.

Sorting problem:

- Input:

A sequence (or array) of n numbers (a[1], a[2], ..., a[n]).

- Desired output:

A sequence $(b[1], b[2], \ldots, b[n])$ of sorted numbers
(in increasing order).

Who cares about sorting?

- Sorting is a basic operation that shows up in countless other algorithms
- Often when you look at data you want it sorted
- It is also used in the theory of NP-hardness!

Bubblesort:

Input (a[1], a[2], ..., a[n]).
for (i=n; i> 1; i - -)
for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
if (a[j] > a[j+1])
swap a[j] and a[j+1];

Bubblesort:

Input (a[1], a[2], ..., a[n]).
for (i=n; i>1; i--)
for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
if (a[j] > a[j+1])
swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly

Bubblesort:

Input (a[1], a[2], ..., a[n]).
for (i=n; i> 1; i - -)
for ($\mathrm{j}=1$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
if (a[j] > a[ji+1]) swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fix i. Let $a^{\prime}[1], \ldots, a^{\prime}[n]$ be array at start of inner loop.
Note at the end of the loop: $a^{\prime}[i]=$?

Bubblesort:

Input (a[1], a[2], ..., a[n]).
for ($\mathrm{i}=\mathrm{n} ; \mathrm{i}>1 ; \mathrm{i}-$ - $)$ for ($\mathrm{j}=1$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
if (a[j] > a[j+1]) swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], ..., a'[n] be array at start of inner loop.
Note at the end of the loop: $a^{\prime}[i]=\max _{k \leq i} a^{\prime}[k]$
and the positions $\mathrm{k}>\mathrm{i}$ are

Bubblesort:

Input (a[1], a[2], ..., a[n]).
for ($\mathrm{i}=\mathrm{n} ; \mathrm{i}>1 ; \mathrm{i}-$-) for ($\mathrm{j}=1$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
if ($a[j]>a[j+1]$) swap a[j] and a[j+1];

Claim: Bubblesort sorts correctly
Proof: Fix i. Let a'[1], ..., a'[n] be array at start of inner loop.
Note at the end of the loop: $a^{\prime}[i]=\max _{k \leq i} a^{\prime}[k]$
and the positions $\mathrm{k}>\mathrm{i}$ are not touched.
Since the outer loop is from n down to 1 , the array is sorted.

Analysis of running time

$\mathrm{T}(\mathrm{n})=$ number of comparisons
$\mathrm{i}=\mathrm{n}-1 \Rightarrow \mathrm{n}-1$ comparisons.
$\mathrm{i}=\mathrm{n}-2 』 \mathrm{n}-2$ comparisons.
$i=1 \Rightarrow 1$ comparison.

Bubble sort:

Input (a[1], a[2], ..., a[n]).
for (i=n; i>1; i--) for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++$) if (a[j] > a[j+1])
swap $a[j]$ and $a[j+1] ;$
$\mathrm{T}(\mathrm{n})=(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+1<\mathrm{n}^{2}$
Is this tight? Is also $T(n)=\Omega\left(n^{2}\right)$?

Analysis of running time
$\mathrm{T}(\mathrm{n})=$ number of comparisons
$\mathrm{i}=\mathrm{n}-1 \Leftrightarrow \mathrm{n}-1$ comparisons.
$\mathrm{i}=\mathrm{n}-2 \triangleleft \mathrm{n}-2$ comparisons.
$\mathrm{i}=1 \Rightarrow 1$ comparison.

Bubble sort:
Input (a[1], $\mathrm{a}[2], \ldots, \mathrm{a}[\mathrm{n}]$).
for ($\mathrm{i}=\mathrm{n} ; \mathrm{i}>1$; $\mathrm{i}-\mathrm{-}$) for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++$) if (a[j] >a[j+1])
swap $a[j]$ and $a[j+1] ;$

$$
T(n)=(n-1)+(n-2)+\ldots+1=n(n-1) / 2=\Theta\left(n^{2}\right)
$$

Space (also known as Memory)

We need to keep track of i, j

We need an extra element
to swap values of input array a.

Bubble sort:
Input (a[1], a[2], ..., a[n]).
for ($\mathrm{i}=\mathrm{n}$; $\mathrm{i}>1$; $\mathrm{i}-\mathrm{-}$)

$$
\begin{aligned}
& \text { for }(\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++) \\
& \text { if (a[j]>a[j+1])} \\
& \quad \text { swap a[j] and } a[j+1] ;
\end{aligned}
$$

Space $=O(1)$

Bubble sort takes quadratic time

Can we sort faster?

We now see two methods that can sort in linear time,
under some assumptions

Countingsort:

Assumption: all elements of the input array are integers in the range 0 to k.

Idea: determine, for each $A[i]$, the number of elements in the input array that are smaller than $A[i]$.

This way we can put element $A[i]$ directly into its position.
// Sorts A[1..n] into array B
Countingsort (A[1..n]) \{
// Initializes C to 0
for (i=0; k;i++) C[i]=0;
$/ /$ Set $C[i]=$ number of elements $=\mathrm{i}$.
for (i=1; n ; i++) C[A[i]]=C[A[i]]+1;
$/ /$ Set $\mathrm{C}[i]=$ number of elements $\leq \mathrm{i}$.
for ($\mathrm{i}=1 ; \mathrm{k} ; \mathrm{i}++$) $\mathrm{C}[\mathrm{i}]=\mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$;
for (i=n; 1 ; $\mathrm{i}-$-) \{
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{i}]]]=\mathrm{A}[\mathrm{i}]$; //Place $\mathrm{A}[\mathrm{i}]$ at right location
$C[A[i]]=C[A[i]]-1 ; / / D e c r e a s e ~ f o r ~ e q u a l ~ e l e m e n t s ~$
\}

Analysis of running time

$T(n)=$ number of operations

$$
\begin{aligned}
& =O(k)+O(n)+O(k)+O(n) \\
& =\Theta(n+k) .
\end{aligned}
$$

If $k=O(n)$ then $T(n)=\Theta(n)$

Countingsort (A[1..n])

for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{k} ; \mathrm{i}++$)

$$
C[i]=0 ;
$$

$$
\text { for }(i=1 ; i<n ; i++)
$$

$C[A[i]]=C[A[i]]+1$;
for ($\mathrm{i}=1 ; i<k ; i++$)
$C[i]=C[i]+C[i-1] ;$
for ($\mathrm{i}=\mathrm{n} ; \mathrm{i} 1>1$; $\mathrm{i}-\mathrm{-}$) $\{$
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{i}]]]=\mathrm{A}[\mathrm{i}]$;
$C[A[i]]=C[A[i]]-1$;

Space

O(k) for C
Recall numbers in 0..k.
$\mathrm{O}(\mathrm{n})$ for B , where output is

Total space: $\mathrm{O}(\mathrm{n}+\mathrm{k})$
If $k=O(n)$ then $\Theta(n)$

Countingsort (A[1..n])
for (i =0; i<k ; i++)

$$
C[i]=0 ;
$$

for (i =1; i<n ; i++)

$$
C[A[i]]=C[A[i]]+1 \text {; }
$$

for ($\mathrm{i}=1$; $\mathrm{i}<\mathrm{k}$; $\mathrm{i}++$)

$$
C[i]=C[i]+C[i-1] ;
$$

for (i =n; i>1 ; i--) \{

$$
\mathrm{B}[\mathrm{C}[\mathrm{~A}[\mathrm{i}]]]=\mathrm{A}[\mathrm{i}] ;
$$

$$
C[A[i]]=C[A[i]]-1 ;
$$

Radix sort

Assumption: all elements of the input array are d-digit integers.

Idea: first sort by least significant digit, then according to the next digit, and finally according to the most significant digit.

It is essential to use a digit sorting algorithm that is stable: elements with the same digit appear in the output array in the same order as in the input array.

- Fact: Counting sort is stable.

Radixsort(A[1..n]) \{

 for i that goes from least significant digit to most \{ use counting sort algorithm to sort array A on digit i```
 }
```

\}

Example:
Sort in ascending order (3,2,1,0) (two binary digits).

## Radixsort(A[1..n]) \{

for $i$ that goes from least significant digit to most \{ use counting sort algorithm to sort array A on digit i
\}
$\left.\begin{array}{l}l \\ l\end{array}\right\}$

| $\downarrow$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | d | a | b |
| 1 | c | a | b |
| 2 | $f$ | a | d |
| 3 | b | a | d |
| 4 | d | a | d |
| 5 | e | b | b |
| 6 | a | C | e |
| 7 | a | d | d |
| 8 | f | e | d |
| 9 | b | e | d |
| 10 | f | e | e |
| 11 | b | e | e |


| $\downarrow$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | a | c | e |
| 1 | a | d | d |
| 2 | b | a | d |
| 3 | b | e | d |
| 4 | b | e | e |
| 5 | c | a | b |
| 6 | d | a | b |
| 7 | d | a | d |
| 8 | e | b | b |
| 9 | $f$ | a | d |
| 10 | f | e | d |
| 11 | f | e | e |

Analysis of running time
$T(n)=$ number of operations

Radixsort(A[1..n]) \{
for $i$ from least significant
digit to most \{
use counting sort to
sort array A on digit i
\}
\}
 $=\Theta(\mathrm{d} \cdot(\mathrm{n}+\mathrm{k}))$

Example: To sort numbers in range 0.. $\mathrm{n}^{10}$

$$
T(n)=?
$$

(hint: think numbers in base n )

Analysis of running time

## $T(n)=$ number of operations


 $=\Theta(\mathrm{d} \cdot(\mathrm{n}+\mathrm{k}))$

Example: To sort numbers in range $0 . . n^{10}$
$T(n)=\Theta(10 n)=\Theta(n)$
While counting sort would take $\mathrm{T}(\mathrm{n})=$ ?

Analysis of running time

## $T(n)=$ number of operations




$$
=\Theta(\mathrm{d} \cdot(\mathrm{n}+\mathrm{k}))
$$

Example: To sort numbers in range $0 . . \mathrm{n}^{10}$
$T(n)=\Theta(10 n)=\Theta(n)$
While counting sort would take $T(n)=\Theta\left(n^{10}\right)$

## Space

We need as much space as we did for Counting sort on each digit

Space $=O(d \cdot(n+k))$
Radixsort(A[1..n]) \{
for i from least significant
$\quad$ digit to most \{
use counting sort to
sort array A on digit i
$\}$
$\}$

Can you improve this?

## Can we sort faster than $\mathrm{n}^{2}$ without extra assumptions?

Next we show how to sort with $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ comparisons

We introduce a new general paradigm

## Deleted scenes

- 3SAT problem: Given a 3CNF formula such as

$$
\varphi:=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
$$

can we set variables True/False to make $\varphi$ True?
Such $\varphi$ is called satisfiable.

- Theorem [3SAT is NP-complete]

Let $\mathrm{M}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be an algorithm running in time T Given $x \in\{0,1\}^{\mathrm{n}}$ we can efficiently compute 3 CNF $\varphi$ :

$$
M(x)=1 \longleftrightarrow \varphi \text { satisfiable }
$$

- How efficient?
- Theorem [3SAT is NP-complete]

Let $\mathrm{M}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be an algorithm running in time $T$
Given $x \in\{0,1\}^{\mathrm{n}}$ we can efficiently compute 3 CNF $\varphi$ : $M(x)=1 \longleftrightarrow \varphi$ satisfiable

- Standard proof: $\varphi$ has $\Theta\left(T^{2}\right)$ variables (and size), $x_{i, j}$

$$
\begin{array}{llll}
x_{1,1} & x_{1,2} & \cdots . & x_{1, T}
\end{array}
$$

$$
\begin{array}{llll|l}
x_{i, 1} & x_{i, 2} & \cdots . & x_{i, T} & \text { row } i=\text { memory, state at time } i=1 . . T
\end{array}
$$

$\varphi$ ensures that memory and state evolve according to M

- Theorem [3SAT is NP-complete]

Let $\mathrm{M}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be an algorithm running in time $T$
Given $x \in\{0,1\}^{n}$ we can efficiently compute 3CNF $\varphi$ :

$$
M(x)=1 \leftrightarrow \varphi \text { satisfiable }
$$

- Better proof: $\varphi$ has $\mathrm{O}\left(\mathrm{T} \log { }^{\mathrm{O}}{ }^{(1)} \mathrm{T}\right.$ ) variables (and size), $C_{i}:=x_{i, 1} x_{i, 2} \ldots . \quad x_{i, \log }=$ state and what algorithm reads, writes at time $\mathrm{i}=1 . . \mathrm{T}$

Note only 1 memory location is represented per time step.

How do you check $\mathrm{C}_{\mathrm{i}}$ correct? What does $\varphi$ do?

- Theorem [3SAT is NP-complete]

Let $\mathrm{M}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be an algorithm running in time $T$
Given $x \in\{0,1\}^{n}$ we can efficiently compute 3 CNF $\varphi$ :

$$
M(x)=1 \longleftrightarrow \varphi \text { satisfiable }
$$

- Better proof: $\varphi$ has $\mathrm{O}\left(\mathrm{T} \log { }^{\mathrm{O}}{ }^{(1)} \mathrm{T}\right.$ ) variables (and size), $C_{i}:=x_{i, 1} x_{i, 2} \ldots . \quad x_{i, \log } T=$ state and what algorithm reads, writes at time $\mathrm{i}=1 . . \mathrm{T}$
$\varphi$ : Check $C_{i+1}$ follows from $C_{i}$ assuming read correct
Compute $\mathrm{C}_{\mathrm{i}}^{\prime}:=\mathrm{C}_{\mathrm{i}}$ sorted on memory location accessed
Check $\mathrm{C}_{\mathrm{i}+1}^{\prime}$ follows from $\mathrm{C}_{\mathrm{i}}^{\prime}$ assuming state correct
- Theorem [3SAT is NP-complete] Let $M:\{ \}^{n} \rightarrow\{0,1\}$ be Given $x$


