
  

● Randomized algorithms

● Review basics from ``Think like the pros''



  

QuickSort(low, high)  {

  if (high-low ≤ 1) return;

  partition(low, high) and return split;

  QuickSort(low, split);

  QuickSort(split+1, high); 

}

Partition rearranges the input array a[low..high] into two 
(possibly empty) sub-arrays  a[low.. split] and a[split+1.. high] 

each element in a[low.. split] is ≤ a[split],

each element in a[split.. high] is ≥ a[split]. 

Recall



  

QuickSort(low, high)  {

  if (high-low ≤ 1) return;

  partition(low, high) and return split,

  QuickSort(low, split);

  QuickSort(split+1, high); 

  }

The choice of split determines the running time of Quick sort. 
If the partitioning is balanced, Quick sort is as fast as Merge 
sort, if the partitioning is unbalanced, Quick sort is as slow as 
Bubble sort.

Recall



  

Quick sort(low, high)

   if (high-low ≤ 1) return;

   pivot = a[high-1];

   split = low;

   for (i=low; i<high-1; i++)

      if (a[i] <pivot) {

         swap a[i] and a[split];

         split++;

      }

  swap a[high-1] and a[split];

  QuickSort(low, split);

  QuickSort(split+1, high);

   Return;    

   

Partition w.r.t. last 
element

Recall



  

Analysis of running time

T(n) = worst-case number of comparisons in Quick sort 
on an arrays of length  n.

● Choosing pivot deterministically:

the worst case happens when one sub-array is empty 
and the other is of size n-1, in this case :

T(n)= T(n-1) + T(0) + c n

      = O(n2).

● Choosing pivot randomly we can guarantee

T(n) = O(n log n) with high probability

RecallRecall



  

Randomized-Quick sort:

R-QuickSort(low, high) {

  if (high-low ≤ 1) return;

  R-partition(low, high) and return split,

  R-QuickSort(low, split-1);

  R-QuickSort(split+1, high); 

}

R-partition(low, high) 

   i:= random(low, high);

   exchange (a[i],A[low]);

   partition(low,high);
We bound the total time spent by 
Partition



  

Partition(low, high)
pivot = a[high-1];
   split = low;
   for (i=low; i<high-1; i++)
      if (a[i] <pivot) {
         swap a[i] and a[split];
         split++;
      }
  swap a[high-1] and a[split];

We shall bound X, the number of times the     line is 
executed during entire execution of R-quicksort.

When does the algorithm compare two elements?
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 When does the algorithm compare to elements?
● Rename array A as z1, z2, … zn, with zi being the ith smallest 

element
● Define Zij:={zi, zi+1, … zj }. 

● Note: each pair of elements zi, zj is compared at most once. 
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Partition that pivot is never used again.

● Define indicator random variable Xij:= 1 { zi is compared to zj }, 
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● Note: X = ∑  ∑  Xij
  .

 i=1 j=i+1

n-1 n



  

  

X = ∑  ∑  Xij
  .

Taking expectation of both sides and the using linearity of E =>

E[X]= E  ∑  ∑  Xij
  

      =  ∑  ∑  E [Xij
 ]

      =  ∑  ∑  Pr {zi
 is compared to zj}
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 Pr {zi
 is compared to zj}=?

When two elements zi
 and zj are compared? It's useful to think 

when they are not compared!

If some element y, zi
 < y < zj is chosen as pivot, we know that zi

 and 

zj  can not be compared. 

Because list of numbers will be partitioned and zi
 and zj will be in 

two different parts.

Therefore zi
 and zj are compared if the first element chosen as pivot 

from Zij is either zi
 or zj.

 



  

 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]
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   = Pr [zj is first pivot chosen from Zij]

+  Pr [zi is first pivot chosen from Zij]

   =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑  ∑  Pr {zi
 is compared to zj}

      

     =  ∑  ∑ 2/(j-i+1)  . 
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 or zj is first pivot chosen from Zij]

   = Pr [zj is first pivot chosen from Zij]

+  Pr [zi is first pivot chosen from Zij]

   =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .
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 is compared to zj}

      

     =  ∑  ∑ 2/(j-i+1)   = ∑  ∑ 2/(k+1)

     < ∑  ∑ 2/k   =∑ O(log n) = O(n log n).
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 Pr {zi
 is compared to zj} = Pr [zi

 or zj is first pivot chosen from Zij]

   = Pr [zj is first pivot chosen from Zij]

+  Pr [zi is first pivot chosen from Zij]

   =1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1) .

E[X]= ∑  ∑  Pr {zi
 is compared to zj}

      

     =  ∑  ∑ 2/(j-i+1)   = ∑  ∑ 2/(k+1)

     < ∑  ∑ 2/k   =∑ O(log n) = O(n log n).

Expected running time of Randomized-QuickSort is O(n log n).
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 An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved E[T] ≤ c n log n,  for some constant c.

Hence, Pr[ T > 100 c n log n] < ?



  

 An application of Markov's inequality

Let T be the running time of Randomized Quick sort.

We just proved E[T] ≤ c n log n,  for some constant c.

Hence, Pr[ T > 100 c n log n] < 1/100

Markov's inequality useful to translate bounds on the expectation in 

bounds of the form: “It is unlikely the algorithm will take too long.”
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Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function                              Search time                     Extra space
f(x) = x                                  ?                                            ? 

t = 2n, open addressing



  

 Problem: Dynamically support n search/insert elements in {0,1}u 

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function                              Search time                     Extra space

f(x) = x                                  O(1)                                      2u 

t = 2n, open addressing

Any deterministic function    ? ?



  

 Problem: Dynamically support n search/insert elements in {0,1}u 

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function                              Search time                     Extra space

f(x) = x                                  O(1)                                      2u 

t = 2n, open addressing

Any deterministic function    n                                           0

Random function                  ? expected                            ?



  

 Problem: Dynamically support n search/insert elements in {0,1}u 

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function                              Search time                     Extra space

f(x) = x                                  O(1)                                      2u 

t = 2n, open addressing

Any deterministic function    n                                           0

Random function                  n/t expected                         2u log(t)
                                              ∀ x ≠ y, Pr[f(x)=f(y)] ≤ 1/t

Now what?
We ``derandomize''
random functions



  

 Problem: Dynamically support n search/insert elements in {0,1}u 

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function                              Search time                     Extra space

f(x) = x                                  O(1)                                      2u 

t = 2n, open addressing

Any deterministic function    n                                           0

Random function                  n/t expected                         2u log(t)
                                              ∀ x ≠ y, Pr[f(x)=f(y)] ≤ 1/t

Pseudorandom function       n/t expected                         O(u)
A.k.a. hash function
                                           Idea: Just need  x ≠ y,∀
                                           Pr[f(x)=f(y)] ≤ 1/t



  

 
Construction of hash function: Let t be prime. Write u-bit elements 
in base t.

x = x1 x2 … xm    for m =  u/log(t)

Hash function specified by an element a = a1 a2 … am   

fa (x) := ∑i ≤ m ai xi modulo 

Claim:  x ≠ x', Pr∀ a [fa (x) = fa (x') ] = 1/t



  

 Different constructions of hash function: u-bit keys to r-bit hashes

Classic solution: pick a prime p>2u, and a random a in [p], and

  ha(x) := ((ax) mod p) mod 2r

  Problem: mod p is slow, even with Mersenne primes (p=2i-1)

Alternative: let b be a random odd u-bit number and

  hb(x) = ((bx) mod 2u ) div 2u-r 

           = bits from u-r to u of integer product bx

  Faster in practice. In C, think x unsigned integer of u=32 bits

  hb(x) = (b*x) >> (u-r)



  

 Static search:

Given n elements, want a hash function that gives no collisions.

Probabilistic method: Just hash to [t] = n2 elements

Pr[  x ≠ y : hash(x) = hash(y) ]∃
  ≤ n2 /2 Pr[hash(0) = hash(1)]                  (union bound)

  ≤ n2 / (2 t) = 1/2

   ∃ hash :  x ≠ y, hash(x) ≠ hash(y)  (probabilistic method)∀

Can you have no collisions with [t] = O(n)?



  

 Static search:

Given n elements, want a hash function that gives no collisions.

Two-level hashing:
● First hash to t = O(n) elements,
● then hash again using the previous method. That is, if i-th cell in 

first level has ci elements, hash to ci
2 cells at the second level.

Expected total size ≤ E[ ∑i ≤ t ci
2
 ]

Note ∑i ≤ t ci
2
 =

        Θ(expected number of colliding pairs in first level) = 
        O(???)



  

 Static search:

Given n elements, want a hash function that gives no collisions.

Two-level hashing:
● First hash to t = O(n) elements,
● then hash again using the previous method. That is, if i-th cell in 

first level has ci elements, hash to ci
2 cells at the second level.

Expected total size ≤ E[ ∑i ≤ t ci
2
 ]

Note ∑i ≤ t ci
2
 =

        Θ(expected number of colliding pairs in first level) = 

        O(n2  / t ) =
        O(n)


