

● Randomized algorithms

● Review basics from ``Think like the pros''

QuickSort(low, high) {

 if (high-low ≤ 1) return;

 partition(low, high) and return split;

 QuickSort(low, split);

 QuickSort(split+1, high);

}

Partition rearranges the input array a[low..high] into two
(possibly empty) sub-arrays a[low.. split] and a[split+1.. high]

each element in a[low.. split] is ≤ a[split],

each element in a[split.. high] is ≥ a[split].

Recall

QuickSort(low, high) {

 if (high-low ≤ 1) return;

 partition(low, high) and return split,

 QuickSort(low, split);

 QuickSort(split+1, high);

 }

The choice of split determines the running time of Quick sort.
If the partitioning is balanced, Quick sort is as fast as Merge
sort, if the partitioning is unbalanced, Quick sort is as slow as
Bubble sort.

Recall

Quick sort(low, high)

 if (high-low ≤ 1) return;

 pivot = a[high-1];

 split = low;

 for (i=low; i<high-1; i++)

 if (a[i] <pivot) {

 swap a[i] and a[split];

 split++;

 }

 swap a[high-1] and a[split];

 QuickSort(low, split);

 QuickSort(split+1, high);

 Return;

Partition w.r.t. last
element

Recall

Analysis of running time

T(n) = worst-case number of comparisons in Quick sort
on an arrays of length n.

● Choosing pivot deterministically:

the worst case happens when one sub-array is empty
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n

 = O(n2).

● Choosing pivot randomly we can guarantee

T(n) = O(n log n) with high probability

RecallRecall

Randomized-Quick sort:

R-QuickSort(low, high) {

 if (high-low ≤ 1) return;

 R-partition(low, high) and return split,

 R-QuickSort(low, split-1);

 R-QuickSort(split+1, high);

}

R-partition(low, high)

 i:= random(low, high);

 exchange (a[i],A[low]);

 partition(low,high);
We bound the total time spent by
Partition

Partition(low, high)
pivot = a[high-1];
 split = low;
 for (i=low; i<high-1; i++)
 if (a[i] <pivot) {
 swap a[i] and a[split];
 split++;
 }
 swap a[high-1] and a[split];

We shall bound X, the number of times the line is
executed during entire execution of R-quicksort.

When does the algorithm compare two elements?

 When does the algorithm compare to elements?
● Rename array A as z1, z2, … zn, with zi being the ith smallest

element
● Define Zij:={zi, zi+1, … zj }.

 When does the algorithm compare to elements?
● Rename array A as z1, z2, … zn, with zi being the ith smallest

element
● Define Zij:={zi, zi+1, … zj }.

● Note: each pair of elements zi, zj is compared at most once.

Elements are compared with the pivot, after a particular call to
Partition that pivot is never used again.

 When does the algorithm compare to elements?
● Rename array A as z1, z2, … zn, with zi being the ith smallest

element
● Define Zij:={zi, zi+1, … zj }.

● Note: each pair of elements zi, zj is compared at most once.

Elements are compared with the pivot, after a particular call to
Partition that pivot is never used again.

● Define indicator random variable Xij:= 1 { zi is compared to zj },

Xij:= 0 { zi is not compared to zj }

 When does the algorithm compare to elements?
● Rename array A as z1, z2, … zn, with zi being the ith smallest

element
● Define Zij:={zi, zi+1, … zj }.

● Note: each pair of elements zi, zj is compared at most once.

Elements are compared with the pivot, after a particular call to
Partition that pivot is never used again.

● Define indicator random variable Xij:= 1 { zi is compared to zj },

Xij:= 0 { zi is not compared to zj }

● Note: X = ∑ ∑ Xij
 .

 i=1 j=i+1

n-1 n

X = ∑ ∑ Xij
 .

Taking expectation of both sides and the using linearity of E =>

E[X]= E ∑ ∑ Xij

 = ∑ ∑ E [Xij
]

 = ∑ ∑ Pr {zi
 is compared to zj}

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

 Pr {zi
 is compared to zj} =?

When two elements zi
 and zj are compared?

 Pr {zi
 is compared to zj}=?

When two elements zi
 and zj are compared? It's useful to think

when they are not compared!

 Pr {zi
 is compared to zj}=?

When two elements zi
 and zj are compared? It's useful to think

when they are not compared!

If some element y, zi
 < y < zj is chosen as pivot, we know that zi

 and

zj can not be compared.

Why?

 Pr {zi
 is compared to zj}=?

When two elements zi
 and zj are compared? It's useful to think

when they are not compared!

If some element y, zi
 < y < zj is chosen as pivot, we know that zi

 and

zj can not be compared.

Because list of numbers will be partitioned and zi
 and zj will be in

two different parts.

 Pr {zi
 is compared to zj}=?

When two elements zi
 and zj are compared? It's useful to think

when they are not compared!

If some element y, zi
 < y < zj is chosen as pivot, we know that zi

 and

zj can not be compared.

Because list of numbers will be partitioned and zi
 and zj will be in

two different parts.

Therefore zi
 and zj are compared if the first element chosen as pivot

from Zij is either zi
 or zj.

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

 = Pr [zj is first pivot chosen from Zij]

+ Pr [zi is first pivot chosen from Zij]

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

 = Pr [zj is first pivot chosen from Zij]

+ Pr [zi is first pivot chosen from Zij]

 =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

 = Pr [zj is first pivot chosen from Zij]

+ Pr [zi is first pivot chosen from Zij]

 =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑ ∑ Pr {zi
 is compared to zj}

 = ∑ ∑ 2/(j-i+1) .

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

 = Pr [zj is first pivot chosen from Zij]

+ Pr [zi is first pivot chosen from Zij]

 =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑ ∑ Pr {zi
 is compared to zj}

 = ∑ ∑ 2/(j-i+1) = ∑ ∑ 2/(k+1)

 < ∑ ∑ 2/k

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 k=1

n-1 n-i

i=1 k=1

n-1 n

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

 = Pr [zj is first pivot chosen from Zij]

+ Pr [zi is first pivot chosen from Zij]

 =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑ ∑ Pr {zi
 is compared to zj}

 = ∑ ∑ 2/(j-i+1) = ∑ ∑ 2/(k+1)

 < ∑ ∑ 2/k =∑ O(log n) = O(n log n).

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 k=1

n-1 n-i

i=1k=1

n-1n

i=1

n-1

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

 = Pr [zj is first pivot chosen from Zij]

+ Pr [zi is first pivot chosen from Zij]

 =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑ ∑ Pr {zi
 is compared to zj}

 = ∑ ∑ 2/(j-i+1) = ∑ ∑ 2/(k+1)

 < ∑ ∑ 2/k =∑ O(log n) = O(n log n).

Expected running time of Randomized-QuickSort is O(n log n).

i=1 j=i+1

n-1 n

i=1 j=i+1

n-1 n

i=1 k=1

n-1 n-i

i=1 k=1

n-1 n

i=1

n-1

 An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved E[T] ≤ c n log n, for some constant c.

Hence, Pr[T > 100 c n log n] < ?

 An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved E[T] ≤ c n log n, for some constant c.

Hence, Pr[T > 100 c n log n] < 1/100

Markov's inequality useful to translate bounds on the expectation in

bounds of the form: “It is unlikely the algorithm will take too long.”

 Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space
f(x) = x ? ?

t = 2n, open addressing

 Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space

f(x) = x O(1) 2u

t = 2n, open addressing

Any deterministic function ? ?

 Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space

f(x) = x O(1) 2u

t = 2n, open addressing

Any deterministic function n 0

Random function ? expected ?

 Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space

f(x) = x O(1) 2u

t = 2n, open addressing

Any deterministic function n 0

Random function n/t expected 2u log(t)
 ∀ x ≠ y, Pr[f(x)=f(y)] ≤ 1/t

Now what?
We ``derandomize''
random functions

 Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space

f(x) = x O(1) 2u

t = 2n, open addressing

Any deterministic function n 0

Random function n/t expected 2u log(t)
 ∀ x ≠ y, Pr[f(x)=f(y)] ≤ 1/t

Pseudorandom function n/t expected O(u)
A.k.a. hash function
 Idea: Just need x ≠ y,∀
 Pr[f(x)=f(y)] ≤ 1/t

Construction of hash function: Let t be prime. Write u-bit elements
in base t.

x = x1 x2 … xm for m = u/log(t)

Hash function specified by an element a = a1 a2 … am

fa (x) := ∑i ≤ m ai xi modulo

Claim: x ≠ x', Pr∀ a [fa (x) = fa (x')] = 1/t

 Different constructions of hash function: u-bit keys to r-bit hashes

Classic solution: pick a prime p>2u, and a random a in [p], and

 ha(x) := ((ax) mod p) mod 2r

 Problem: mod p is slow, even with Mersenne primes (p=2i-1)

Alternative: let b be a random odd u-bit number and

 hb(x) = ((bx) mod 2u) div 2u-r

 = bits from u-r to u of integer product bx

 Faster in practice. In C, think x unsigned integer of u=32 bits

 hb(x) = (b*x) >> (u-r)

 Static search:

Given n elements, want a hash function that gives no collisions.

Probabilistic method: Just hash to [t] = n2 elements

Pr[x ≠ y : hash(x) = hash(y)]∃
 ≤ n2 /2 Pr[hash(0) = hash(1)] (union bound)

 ≤ n2 / (2 t) = 1/2

  ∃ hash : x ≠ y, hash(x) ≠ hash(y) (probabilistic method)∀

Can you have no collisions with [t] = O(n)?

 Static search:

Given n elements, want a hash function that gives no collisions.

Two-level hashing:
● First hash to t = O(n) elements,
● then hash again using the previous method. That is, if i-th cell in

first level has ci elements, hash to ci
2 cells at the second level.

Expected total size ≤ E[∑i ≤ t ci
2
]

Note ∑i ≤ t ci
2
 =

 Θ(expected number of colliding pairs in first level) =
 O(???)

 Static search:

Given n elements, want a hash function that gives no collisions.

Two-level hashing:
● First hash to t = O(n) elements,
● then hash again using the previous method. That is, if i-th cell in

first level has ci elements, hash to ci
2 cells at the second level.

Expected total size ≤ E[∑i ≤ t ci
2
]

Note ∑i ≤ t ci
2
 =

 Θ(expected number of colliding pairs in first level) =

 O(n2 / t) =
 O(n)

