Big picture

*All languages
*Decidable
Turing machines
NP
P
*Context-free
Context-free grammars, push-down automata
*Regular
Automata, non-deterministic automata,
regular expressions

DFA (Deterministic Finite Automata)

&
G

@
0
1

DFA (Deterministic Finite Automata)

C
0 0
1

&
G

. States O _this DFA has 4 states

e TransitionS ———— g
labelled with elements of the alphabet X = {0,1}

DFA (Deterministic Finite Automata)

%
NO=o 0

Computation on input w:

- Begin in start state

* Read input string in a one-way fashion

* When input ends: ACCEPT if in accept state
REJECT if not

* Follow the arrows matching input symbols @

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

always start in start state

C\ﬁ?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w = 0011

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w =0011 ACCEPT
because end in
accept state

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

always start in start state

C\ﬁ?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w =010

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string
w =010 REJECT
because does not
end in accept state

DFA (Deterministic Finite Automata)

C\ﬁ?

Example: Input string w = 01 ACCEPT
w=010 REJECT
w =0011 ACCEPT
w =00110 REJECT

DFA (Deterministic Finite Automata)

O:o
i ¥
M recognizes language

L(M) = {w : w starts with 0 and ends with 1}
L(M) is the language of strings causing M to accept

Example: 0101 is an element of L(M), 0101 € L(M)

Example

> = {0,1)

* 00 causes M to accept, so 00 isin L(M) 00 e L(M)

* 01 does not cause M to accept, so 01 not in L(M),
01 ¢ L(M)

* 0101 e L(M)

* 01101100 € L(M)

* 011010 ¢ L(M)

Example

> ={0,1)

L(M) = {w : w has an even number of 1}

Note: If there is no 1, then there are zero 1,
Zzero Is an even number, so M should accept.

Indeed 0000000 e L(M)

Example

> ={0,1)

e L(M) =2

Example

> ={0,1)

* L(M) = every possible string over {0,1}

=10,1}

e L(M) =2

0 0
M :=
e
1

Example

1
> ={0,1}
0 0
M :=
1

* L(M) = all strings over {0,1} except empty string ¢
={0,1}"-{&}

0

e L(M) =2

* L(M) ={w : w starts and ends with same symbol }
» Memory is encoded in ... what ?

* L(M) ={w : w starts and ends with same symbol }
 Memory is encoded In states.
DFA have finite states, so finite memory

Convention:

(==

0
We already saw that 1
L(M) = {w : w starts with 0 and ends with 1}

The arrow leads to a “sink” state.
1

If followed, M can never accept

Convention:

Don't need to write such arrows:

If, from some state, read symbol with no
corresponding arrow, imagine M goes into “sink state”
that is not shown, and REJECT.

This makes pictures more compact.

Another convention:

List multiple transition on same arrow:

C 0,1,2 C

This makes pictures more compact.

Example) ={0,1}

Example) ={0,1}

00,1 O 0,1 @

L(M) = ¥2 = {00,01,10,11}

Example from programming languages:
Recognize strings representing numbers:
2 - {051 52!354!5!61758591 +J Ty = }

Note: 0,...,9 means 0,1,2,3,4,5,6,7,8,9: 10 transitions

Example from programming languages:

Recognize strings representing numbers:
2 - {051 52!354!5!61758591 +J Ty = }

Possibly put sign (+, -) 0,---,9b

Follow with arbitrarily many digits, but at least one
Possibly put decimal point

Follow with arbitrarily many digits, possibly none

Example from programming languages:
Recognize strings representing numbers:
2 - {051 52!354!5!61758591 +J Ty = }

Inputw=17 ACCEPT 0,---,9b
Input w = + REJECT

Input w =-3.25 ACCEP
Input w = +2.35-. REJECT

Example
> ={0,1}

* What about { w : w has same number of 0 and 1 }

e Can you design a DFA that recognizes that?

* |t seems you need infinite memory

* We will prove later that
there is no DFA that recognizes that language !

Next: formal definition of DFA

» Useful to prove various properties of DFA

» Especially important to prove that things CANNOT be
recognized by DFA.

» Useful to practice mathematical notation

State diagram of a DFA:

*One or more states O

Exactly one start state —PO
Some number of accept states @

[_abelled transitions exiting each state, _1>
for every symbol in X

*Definition: A finite automaton (DFA)
is a 5-tuple (Q, Z, 5, qq, F) where

*Q is a finite set of states

*> Is the input alphabet

*5:Q X X — Qs the transition function
(o in Q is the start state

F < Q is the set of accept states

Q X X is the set of ordered pairs (a,b):a €Q, b €)
Example {q,r,5}X{0,1}={(9,0),(q,1),(r,0),(r,1),(s,0),(s,1)}

«Example: above DFA is 5-tuple (Q, %, 9, qq, F) where

*Q ={qp, q4}
e = {0.1)
*d(qg ,0) =7

«Example: above DFA is 5-tuple (Q, %, 9, qq, F) where

*Q ={qp, q4}
5 = {0.1)
*d3(0p,0)=qp 0(qp,1)="7

«Example: above DFA is 5-tuple (Q, %, 9, qq, F) where

*Q =1{0qo, q1}

> ={0,1}

*6(dp ,0) =dp 3(dg 1) = q;
6(q41,0)=q¢ d(q1,1)=qg
(o in Q is the start state

oF =7

«Example: above DFA is 5-tuple (Q, %, 9, qq, F) where

*Q = {qp, q4}

> ={0,1}

*3(q0 ,0) =qo (qp 1) = a;

6(g1,0)=q; 6(q1,1) =qg

(o in Q is the start state

F ={qg} = Qs the set of accept states

Definition: ADFA (Q, %, 9, qq, F) accepts a string w if

W =W; Wy ... W, where, V 1 <i<k, w;isinX

(the k symbols of w)

«The sequence of k+1 states ry, rq, .., r, such that:

(1) ro = qg, and
(2) Fivq = 0(F Wiq) VO<i<K
hasr in F
(r; = state DFA is in after reading i-th symbol in w)

Example

«Above DFA (Q, Z, 9, qq, F) accepts w = 011

Example

«Above DFA (Q, Z, 9, qq, F) accepts w = 011

e W =011 =w; Wy Ws w;=0 wr=1 wy="1

Example

«Above DFA (Q, Z, 9, qq, F) accepts w = 011
e W =011 =w; Wy Ws w;=0 wr=1 wy="1

We must show that
«The sequence of 3+1=4 states r, ry, Iy, r3 such that:

(1) ro=1do
(2) liy1 = S(Fi Wit 1) V0<i<k3
hasrsin F

Example

«Above DFA (Q, Z, 9, qq, F) accepts w = 011
e W =011 =w; Wy Ws w;=0 wr=1 wy="1

*h=dp

Example

«Above DFA (Q, Z, 9, qq, F) accepts w = 011

e W =011 =w; Wy Ws w;=0 wr=1 wy="1
*p= o

°r1=8(r0,W1)=5(q0,0)=q0

of =7

2

Example

«Above DFA (Q, Z, 9, qq, F) accepts w = 011
e W =011 =w; Wy Ws w;=0 wr=1 wy="1

*fo=do
Iy =0(rp ,Wq)=0(qp,0) = qp

* Iy =0(rq,W5)=0(qp,1) = Q4
or3 r)

Example

«Above DFA (Q, Z, 9, qq, F) accepts w = 011

e W =011 =w; Wy Ws w;=0 wr=1 wy="1

* o= do

* 1 = 6(rg , W1)=6(dp,0) = qg

* Iy = 8(rq ,Wp)=6(dp ,1) = qy

* I3 =9(ry ,W3)=56(q¢,1) = qg

r;=(pinF OK DONE!

» Definition: For a DFA M, we denote by L(M) the set
of strings accepted by M:

L(M) :={w : M accepts w}

We say M accepts or recognizes the language L(M)

» Definition: A language L is regular
if 3 DFA M:L(M)=L

In the next lectures we want to:

» Understand power of regular languages

* Develop alternate, compact notation to specify
regular languages

Example: Unix command grep ‘\<c.*h\>"file
selects all words starting with ¢ and ending with h
in file

» Understand power of regular languages:

» Suppose A, B are regular languages, what about
*notA :={w:wisnotinA}
cAUB:={w:winAorwinB}

«AoB ={wyw,: wy;inA and w,Iin B}

e A* ={wiwy...w, :k>0,w;inA foreveryi}

» Are these languages regular?

» Understand power of regular languages:

» Suppose A, B are regular languages, what about
*notA :={w:wisnotinA}
cAUB:={w:winAorwinB}

«AoB ={wyw,: wy;inA and w,Iin B}

e A* ={wiwy...w, :k>0,w;inA foreveryi}

* Terminology: Are regular languages closed
under not, U, o, * ?

*Theorem:
If Alis a regular language, then so is (not A)

*Theorem:
If Alis a regular language, then so is (not A)

*Proof idea: ?7?7?7?7?7?7?7?7?°? the set of accept states

*Theorem:
If Alis a regular language, then so is (not A)

*Proof idea: Complement the set of accept states
*Example

*Theorem:
If Alis a regular language, then so is (not A)

*Proof idea: Complement the set of accept states

L(M) =

{w:w has even number of 1}

*Theorem:
If Alis a regular language, then so is (not A)

*Proof idea: Complement the set of accept states

L(M) = L(M') = not L(M) =

{w:whaseven numberof1} {w:w has odd number of 1}

Theorem: If Ais a regular language, then so is (not A)

*Proof:
Given DFAM = (Q, Z, 9, qg, F) such that L(M) = A.

"his definition is the creative step of this proof,

t

14

ne rest is (perhaps complicated but) mechanical
unwrapping definitions”

Theorem: If Ais a regular language, then so is (not A)

*Proof:
Given DFAM = (Q, Z, 9, qg, F) such that L(M) = A.

Define DFAM' = (Q, %, 3, qq, F'), where F' := not F.
*\We need to show L(M') = not L(M), that is:

Theorem: If Ais a regular language, then so is (not A)

*Proof:
Given DFAM = (Q, Z, 9, qg, F) such that L(M) = A.

Define DFAM' = (Q, %, 3, qq, F'), where F' := not F.

*\We need to show L(M') = not L(M), that is:
for any w, M' accepts w €=>» M does not accept w.

*So0 let w be any string of length k, and consider the
k+1 states ry, 14, .., 1, from the definition of accept:

(1) ro = qo, and
(2) liy1 = (r, Wit 1) VO0<Li<Kk.

How do we conclude?

Theorem: If Ais a regular language, then so is (not A)

*Proof:
Given DFAM = (Q, Z, 9, qg, F) such that L(M) = A.

Define DFAM' = (Q, %, 3, qq, F'), where F' := not F.

*\We need to show L(M') = not L(M), that is:
for any w, M' accepts w €= M does not accept w

*So0 let w be any string of length k, and consider the
k+1 states ry, 14, .., 1, from the definition of accept:

(1) ro = qg, and
(2) liy1 = (r, Wit 1) VO0<Li<Kk.
Note that r,in F' €= r _notin F, since F'=notF.

What is a proof?

*A proof is an explanation, written in English, of why
something is true.

*Every sentence must be logically connected to the

7 (14

previous ones, often by “so”,

7 1}

hence”, “since”, etc.

*Your audience is a human being, NOT a machine.

Theorem: If Ais a regular language, then so is (not A)
P QOf:
DFAN\ = (Q, %, 9, qg, F) such that L(M) = A
DFAM' =NQ, Z, J, qq, F'), where F' := a0t F.
L(M'* ot L(M)
M' accepts w &= Mdoes not accept w

k+1 states rg, ri 5 r,
(1) ro =20, and
i+1 — S(Fi Wit 1) VO0<i<Kk.
rein F* €=>r _notinF, F'=not F.

What is a proof?

Complement the set of accept states

e

Given DFAM = (Q, %, §, qq, F) such that L(M) = A.
Define DFAM' = (Q, %, §, qq, F'), where F' := not F.
*We need to show L(M') = not L(M), that is:

for any w, M' accepts w €=>» M does not accept w
«Consider the k+1 states ry, ryq, .., r, such that:

(1) ro = do, and
(2) Fieq = 8(rj Wiy) VO <i<k.
Note that r,in F' €= r, notin F, since F' = not F. ll

AN

To know a proof means to know all the pyramid

Example) ={0,1}

00,1 O 0,1 @

L(M) = ¥2 = {00,01,10,11}

What is a DFAM':
L(M') = not 22 = all strings except those of length 2 ?

Example) ={0,1}

M' =

0,1~ 0.1 ~ 0,1 0,1
—O0—0—0O—0)

L(M") = not 2 = {0,1}* - {00,01,10,11}

Do not forget the convention about the sink state!

» Suppose A, B are regular languages, what about
enotA :={w:wisnotinA} REGULAR
cAUB:={w:winAorwinB}

«AoB ={wyw,: wy;inA and w,Iin B}

cA* ={wiwy...w, :k>0,w;inA foreveryi}

*Theorem: If A, B are regular, then soisAU B

*Proof idea: Take Cartesian product of states

In a pair (q,9'),
g tracks DFA for A,

q' tracks DFA for B.

*Next we see an example.

1

In it we abbreviate ©<—_>Q
1

with <::F‘—T*>C)

L(Mg) =B =

{w :w has odd number of 0}

M,g := How many states?

R

(Mg) =B =

{w :w has odd number of 0}

{ w :w has even number of 1}
Maug =

{w: w has even number of 1,

or odd number of 0}

*Theorem: If A, B are regular, then soisAU B

*Proof:
Given DFAM, = (Qx,Z, 04,94, F5) such that L(M) = A,

DFA Mg = (Qg,%, 05,95, Fg) such that L(M) = B.
Define DFAM = (Q, %, 3, q,, F), where

Q:=7?

*Theorem: If A, B are regular, then soisAU B

*Proof:
Given DFAM, = (Qx,Z, 04,94, F5) such that L(M) = A,

DFA Mg = (Qg,%, 05,95, Fg) such that L(M) = B.
Define DFAM = (Q, %, 3, q,, F), where
Q:=Q, XQg
qQp = 7

*Theorem: If A, B are regular, then soisAU B

*Proof:
Given DFAM, = (Qx,Z, 04,94, F5) such that L(M) = A,

DFA Mg = (Qg,%, 05,95, Fg) such that L(M) = B.
Define DFAM = (Q, %, 3, q,, F), where
Q:=Q, XQg
dp :=(da>9p)
F:.=7

*Theorem: If A, B are regular, then soisAU B

*Proof:
Given DFAM, = (Qx,Z, 04,94, F5) such that L(M) = A,

DFA Mg = (Qg,%, 05,95, Fg) such that L(M) = B.
Define DFAM = (Q, %, 3, q,, F), where
Q:=Q, XQg
dp :=(da>9p)
F:={(a,9)€Q:qeF,orq €Fg}

o((9.q'), v) :=(?,7)

*Theorem: If A, B are regular, then soisAU B

*Proof:
Given DFAM, = (Qx,Z, 04,94, F5) such that L(M) = A,

DFA Mg = (Qg,%, 05,95, Fg) such that L(M) = B.
Define DFAM = (Q, %, 3, q,, F), where
Q:=Q, XQg
do :=(9a- 9)
F:={(a,9)€Q:qeF,orq €Fg}
0((9,9'), v) := (04 (q,Vv), 05 (q',V))

* \We need to show L(M) = A U B that is, for any w:
M accepts w €=>» M, accepts w or Mg accepts w

Proof of M accepts w=>M, accepts w or Mg accepts w

*Suppose that M accepts w of length k.

*From the definitions of accept and M, the sequence
(So-19)=d0=1(qy: 9R),

(Si+1:1i41)=0((S;, ;) ;Wis1)=(OA(Si, Wis1), Og(ti,Wirq) VO<i<k
has (s, .t,)e?

Proof of M accepts w=>M, accepts w or Mg accepts w

*Suppose that M accepts w of length k.

*From the definitions of accept and M, the sequence
(So-19)=d0=1(qy: 9R),
(Si+1:1i41)=0((S;, ;) ;Wis1)=(OA(Si, Wis1), Og(ti,Wirq) VO<i<k
has (s,.t,)eF.
By our definition of F, what can we say about (s.,t,) ?

Proof of M accepts w=>M, accepts w or Mg accepts w

*Suppose that M accepts w of length k.
*From the definitions of accept and M, the sequence
(So:t)=90=1(9a 9B);
(Si+1:1i41)=0((S;, ;) ;Wis1)=(OA(Si, Wis1), Og(ti,Wirq) VO<i<k
has (s,.t,)eF.
By our definition of F, s, €F, ort, €Fg.
-Without loss of generality, assume s, €F,.
-Then M, accepts w because the sequence
=qp, Sipq =0, (Si, Wi, q) VOSI<K,
has s, €F, .

Proof of M accepts w€M, accepts w or Mg accepts w
-W/out loss of generality, assume M, accepts w, |w|=k.

-From the definition of M, accepts w, the sequence
o= da, Ti+q = 6A (ri Wit 1) VO<iI< k, has M in ?

Proof of M accepts w€M, accepts w or Mg accepts w
-W/out loss of generality, assume M, accepts w, |w|=k.

-From the definition of M, accepts w, the sequence
o= da, Ti+q = 6A (ri Wit 1) VO<iI< k, has M N FA :

*Define the sequence of k+1 states
tO .= qB ; ti+1 .= 68 (tl Wi 1) VvV O0<Li<Kk.

*M accepts w because the sequence

Proof of M accepts w€M, accepts w or Mg accepts w
-W/out loss of generality, assume M, accepts w, |w|=k.

-From the definition of M, accepts w, the sequence
ro:= da, lisq:=0p (M,Wiq) VO<i<Kk, hasrginF,

*Define the sequence of k+1 states
tO .= qB ; ti+1 .= 68 (tl Wi 1) VvV O0<Li<Kk.

*M accepts w because the sequence

(fg:t9) =a=(da, A5),

(i+1° t|+1) 8(([’ t) |+1) (6A(r W|+1) 0 (ti=Wi+1) VO<i< k
has (r,.t,) in F, by our definition of F. H

» Suppose A, B are regular languages, what about
enotA :={w:wisnotinA} REGULAR
cAUB:={w:winAorwinB} REGULAR
«AoB ={wyw,: wy;inA and w,Iin B}

cA* ={wiwy...w, :k>0,w;inA foreveryi}

e Other two are more complicated!
*Plan: we introduce NFA

prove that NFA are equivalent to DFA
reprove A U B, prove Ao B, A* regular, using NFA

Non deterministic finite automata (NFA)
* DFA: given state and input symbol, 1

unique choice for next state,

deterministic:

*Next we allow multiple choices,
non-deterministic 1

*\We also allow e-transitions: €
can follow without reading anything

Example of NFA

Intuition of how it computes:
*Accept string w if there is a way to follow transitions
that ends in accept state

*Transitions labelled with symbol in X = {a,b}

must be matched with input
¢ transitions can be followed without matching

Example of NFA

Example:
* Accept a (first follow e-transition)
* Accept baaa

ANOTHER Example of NFA

Example:
* Accept bab (two accepting paths, one
uses the e-transition)

* Reject ba (two possible paths, but neither
has final state = q_)

*Definition: A non-deterministic finite automaton (NFA)
is a 5-tuple (Q, %, 3, qq, F) where

Q is a finite set of states

*> Is the input alphabet

*6: QX (ZU({e}) — Powerset(Q)
(g in Q is the start state

*F < Qs the set of accept states

*Recall: Powerset(Q) = set of all subsets of Q
Example: Powerset({1,2}) = ?

*Definition: A non-deterministic finite automaton (NFA)
is a 5-tuple (Q, %, 3, qq, F) where

Q is a finite set of states

*> Is the input alphabet

*6: QX (ZU({e}) — Powerset(Q)
(g in Q is the start state

*F < Qs the set of accept states

*Recall: Powerset(Q) = set of all subsets of Q
Example: Powerset({1,2}) = {J, {1}, {2}, {1,2} }

«Example: above NFA is 5-tuple (Q, %, 6, qg, F) where

*Q ={dp, 94}
3 = {0.1}
*3(qp ,0) =7

«Example: above NFA is 5-tuple (Q, %, 6, qg, F) where

*Q ={qp, 94}
> = {0,1}
*d(qp ,0) ={qp} 0(qg.1)="7

«Example: above NFA is 5-tuple (Q, %, 6, qg, F) where

*Q ={qp, 94}
> = {0,1}
*3(dp ,0) ={qdp} 0(dp.1)={dp,q1} 0(qp.e) =7

«Example: above NFA is 5-tuple (Q, %, 6, qg, F) where

*Q ={dp, 94}

> = {0,1}

*0(dp ,0) ={ao} 06(qp,1) ={dp, a1} 3(gp.¢) =Y
6(qq,0) =7

«Example: above NFA is 5-tuple (Q, %, 6, qg, F) where

*Q ={qp, 9}

> = {0,1}

*3(dp ,0) ={adp} d(qo.1)={dp, a1} 3(qp.e)=Y
6(qq,0) =< 6(qq,1)=7

«Example: above NFA is 5-tuple (Q, %, 6, qg, F) where

*Q ={qp, 9}

> = {0,1}

*3(dp ,0) ={adp} d(qo.1)={dp, a1} 3(qp.e)=Y
6(q1,0) =< 6(qq,1)=C 6(qq ,€) = 7

«Example: above NFA is 5-tuple (Q, %, 6, qg, F) where
*Q ={qp, 9}

> = {0,1}
d(qp ,0) ={dp} 8(dp.1)={dp. a4} 0(qp.e) =
6(qq,0) =< 8(qq.,1)=C 6(d4 ,&) = {qp}

qg In Q is the start state
oF =7

«Example: above NFA is 5-tuple (Q, %, 6, qg, F) where
*Q ={qp, 9}

> = {0,1}
d(qp ,0) ={dp} 8(dp.1)={dp. a4} 0(qp.e) =
6(qq,0) =< 8(qq.,1)=C 6(d4 ,&) = {qp}

(o in Q is the start state
F ={q4} = Qis the set of accept states

Definition: ANFA (Q, %, 9, qq, F) accepts a string w if
Jinteger k, dk strings w, , w, , ..., W, such that
‘W=WqW,..W, WhereV1<i<k, w,e XU {e}

(the symbols of w, or g)

3 sequence of k+1 states ry, rq, .., , In Q such that:

*'ho= o

.ri+1 EB(ri,Wi+1) V0<i<k
er . isinF

*Differences with DFA are in green

Back to first example NFA:

Accepts w = baaa
w =b, w =a, w,=a, w=g W_=

Accepting sequence of 5+1 = 6 states:
r="7
0

Back to first example NFA:

Accepts w = baaa
w =b, w =a, w,=a, w=g W_=

Accepting sequence of 5+1 = 6 states:
r.=4a, ro="7

Back to first example NFA:

Accepts w = baaa
w =b, w =a, w,=a, w=g W_=
Accepting sequence of 5+1 = 6 states:
rozqo’ r1=q1’ r2=?

Transitions:
r'] € 6(roab) = {q1}

Back to first example NFA:

Accepts w = baaa
w =b, w =a, w,=a, w=g W_=
Accepting sequence of 5+1 = 6 states:
rozqo’ r1=q1’ r2=qz’ r.3=?
Transitions:
ri€o(r,b)=1{q} rped(r,a)=1{q,q,}

Back to first example NFA:

Accepts w = baaa
w =b, w =a, w,=a, w=g W_=
Accepting sequence of 5+1 = 6 states:
rozqo’ r1=q1’ r2=qz’ r.3=qo’ r4=?
Transitions:
rieo(r,b)={a} rredlr,a)=1{q,q,
r3 € d(r,a) ={q }

Back to first example NFA:

Accepts w = baaa
w =b, w =a, w,=a, w=¢g w_=a
Accepting sequence of 5+1 = 6 states:
rozqo’ r1=q1’ r2=qz’ r.3=qo’ r4=qz’ =7
Transitions:
ryed(ryb)=1{a} rped(r,a)=1q,a,}
r3 € 8(r,a) ={q} r4ed(r,e)={q,)

Back to first example NFA:

Accepts w = baaa
w =b, w =a, w,=a, w=¢g w_=a
Accepting sequence of 5+1 = 6 states:
r.o = qo’ r1 = q1’ r2 = qz’ r.3 = qo’ r4 = qz’ r5 = qo
Transitions:

rieo(r,b)=1q,; ryed(r,a)=1q,q,
r3€0(r,8) ={q;} ry€0(r,e)=1q,} rse€d(r,a)=1{q;

*NFA are at least as powerful as DFA,
because DFA are a special case of NFA

*Are NFA more powerful than DFA?

*Surprisingly, they are not:

*Theorem:
For every NFA N there is DFAM : L(M) = L(N)

*Theorem:
For every NFA N there is DFAM : L(M) = L(N)

*Construction without ¢ transitions

*Given NFAN (Q, %, 9, q, F)

*Construct DFAM (Q, £, d', d', F') where:

Q' := Powerset(Q)

*q’' = {q}

F'={S:S € Q" and S contains an element of F}
« (S, a) :=Ug _ 5 9(s,a)

={t:ted(s,a)forsomes e S}

[t remains to deal with ¢ transitions

Definition: Let S be a set of states.
E(S) :={q: g can be reached from some state
s in S traveling along 0 or more ¢ transitions }

*\We think of following ¢ transitions at beginning, or
right after reading an input symbol in £

*Theorem:
For every NFA N there is DFAM : L(M) = L(N)

*Construction including ¢ transitions
*Given NFAN (Q, %, 9, q, F)

*Construct DFAM (Q, £, d', d', F') where:
Q' := Powerset(Q)

*q' = E({q})
‘F'={S:S € Q"and S contains an element of F}
*d'(S,a) = E(Ug . g0(s,a))

={t:teE(d(s,a))forsomes e S}

Example: NFA — DFA conversion

©

NFA E DFA

@

Q.. = Powerset(Q_

DFA

= Powerset({1,2,3}) @

= {2, {11{2143}.41,2}...}

FA)

Example: NFA — DFA conversion

© ©

b a
a €

e @ ® @

Yora = ({qNFA})

- E(1) - ®

=11,3;

NFA E DFA

Example: NFA — DFA conversion

NFA E DFA

.@ s @

F__={S:S contains

DFA E
an element of FNFA}E

Example: NFA — DFA conversion

NFA E DFA

Example: NFA — DFA conversion

NFA E DFA

® ®

.@ a,b &

6,.,({1}, D)
= E(_.,(1, b))

= E({2}) = {2}

Example: NFA — DFA conversion

NFA

.@ a,b &

Opral12): @)
= E(6,.,(2, a))

= E({2,3}) = 12,3}

Example: NFA — DFA conversion

NFA

.@ a,b &

OprallZ): D)

DFA

= E(3_.,(2, b))
= E({3}) = {3}

Example: NFA — DFA conversion

NFA

.@ a,b &

0,.,({3}, @)
= E(5_,(3, a))

= E({1}) = 1.3}

Example: NFA — DFA conversion

NFA

.@ a,b &

Opralls): D)

DFA

= E(5_.,(3, b))
= E@) = @

Example: NFA — DFA conversion

NFA E DFA

EG . (2,2)Us _ (3,3))
= E({2,3) U{1}) ={1,2,3}

Example: NFA — DFA conversion

NFA E DFA

5en({2,3}, b) .
= E(3,(2b) U3, (3,b)):

= E(83tU Q) =13}

Example: NFA — DFA conversion

NFA E DFA

Example: NFA — DFA conversion
NFA E DFA

a

4

Opealll,3}, D) i b

= E(SNFA('I b) U 8NFA(3’b)) ;]

= E((2tU Q) =12}

Example: NFA — DFA conversion

NFA E DFA

Example: NFA — DFA conversion

NFA E DFA

Opeallls2}, D) i b

a
: a,b
E@ . (1,0)Us _ (2,b)) @ 3

= E({2}U 3}) =1{2,3}

Example: NFA — DFA conversion

NFA

a,b

DFA({1 2,3, a)

=E(5,.,(1.a) U5, (2a) U5 (3a)):

=E(2 U {23} U {1}) = {1,2,3}"

Example: NFA — DFA conversion

NFA

a,b

5 _({1,2,3}, b)

=E(s_,(1.b)Us _(2b)U SNFA(3,b))§
=E({2} U {3} U @) = {2,3} !

Example: NFA — DFA conversion

Example: NFA — DFA conversion

NFA

We can delete the

unreachable states.

ANOTHER Example: NFA — DFA conversion
NFA ' DFA

@ @

Q__, = Powerset(Q) ‘ .
= Powerset({1,2,3}) .

= 10 112013501.2) }

ANOTHER Example: NFA — DFA conversion
NFA DFA

NoRlct

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

Foes = {S : S contains
an element of FNFA}E

ANOTHER Example: NFA — DFA conversion

NFA

ANOTHER Example: NFA — DFA conversion

NFA

0,11}, b)
= E(5_,(1, b))

= E{2,3}) = {1,2,3}

ANOTHER Example: NFA — DFA conversion

NFA

Opral12):)
= E(5,.,(2, a))

= E(3}) = 11,3}

ANOTHER Example: NFA — DFA conversion

NFA

OpraliZ): D)

DFA

= E(5,
= E(@) = &

ANOTHER Example: NFA — DFA conversion

NFA

ANOTHER Example: NFA — DFA conversion

NFA

O, (13}, b)
= E(5_,(3, b))

= E(Q) = &

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

5,.,({1,2},)

= E(., (1,a)Us _(2,a))

= E(©¥ U {3}) ={1,3}

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

o__({1,2}, b)

DFA

= E(5_.,(1,b) U3 (2,b))

= E({23}U Q) ={1,2,3} !

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

Oprali1,3}, @)

DFA

= E@G_,(1,.a)Us__ (3,a))

= E(QUQ) =0

ANOTHER Example: NFA — DFA conversion
NFA 5 DFA

o__.({1,3}, b)

DFA

= E(5_.,(1,b) U3 (3,b))

= E({23}U Q) ={1,2,3} !

ANOTHER Example: NFA — DFA conversion

NFA

Oprall2,3}, a)

DFA

= E(8tU Q) =11,3;

ANOTHER Example: NFA — DFA conversion

NFA

Oprall2,3}, b)

DFA

= E(QUQ) =0

ANOTHER Example: NFA — DFA conversion

NFA

{1,2,3}, a)

DFA(

ANOTHER Example: NFA — DFA conversion

{1,2,3}, b)

DFA(

ANOTHER Example: NFA — DFA conversion

NFA

ANOTHER Example: NFA — DFA conversion

NFA

We can delete the

unreachable states.

