Summary: NFA and DFA recognize the same languages

We now return to the question:

- Suppose A, B are regular languages, what about
- $\text{not } A := \{ w : w \text{ is not in } A \}$ \hspace{1cm} \text{REGULAR}
- $A \cup B := \{ w : w \text{ in } A \text{ or } w \text{ in } B \}$ \hspace{1cm} \text{REGULAR}
- $A \circ B := \{ w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B \}$
- $A^* := \{ w_1 w_2 \ldots w_k : k \geq 0, w_i \text{ in } A \text{ for every } i \}$
Theorem: If A, B are regular languages, then so is
\[A \cup B := \{ w : w \text{ in } A \text{ or } w \text{ in } B \} \]

Proof idea: Given DFA $M_A : L(M_A) = A$,
\[\text{DFA } M_B : L(M_B) = B, \]

Construct NFA $N : L(N) = A \cup B$
Construction:

• Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$: $L(M_A) = A$,

 $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$: $L(M_B) = B$,

• Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

• $Q := ?$
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$: $L(M_A) = A$,
- DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$: $L(M_B) = B$,
- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
 - $Q := \{q\} \cup Q_A \cup Q_B$, $F := ?$
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$
- DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B$

- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
 - $Q := \{q\} \cup Q_A \cup Q_B$, $F := F_A \cup F_B$
 - $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \varepsilon$
 - $\delta(r,x) := ?$ if r in Q_B and $x \neq \varepsilon$
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$: $L(M_A) = A$
- DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$: $L(M_B) = B$
- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
 - $Q := \{q\} \cup Q_A \cup Q_B$, $F := F_A \cup F_B$
 - $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \varepsilon$
 - $\delta(r,x) := \{ \delta_B(r,x) \}$ if r in Q_B and $x \neq \varepsilon$
 - $\delta(q,\varepsilon) := ?$
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$
- DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$

- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
 - $Q := \{q\} \cup Q_A \cup Q_B \quad , \quad F := F_A \cup F_B$
 - $\delta(r, x) := \{ \delta_A(r, x) \}$ if $r \in Q_A$ and $x \neq \varepsilon$
 - $\delta(r, x) := \{ \delta_B(r, x) \}$ if $r \in Q_B$ and $x \neq \varepsilon$
 - $\delta(q, \varepsilon) := \{q_A, q_B\}$

- We have $L(N) = A \cup B$
Example

Is \(L = \{ w \in \{0,1\}^* : |w| \text{ is divisible by 3 OR} \) \n\quad \text{w starts with a 1}\} \) regular?
Example

Is \(L = \{w \in \{0,1\}^* : |w| \text{ is divisible by 3 OR} \quad w \text{ starts with a 1}\} \) regular?

OR is like \(U \), so try to write \(L = L_1 \cup L_2 \)
where \(L_1, L_2 \) are regular
Example

Is \(L = \{ w \in \{0,1\}^* : |w| \text{ is divisible by 3 OR } w \text{ starts with a 1} \} \) regular?

OR is like \(U \), so try to write \(L = L_1 \cup L_2 \)

where \(L_1, L_2 \) are regular

\(L_1 = \{ w : |w| \text{ is div. by 3} \} \) \hspace{1cm} \(L_2 = \{ w : w \text{ starts with a 1} \} \)
Example

Is \(L = \{w \in \{0,1\}^* : |w| \text{ is divisible by 3 OR } w \text{ starts with a 1} \} \) regular?

OR is like \(U \), so try to write \(L = L_1 \cup L_2 \)

where \(L_1, L_2 \) are regular

\(L_1 = \{w : |w| \text{ is div. by 3}\} \quad \quad L_2 = \{w : w \text{ starts with a 1}\} \)

\[
M_1 = \begin{array}{c}
0,1 \\
\downarrow \\
0,1 \\
\downarrow \\
0,1 \\
\end{array}
\]

\[L(M_1) = L_1 \]
Example

Is \(L = \{ w \in \{0,1\}^* : |w| \text{ is divisible by 3 OR } w \text{ starts with a 1} \} \) regular?

OR is like \(U \), so try to write \(L = L_1 \cup L_2 \)

where \(L_1, L_2 \) are regular

\(L_1 = \{ w : |w| \text{ is div. by 3} \} \) \hspace{1cm} \(L_2 = \{ w : w \text{ starts with a 1} \} \)

\[M_1 = \]

\[M_2 = \]

\[L(M_1) = L_1 \]

\[L(M_2) = L_2 \]
Example

Is \(L = \{ w \in \{0,1\}^* : |w| \text{ is divisible by 3 OR } \) w starts with a 1\} regular?

OR is like U, so try to write \(L = L_1 \cup L_2 \)
where \(L_1, L_2 \) are regular

\(L_1 = \{ w : |w| \text{ is div. by 3} \} \)
\(L_2 = \{ w : w \text{ starts with a 1} \} \)

\(\Rightarrow L \) is regular.

\(L(M) = L(M_1) \cup L(M_2) = L_1 \cup L_2 = L \)
We now return to the question:

- Suppose A, B are regular languages, then

 - $\text{not } A := \{ w : w \text{ is not in } A \}$ \text{ REGULAR}
 - $A \cup B := \{ w : w \in A \text{ or } w \in B \}$ \text{ REGULAR}
 - $A \cdot B := \{ w_1 w_2 : w_1 \in A \text{ and } w_2 \in B \}$
 - $A^* := \{ w_1 w_2 \ldots w_k : k \geq 0 , w_i \in A \text{ for every } i \}$
Theorem: If A, B are regular languages, then so is
\[A \circ B := \{ w : w = xy \text{ for some } x \text{ in } A \text{ and } y \text{ in } B \}. \]

Proof idea: Given DFAs \(M_A, M_B \) for A, B

construct NFA \(N : L(N) = A \circ B \).
Construction:

• Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$: $L(M_A) = A$,

 DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$: $L(M_B) = B$,

• Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

• $Q := ?$
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$,
 $DFA \: M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B$,
- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
 - $Q := Q_A \cup Q_B$, $q := ?$
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$

 $DFA \; M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$

- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

 $Q := Q_A \cup Q_B \; , \; q := q_A \; , \; F := ?$
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$, DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B$,

- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
 - $Q := Q_A \cup Q_B$, $q := q_A$, $F := F_B$
 - $\delta(r,x) := ?$ if $r \in Q_A$ and $x \neq \varepsilon$
Construction:

• Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$: $L(M_A) = A$,

 DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$: $L(M_B) = B$,

• Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

 $Q := Q_A \cup Q_B$, $q := q_A$, $F := F_B$

• $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \epsilon$

• $\delta(r,\epsilon) := ?$ if r in F_A
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$,
- DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B$,
- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
 - $Q := Q_A \cup Q_B$, $q := q_A$, $F := F_B$
 - $\delta(r,x) := \{ \delta_A(r,x) \}$ if $r \in Q_A$ and $x \neq \varepsilon$
 - $\delta(r,\varepsilon) := \{ q_B \}$ if $r \in F_A$
 - $\delta(r,x) := ?$ if $r \in Q_B$ and $x \neq \varepsilon$
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$,

 $DFA M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B$,

- Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

 $Q := Q_A \cup Q_B$, \(q := q_A \), \(F := F_B \)

- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \varepsilon$

- $\delta(r,\varepsilon) := \{ q_B \}$ if r in F_A

- $\delta(r,x) := \{ \delta_B(r,x) \}$ if r in Q_B and $x \neq \varepsilon$

- We have $L(N) = A \circ B$
Example

Is \(L = \{ w \in \{0,1\}^* : w \text{ contains a } 1 \text{ after a } 0 \} \) regular?

Note: \(L = \{01, 0001001, 111001, \ldots \} \)
Example

Is \(L = \{ w \in \{0,1\}^* : w \text{ contains a } 1 \text{ after a } 0 \} \) regular?

Let \(L_0 = \{ w : w \text{ contains a } 0 \} \), \(L_1 = \{ w : w \text{ contains a } 1 \} \). Then \(L = L_0 \circ L_1 \).
Example

Is \(L = \{ w \in \{0,1\}^* : \text{w contains a 1 after a 0} \} \) regular?

Let \(L_0 = \{ w : \text{w contains a 0} \} \)
\(L_1 = \{ w : \text{w contains a 1} \} \). Then \(L = L_0 \circ L_1 \).

\[
M_0 = \begin{array}{c}
1 & 0,1 \\
\circ & \circ
\end{array}
\]

\(L(M_0) = L_0 \)
Example

Is \(L = \{ w \in \{0,1\}^* : w \text{ contains a 1 after a 0} \} \) regular?

Let \(L_0 = \{ w : w \text{ contains a 0} \} \)
\(L_1 = \{ w : w \text{ contains a 1} \}. \) Then \(L = L_0 \circ L_1. \)

\[
M_0 = \begin{array}{ccc}
1 & 0,1 \\
\bullet & 0 & \bullet
\end{array}
\]

\(L(M_0) = L_0 \)

\[
M_1 = \begin{array}{ccc}
0 & 0,1 \\
\bullet & 1 & \bullet
\end{array}
\]

\(L(M_1) = L_1 \)
Example

Is \(L = \{w \in \{0,1\}^* : w \text{ contains a } 1 \text{ after a } 0\} \) regular?

Let \(L_0 = \{w : w \text{ contains a } 0\} \)
\(L_1 = \{w : w \text{ contains a } 1\} \).
Then \(L = L_0 \circ L_1 \).

\[
L(M) = L(M_0) \circ L(M_1) = L_0 \circ L_1 = L
\]

\(\Rightarrow \) \(L \) is regular.
We now return to the question:

- Suppose A, B are regular languages, then

- $\text{not } A := \{ w : w \text{ is not in } A \}$ \hspace{1cm} \text{REGULAR}
- $A \cup B := \{ w : w \text{ in } A \text{ or } w \text{ in } B \}$ \hspace{1cm} \text{REGULAR}
- $A \circ B := \{ w_1 \, w_2 : w_1 \in A \text{ and } w_2 \in B \}$ \hspace{1cm} \text{REGULAR}
- $A^* := \{ w_1 \, w_2 \ldots \, w_k : k \geq 0 , w_i \text{ in } A \text{ for every } i \}$
Theorem: If A is a regular language, then so is
\[A^* := \{ w : w = w_1 \ldots w_k, \ w_i \ \text{in} \ A \ \text{for} \ i=1,\ldots,k \} \]

- Proof idea: Given DFA $M_A : L(M_A) = A$,
 Construct NFA $N : L(N) = A^*$

![Diagram of DFA and NFA]
Construction:

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$,

Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

- $Q := \text{?}$
Construction:

• Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$,

 Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

• $Q := \{q\} \cup Q_A$, $F := \ ?$
Construction:
• Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$,

 Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
• $Q := \{q\} \cup Q_A$, $F := \{q\} \cup F_A$
• $\delta(r,x) := \varepsilon$ if r in Q_A and $x \neq \varepsilon$
Construction:

Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$

Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

- $Q := \{q\} \cup Q_A,$ $F := \{q\} \cup F_A$
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if $r \in Q_A$ and $x \neq \varepsilon$
- $\delta(r,\varepsilon) := ?$ if $r \in \{q\} \cup F_A$
Construction:

Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$,

Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:

- $Q := \{q\} \cup Q_A$, $F := \{q\} \cup F_A$
- $\delta(r,x) := \{\delta_A(r,x)\}$ if $r \in Q_A$ and $x \neq \varepsilon$
- $\delta(r,\varepsilon) := \{q_A\}$ if $r \in \{q\} \cup F_A$
- We have $L(N) = A^*$
Example

Is \(L = \{ w \in \{0,1\}^* : w \text{ has even length} \} \) regular?
Example

Is \(L = \{w \in \{0,1\}^* : w \text{ has even length}\} \) regular?

Let \(L_0 = \{w : w \text{ has length } 2\} \). Then \(L = L_0^* \).
Example

Is \(L = \{ w \in \{0,1\}^* : w \text{ has even length} \} \) regular?

Let \(L_0 = \{ w : w \text{ has length } = 2 \} \). Then \(L = L_0^* \).

\[
\begin{align*}
M_0 &= \\
&= \\
&= \\
&= \\
L(M_0) &= L_0
\end{align*}
\]
Example

Is \(L = \{ w \in \{0,1\}^* : w \text{ has even length} \} \) regular?

Let \(L_0 = \{ w : w \text{ has length } = 2 \} \). Then \(L = L_0^* \).

\[M = \]

\[L(M) = L(M_0)^* = L_0^* = L \]

\(\Rightarrow \) \(L \) is regular.
We now return to the question:

• Suppose A, B are regular languages, then

• \(\text{not } A := \{ w : w \text{ is not in } A \} \)

• \(A \cup B := \{ w : w \text{ in } A \text{ or } w \text{ in } B \} \)

• \(A \circ B := \{ w_1 \; w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B \} \)

• \(A^* := \{ w_1 \; w_2 \; \ldots \; w_k : k \geq 0, \; w_i \text{ in } A \text{ for every } i \} \)

are all regular!
We now return to the question:

- Suppose A, B are regular languages, then
- \(\text{not } A := \{ w : w \text{ is not in } A \} \)
- \(A \cup B := \{ w : w \text{ in } A \text{ or } w \text{ in } B \} \)
- \(A \circ B := \{ w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B \} \)
- \(A^* := \{ w_1 w_2 \ldots w_k : k \geq 0 , w_i \text{ in } A \text{ for every } i \} \)

What about \(A \cap B := \{ w : w \text{ in } A \text{ and } w \text{ in } B \} \)?
We now return to the question:
• Suppose A, B are regular languages, then
• \(\text{not } A := \{ w : w \text{ is not in } A \} \)
• \(A \cup B := \{ w : w \text{ in } A \text{ or } w \text{ in } B \} \)
• \(A \circ B := \{ w_1 \, w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B \} \)
• \(A^* := \{ w_1 \, w_2 \ldots w_k : k \geq 0, w_i \text{ in } A \text{ for every } i \} \)

De Morgan's laws: \(A \cap B = \text{not } ((\text{not } A) \cup (\text{not } B)) \)
By above, (not A) is regular, (not B) is regular, (not A) U (not B) is regular, not ((not A) U (not B)) = A \cap B regular
We now return to the question:

- Suppose \(A, B \) are regular languages, then

 - \(\text{not } A := \{ w : w \text{ is not in } A \} \)
 - \(A \cup B := \{ w : w \text{ in } A \text{ or } w \text{ in } B \} \)
 - \(A \circ B := \{ w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B \} \)
 - \(A^* := \{ w_1 w_2 \ldots w_k : k \geq 0, w_i \text{ in } A \text{ for every } i \} \)
 - \(A \cap B := \{ w : w \text{ in } A \text{ and } w \text{ in } B \} \)

are all regular