

●All languages
●Decidable

Turing machines
●NP
●P
●Context-free

Context-free grammars, push-down automata
●Regular

Automata, non-deterministic automata,

regular expressions

Big picture

DFA (Deterministic Finite Automata)

q0 qa

1

1

0

0

1

00
1

DFA (Deterministic Finite Automata)

q0 qa

1

1

0

0

● States , this DFA has 4 states

● Transitions

labelled with elements of the alphabet S = {0,1}

1

00
1

DFA (Deterministic Finite Automata)

q0 qa

 Computation on input w:
● Begin in start state
● Read input string in a one-way fashion
● Follow the arrows matching input symbols
● When input ends: ACCEPT if in accept state

 REJECT if not

1

1

0

0

q0

1

00
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0always start in start state

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 0011 ACCEPT

 because end in

 accept state

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0always start in start state

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string

 w = 010 REJECT

 because does not

 end in accept state

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

Example: Input string w = 01 ACCEPT

 w = 010 REJECT

 w = 0011 ACCEPT

 w = 00110 REJECT

1

1

1

0

0

0

0
1

DFA (Deterministic Finite Automata)

q0 qa

M recognizes language

 L(M) = { w : w starts with 0 and ends with 1 }

L(M) is the language of strings causing M to accept

Example: 0101 is an element of L(M), 0101  L(M)

1

1

1

0

0

0
M :=

0
1

Example
M :=

● 00 causes M to accept, so 00 is in L(M) 00  L(M)
● 01 does not cause M to accept, so 01 not in L(M),

 01  L(M)
● 0101  L(M)
● 01101100  L(M)
● 011010  L(M)

S = {0,1}
q0 q1

1
0

0

1

Example
q0 q1

1

M :=

0

L(M) = {w : w has an even number of 1 }

Note: If there is no 1, then there are zero 1,

zero is an even number, so M should accept.

Indeed 0000000  L(M)

S = {0,1} 0

1

Example
M :=

0

● L(M) = ?

1

S = {0,1}

Example
M :=

0

● L(M) = every possible string over {0,1}

 = {0,1}*

1

S = {0,1}

Example

M :=
0

● L(M) = ?

1

S = {0,1}

0

1
q0

0

1

Example

M :=
0

● L(M) = all strings over {0,1} except empty string e

 = {0,1}* - { e }

1

S = {0,1}

0

1
q0

0

1

Example

M :=

0S = {0,1}

1

q0

0

1

1
1

0

0

1 0

● L(M) = ?

Example

M :=

● L(M) = { w : w starts and ends with same symbol }
● Memory is encoded in … what ?

0S = {0,1}

1

q0

0

1

1
1

0

0

1 0

Example

M :=

● L(M) = { w : w starts and ends with same symbol }
● Memory is encoded in states.

 DFA have finite states, so finite memory

0S = {0,1}

1

q0

0

1

1
1

0

0

1

Remember 0

Remember 1
0

Convention:

q0 qa

We already saw that

 L(M) = { w : w starts with 0 and ends with 1 }

The arrow leads to a “sink” state.

 If followed, M can never accept

1

1

1

0

0

0
M :=

q0

1

0
1

Convention:

q0 qa

Don't need to write such arrows:

If, from some state, read symbol with no

corresponding arrow, imagine M goes into “sink state”

that is not shown, and REJECT.

This makes pictures more compact.

1

1

0

0

0
M :=

Another convention:

List multiple transition on same arrow:

Means

This makes pictures more compact.

0,1,2

1
0

2

Example ∑ = {0,1}

M

=

L(M) = ?

0,10,1

Example ∑ = {0,1}

M

=

L(M) = ∑2 = {00,01,10,11}

0,10,1

Example from programming languages:

Recognize strings representing numbers:

S = {0,1,2,3,4,5,6,7,8,9, +, -, . }

0,...,9

+

-

.
0,...,9

0,...,9
0,...,9

Note: 0,...,9 means 0,1,2,3,4,5,6,7,8,9: 10 transitions

Example from programming languages:

Recognize strings representing numbers:

S = {0,1,2,3,4,5,6,7,8,9, +, -, . }

0,...,9

+

-

.
0,...,9

Possibly put sign (+, -)

Follow with arbitrarily many digits, but at least one

Possibly put decimal point

Follow with arbitrarily many digits, possibly none

0,...,9
0,...,9

Example from programming languages:

Recognize strings representing numbers:

S = {0,1,2,3,4,5,6,7,8,9, +, -, . }

0,...,9

+

-

.
0,...,9

Input w = 17 ACCEPT

Input w = + REJECT

Input w = -3.25 ACCEPT

Input w = +2.35-. REJECT

0,...,9
0,...,9

Example

● What about { w : w has same number of 0 and 1 }

● Can you design a DFA that recognizes that?

● It seems you need infinite memory

● We will prove later that

there is no DFA that recognizes that language !

S = {0,1}

Next: formal definition of DFA

● Useful to prove various properties of DFA

● Especially important to prove that things CANNOT be

 recognized by DFA.

● Useful to practice mathematical notation

State diagram of a DFA:

●One or more states

●Exactly one start state

●Some number of accept states

●Labelled transitions exiting each state,

for every symbol in S

1

●Definition: A finite automaton (DFA)
 is a 5-tuple (Q, S, d, q0, F) where

●Q is a finite set of states
●S is the input alphabet
●d : Q X S → Q is the transition function
●q0 in Q is the start state

●F  Q is the set of accept states

Q X S is the set of ordered pairs (a,b) : a Q, b ∑∈ ∈
Example {q,r,s}X{0,1}={(q,0),(q,1),(r,0),(r,1),(s,0),(s,1)}

●Example: above DFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = ?

q0 q1
1

0
0

1

●Example: above DFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = q0 d(q0 ,1) = ?

q0 q1
1

0
0

1

●Example: above DFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = q0 d(q0 ,1) = q1

d(q1 ,0) = q1 d(q1 ,1) = q0

●q0 in Q is the start state

●F = ?

q0 q1
1

0
0

1

●Example: above DFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = q0 d(q0 ,1) = q1

d(q1 ,0) = q1 d(q1 ,1) = q0

●q0 in Q is the start state

●F = { q0}  Q is the set of accept states

q0 q1
1

0
0

1

●Definition: A DFA (Q, S, d, q0, F) accepts a string w if

●w = w1 w2 … wk where,  1  i  k, wi is in S

(the k symbols of w)

●The sequence of k+1 states r0, r1, .., rk such that:

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k

has rk in F

(ri = state DFA is in after reading i-th symbol in w)

●Above DFA (Q, S, d, q0, F) accepts w = 011

q0 q1
1

0
0

1
Example

●Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

q0 q1
1

0
0

1
Example

●Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

We must show that
●The sequence of 3+1=4 states r0, r1, r2, r3 such that:

(1) r0 = q0

 (2) ri+1 = d(ri ,wi+1)  0  i < 3

has r3 in F

q0 q1
1

0
0

1
Example

●Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

● r0 = q0

● r1 := ?

q0 q1
1

0
0

1
Example

●Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

● r0 = q0

● r1 = d(r0 ,w1)=d(q0 ,0) = q0

●r2 := ?

q0 q1
1

0
0

1
Example

●Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

● r0 = q0

● r1 = d(r0 ,w1)=d(q0 ,0) = q0

● r2 = d(r1 ,w2)=d(q0 ,1) = q1

● r3 := ?

q0 q1
1

0
0

1
Example

●Above DFA (Q, S, d, q0, F) accepts w = 011

● w = 011 = w1 w2 w3 w1 = 0 w2 = 1 w3 = 1

● r0 = q0

● r1 = d(r0 ,w1)=d(q0 ,0) = q0

● r2 = d(r1 ,w2)=d(q0 ,1) = q1

● r3 = d(r2 ,w3)=d(q1 ,1) = q0

● r3 = q0 in F OK DONE!

q0 q1
1

0
0

1
Example

● Definition: For a DFA M, we denote by L(M) the set

of strings accepted by M:

 L(M) := { w : M accepts w}

We say M accepts or recognizes the language L(M)

● Definition: A language L is regular

 if $ DFA M : L(M) = L

 In the next lectures we want to:

● Understand power of regular languages

● Develop alternate, compact notation to specify

regular languages

Example: Unix command grep '\<c.*h\>' file

selects all words starting with c and ending with h

in file

● Understand power of regular languages:

● Suppose A, B are regular languages, what about
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● Are these languages regular?

● Understand power of regular languages:

● Suppose A, B are regular languages, what about
● not A := { w : w is not in A }
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● Terminology: Are regular languages closed

 under not, U, o, * ?

●Theorem:

 If A is a regular language, then so is (not A)

●Theorem:

 If A is a regular language, then so is (not A)

●Proof idea: ?????????? the set of accept states

●Theorem:

 If A is a regular language, then so is (not A)

●Proof idea: Complement the set of accept states
●Example

●Theorem:

 If A is a regular language, then so is (not A)

●Proof idea: Complement the set of accept states
●Example:

q0 q1

1
0 0

1

L(M) =

{ w : w has even number of 1}

M :=

●Theorem:

 If A is a regular language, then so is (not A)

●Proof idea: Complement the set of accept states
●Example:

q0 q1

1
0 0

1

L(M) =

{ w : w has even number of 1}

M :=

q0 q1

10 0

1
M' :=

L(M') = not L(M) =

{ w : w has odd number of 1}

●Theorem: If A is a regular language, then so is (not A)
●Proof:
Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = ??????????????????????????

This definition is the creative step of this proof,

the rest is (perhaps complicated but) mechanical

“unwrapping definitions”

●Theorem: If A is a regular language, then so is (not A)
●Proof:
Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = (Q, S, d, q0, F'), where F' := not F.

●We need to show L(M') = not L(M), that is:

for any w, ??????????????????????????

●Theorem: If A is a regular language, then so is (not A)
●Proof:
Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = (Q, S, d, q0, F'), where F' := not F.

●We need to show L(M') = not L(M), that is:

for any w, M' accepts w M does not accept w.

●So let w be any string of length k, and consider the
k+1 states r0, r1, .., rk from the definition of accept:

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k.

How do we conclude?

●Theorem: If A is a regular language, then so is (not A)
●Proof:
Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = (Q, S, d, q0, F'), where F' := not F.

●We need to show L(M') = not L(M), that is:

for any w, M' accepts w M does not accept w

●So let w be any string of length k, and consider the
k+1 states r0, r1, .., rk from the definition of accept:

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k.

Note that rk in F' r k not in F, since F' = not F. 

What is a proof?

●A proof is an explanation, written in English, of why

something is true.

●Every sentence must be logically connected to the

previous ones, often by “so”, “hence”, “since”, etc.

●Your audience is a human being, NOT a machine.

●Theorem: If A is a regular language, then so is (not A)
●Proof:

DFA M = (Q, S, d, q0, F) such that L(M) = A.

DFA M' = (Q, S, d, q0, F'), where F' := not F.

L(M') = not L(M)

 M' accepts w M does not accept w

k+1 states r0, r1, .., rk

(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k.

rk in F' r k not in F, F' = not F. 

What is a proof?

Complement the set of accept states

Given DFA M = (Q, S, d, q0, F) such that L(M) = A.

Define DFA M' = (Q, S, d, q0, F'), where F' := not F.
●We need to show L(M') = not L(M), that is:
for any w, M' accepts w M does not accept w

●Consider the k+1 states r0, r1, .., rk such that:
(1) r0 = q0, and

(2) ri+1 = d(ri ,wi+1)  0  i < k.
Note that rk in F' r k not in F, since F' = not F. 

To know a proof means to know all the pyramid

Example ∑ = {0,1}

M

=

L(M) = ∑2 = {00,01,10,11}

What is a DFA M' :

L(M') = not ∑2 = all strings except those of length 2 ?

0,10,1

Example ∑ = {0,1}

M'

=

L(M') = not ∑2 = {0,1}* - {00,01,10,11}

Do not forget the convention about the sink state!

0,10,1 0,10,1 0,10,1

● Suppose A, B are regular languages, what about
● not A := { w : w is not in A } REGULAR
● A U B := { w : w in A or w in B }
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

●Theorem: If A, B are regular, then so is A U B

●Proof idea: Take Cartesian product of states

 In a pair (q,q'),

 q tracks DFA for A,

 q' tracks DFA for B.

●Next we see an example.

 In it we abbreviate

 with

1

1

1

a b
1

0 0

L(MA) = A = ?

MA := c d

1 1

0MB :=

L(MB) = B = ?

Example

a b
1

0 0

L(MA) = A =

{ w : w has even number of 1}

MA := c d

1 1

0MB :=

L(MB) = B =

{ w : w has odd number of 0}

MAUB := How many states?

Example

a b
1

0 0

L(MA) = A =

{ w : w has even number of 1}

MA := c d

1 1

0MB :=

L(MB) = B =

{ w : w has odd number of 0}

MAUB := a,c

0

a,d

b,c
1

0

1

Example

b,d

L(MAUB) = AUB =

{ w : w has even number of 1,

 or odd number of 0}

●Theorem: If A, B are regular, then so is A U B
●Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := ?

●Theorem: If A, B are regular, then so is A U B
●Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := QA X QB

q0 := ?

●Theorem: If A, B are regular, then so is A U B
●Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := QA X QB

q0 := (qA , qB)

F := ?

●Theorem: If A, B are regular, then so is A U B
●Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := QA X QB

q0 := (qA , qB)

F := {(q,q') Q : q F∈ ∈ A or q' F∈ B }

δ((q,q'), v) := (?, ?)

●Theorem: If A, B are regular, then so is A U B
●Proof:
Given DFA MA = (QA,S, δA,qA, FA) such that L(M) = A,

 DFA MB = (QB,S, δB,qB, FB) such that L(M) = B.

Define DFA M = (Q, S, d, q0, F), where

Q := QA X QB

q0 := (qA , qB)

F := {(q,q') Q : q F∈ ∈ A or q' F∈ B }

δ((q,q'), v) := (δA (q,v), δB (q',v))

● We need to show L(M) = A U B that is, for any w:
M accepts w M A accepts w or MB accepts w

●Proof of M accepts w M A accepts w or MB accepts w

●Suppose that M accepts w of length k.
●From the definitions of accept and M, the sequence
(s0 , t0) = q0 = (qA , qB),

(si+1,ti+1)=d((si,ti) ,wi+1)=(δA(si,wi+1), δB(ti,wi+1) 0i< k

 has (sk,tk) ∈?

●Proof of M accepts w M A accepts w or MB accepts w

●Suppose that M accepts w of length k.
●From the definitions of accept and M, the sequence
(s0 , t0) = q0 = (qA , qB),

(si+1,ti+1)=d((si,ti) ,wi+1)=(δA(si,wi+1), δB(ti,wi+1) 0i< k

 has (sk,tk) F.∈
●By our definition of F, what can we say about (sk,tk) ?

●Proof of M accepts w M A accepts w or MB accepts w

●Suppose that M accepts w of length k.
●From the definitions of accept and M, the sequence
(s0 , t0) = q0 = (qA , qB),

(si+1,ti+1)=d((si,ti) ,wi+1)=(δA(si,wi+1), δB(ti,wi+1) 0i< k

 has (sk,tk) F.∈
●By our definition of F, sk F∈ A or tk F∈ B.

●Without loss of generality, assume sk F∈ A.

●Then MA accepts w because the sequence

s0 = qA , si+1 = δA (si , wi+1) 0 ≤ i < k,∀
has sk F∈ A .

●Proof of M accepts w M A accepts w or MB accepts w

●W/out loss of generality, assume MA accepts w, |w|=k.

●From the definition of MA accepts w, the sequence

r0 := qA, ri+1 := δA (ri ,wi+1)  0  i < k, has rk in ?

●Proof of M accepts w M A accepts w or MB accepts w

●W/out loss of generality, assume MA accepts w, |w|=k.

●From the definition of MA accepts w, the sequence

r0 := qA, ri+1 := δA (ri ,wi+1)  0  i < k, has rk in FA .

●Define the sequence of k+1 states
 t0 := qB , ti+1 := δB (ti ,wi+1)  0  i < k.

●M accepts w because the sequence

 ?????????? (recall states in M are pairs)

●Proof of M accepts w M A accepts w or MB accepts w

●W/out loss of generality, assume MA accepts w, |w|=k.

●From the definition of MA accepts w, the sequence

r0 := qA, ri+1 := δA (ri ,wi+1)  0  i < k, has rk in FA .

●Define the sequence of k+1 states
 t0 := qB , ti+1 := δB (ti ,wi+1)  0  i < k.

●M accepts w because the sequence
(r0 , t0) = q = (qA , qB),

(ri+1,ti+1) =d((ri,ti) ,wi+1)=(δA(ri,wi+1),δB(ti,wi+1) 0i< k

has (rk,tk) in F, by our definition of F. 

● Suppose A, B are regular languages, what about
● not A := { w : w is not in A } REGULAR
● A U B := { w : w in A or w in B } REGULAR
● A o B := { w1 w2 : w1 in A and w2 in B }

● A* := { w1 w2 … wk : k  0 , wi in A for every i }

● Other two are more complicated!

●Plan: we introduce NFA

 prove that NFA are equivalent to DFA

 reprove A U B, prove A o B, A* regular, using NFA

Non deterministic finite automata (NFA)

● DFA: given state and input symbol,

 unique choice for next state,

deterministic:

●Next we allow multiple choices,

non-deterministic

●We also allow e-transitions:

can follow without reading anything

1

1

1

e

Example of NFA

Intuition of how it computes:
●Accept string w if there is a way to follow transitions

that ends in accept state
●Transitions labelled with symbol in S = {a,b}

 must be matched with input
●e transitions can be followed without matching

q0

q1
q2

e

a,b

b

a

a

Example of NFA

Example:
● Accept a (first follow e-transition)
● Accept baaa

q0

q1
q2

e

a,b

b

a

a

ANOTHER Example of NFA

q0

q1

q2

q3
e

b

b

a,b

a

b

Example:
● Accept bab (two accepting paths, one

 uses the e-transition)
● Reject ba (two possible paths, but neither
 has final state = q

1
)

●Definition: A non-deterministic finite automaton (NFA)
 is a 5-tuple (Q, S, d, q0, F) where

●Q is a finite set of states
●S is the input alphabet
●d : Q X (S U {e}) → Powerset(Q)
●q0 in Q is the start state

●F  Q is the set of accept states

●Recall: Powerset(Q) = set of all subsets of Q

Example: Powerset({1,2}) = ?

●Definition: A non-deterministic finite automaton (NFA)
 is a 5-tuple (Q, S, d, q0, F) where

●Q is a finite set of states
●S is the input alphabet
●d : Q X (S U {e}) → Powerset(Q)
●q0 in Q is the start state

●F  Q is the set of accept states

●Recall: Powerset(Q) = set of all subsets of Q

Example: Powerset({1,2}) = {, {1}, {2}, {1,2} }

●Example: above NFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = ?

q0 q1
e0, 1

1

●Example: above NFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = {q0} d(q0 ,1) = ?

q0 q1
e0, 1

1

●Example: above NFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = ?

q0 q1
e0, 1

1

●Example: above NFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) = ?

q0 q1
e0, 1

1

●Example: above NFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) =  d(q1 ,1) = ?

q0 q1
e0, 1

1

●Example: above NFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) =  d(q1 ,1) =  d(q1 ,e) = ?

q0 q1
e0, 1

1

●Example: above NFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) =  d(q1 ,1) =  d(q1 ,e) = {q0}

●q0 in Q is the start state

●F = ?

q0 q1
e0, 1

1

●Example: above NFA is 5-tuple (Q, S, d, q0, F) where

●Q = { q0, q1}

●S = {0,1}
●d(q0 ,0) = {q0} d(q0 ,1) = {q0, q1} d(q0 ,e) = 

d(q1 ,0) =  d(q1 ,1) =  d(q1 ,e) = {q0}

●q0 in Q is the start state

●F = { q1}  Q is the set of accept states

q0 q1
e0, 1

1

●Definition: A NFA (Q, S, d, q0, F) accepts a string w if

$ integer k, k strings ∃ w1 , w2 , …, wk such that

●w = w1 w2 … wk where  1  i  k, wi  S U {e}

(the symbols of w, or e)

●$ sequence of k+1 states r0, r1, .., rk in Q such that:

● r0 = q0

● ri+1  d(ri ,wi+1)  0  i < k
● rk is in F

●Differences with DFA are in green

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = ?

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = ?

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = ?

Transitions:
r1  d(r

0
,b) = {q

1
}

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = q

2
, r

3
 = ?

Transitions:
r1  d(r

0
,b) = {q

1
} r2  d(r

1
,a) = {q

1
,q

2
}

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = q

2
, r

3
 = q

0
, r

4
 = ?

Transitions:
r1  d(r

0
,b) = {q

1
} r2  d(r

1
,a) = {q

1
,q

2
}

r3  d(r
2
,a) = {q

0
}

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = q

2
, r

3
 = q

0
, r

4
 = q

2
, r

5
 = ?

Transitions:
r1  d(r

0
,b) = {q

1
} r2  d(r

1
,a) = {q

1
,q

2
}

r3  d(r
2
,a) = {q

0
} r4  d(r

3
,e) = {q

2
}

Back to first example NFA:
q0

q1
q2

e

a,b

b

a

a

Accepts w = baaa
 w

1
 = b, w

2
 = a, w

3
 = a, w

4
= e, w

5
 = a

Accepting sequence of 5+1 = 6 states:
 r

0
 = q

0
, r

1
 = q

1
, r

2
 = q

2
, r

3
 = q

0
, r

4
 = q

2
, r

5
 = q

0

Transitions:
r1  d(r

0
,b) = {q

1
} r2  d(r

1
,a) = {q

1
,q

2
}

r3  d(r
2
,a) = {q

0
} r4  d(r

3
,e) = {q

2
} r5  d(r

4
,a) = {q

0
}

●NFA are at least as powerful as DFA,

 because DFA are a special case of NFA

●Are NFA more powerful than DFA?

●Surprisingly, they are not:

●Theorem:

For every NFA N there is DFA M : L(M) = L(N)

●Theorem:

For every NFA N there is DFA M : L(M) = L(N)

●Construction without e transitions
●Given NFA N (Q, S, d, q, F)
●Construct DFA M (Q', S, d', q', F') where:
●Q' := Powerset(Q)
●q' = {q}
●F' = { S : S  Q' and S contains an element of F}
● d'(S, a) := Us  S d(s,a)

 = { t : t  d (s,a) for some s  S }

●It remains to deal with e transitions

●Definition: Let S be a set of states.

E(S) := { q : q can be reached from some state

 s in S traveling along 0 or more e transitions }

●We think of following e transitions at beginning, or

right after reading an input symbol in S

●Theorem:

For every NFA N there is DFA M : L(M) = L(N)

●Construction including e transitions
●Given NFA N (Q, S, d, q, F)
●Construct DFA M (Q', S, d', q', F') where:
●Q' := Powerset(Q)
●q' = E({q})
●F' = { S : S  Q' and S contains an element of F}
● d'(S, a) := E(Us  S d(s,a))

 = { t : t  E(d (s,a)) for some s  S }

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1
{1,3}

{2} {2,3}

{3} 

{1,2,3}

{1} {1,2}

Q
DFA

 = Powerset(Q
NFA

)

 = Powerset({1,2,3})

 = {,{1},{2},{3},{1,2}...}

Example: NFA → DFA conversion

e

a,b

b
a

a

1

2 3

NFA DFA

q
DFA

 = E({q
NFA

})

 = E({1})

 = {1,3}

{1,3}

{2} {2,3}

{3} 

{1,2,3}

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

F
DFA

 = {S : S contains

 an element of F
NFA

}

DFA

{1,3}

{2} {2,3}

{3} 

{1,2,3}

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({1}, a)

= E(d
NFA

(1, a))

= E() = 

DFA

{1,3}

{2} {2,3}

{3} 

{1,2,3}

a{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({1}, b)

= E(d
NFA

(1, b))

= E({2}) = {2}

DFA

{1,3}

{2} {2,3}

{3} 

{1,2,3}

a

b

{1} {1,2}

a

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({2}, a)

= E(d
NFA

(2, a))

= E({2,3}) = {2,3}

DFA

{1,3}

{2} {2,3}

{3} 

{1,2,3}

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({2}, b)

= E(d
NFA

(2, b))

= E({3}) = {3}

DFA

{1,3}

{2} {2,3}
a

{3}

b



{1,2,3}

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({3}, a)

= E(d
NFA

(3, a))

= E({1}) = {1,3}

DFA

{1,3}

{2} {2,3}
a

{3}

b

a


{1,2,3}

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({3}, b)

= E(d
NFA

(3, b))

= E() = 

DFA

{1,3}

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({2,3}, a)

= E(d
NFA

(2,a) U d
NFA

(3,a))

= E({2,3} U {1}) = {1,2,3}

DFA

{1,3}

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

a

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({2,3}, b)

= E(d
NFA

(2,b) U d
NFA

(3,b))

= E({3} U ) = {3}

DFA

{1,3}

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({1,3}, a)

= E(d
NFA

(1,a) U d
NFA

(3,a))

= E( U {1}) = {1,3}

DFA

{1,3}

a

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA

1

d
DFA

({1,3}, b)

= E(d
NFA

(1,b) U d
NFA

(3,b))

= E({2} U ) = {2}

DFA

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a

b

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

({1,2}, a)

= E(d
NFA

(1,a) U d
NFA

(2,a))

= E( U {2,3}) = {2,3}

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a
ab

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

({1,2}, b)

= E(d
NFA

(1,b) U d
NFA

(2,b))

= E({2} U {3}) = {2,3}

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a
a,bb

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

({1,2,3}, a)

=E(d
NFA

(1,a) U d
NFA

(2,a) U d
NFA

(3,a))

=E( U {2,3} U {1}) = {1,2,3}

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

a

a
a,bb

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

({1,2,3}, b)

=E(d
NFA

(1,b) U d
NFA

(2,b) U d
NFA

(3,b))

=E({2} U {3} U ) = {2,3}

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

b

a

a
a,bb

{1} {1,2}

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

d
DFA

(, a) = 

d
DFA

(, b) = 

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

b

a

a
a,bb

{1} {1,2}

a,b

Example: NFA → DFA conversion

e

a,b

b
a

a

2 3

NFA DFA

1

We can delete the

unreachable states.

{1,3}

a

b

{2} {2,3}
a

{3}

b

a
b

{1,2,3}

b

a

b

a

a,b

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

Q
DFA

 = Powerset(Q
NFA

)

 = Powerset({1,2,3})

 = {,{1},{2},{3},{1,2}...}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

q
DFA

 = E({q
NFA

})

 = E({1})

 = {1}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

F
DFA

 = {S : S contains

 an element of F
NFA

}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1}, a)

= E(d
NFA

(1, a))

= E() = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

ba

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1}, b)

= E(d
NFA

(1, b))

= E({2,3}) = {1,2,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

ba

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({2}, a)

= E(d
NFA

(2, a))

= E({3}) = {1,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

ba

b

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({2}, b)

= E(d
NFA

(2, b))

= E() = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa

b

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({3}, a)

= E(d
NFA

(3, a))

= E() = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

b

a

3

1 2

e
a

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({3}, b)

= E(d
NFA

(3, b))

= E() = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

b

a

3

1 2

e
a

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,2}, a)

= E(d
NFA

(1,a) U d
NFA

(2,a))

= E( U {3}) = {1,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

b

a

3

1 2

e
a

b

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,2}, b)

= E(d
NFA

(1,b) U d
NFA

(2,b))

= E({2,3} U ) = {1,2,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

ab

a

3

1 2

e
a

b

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,3}, a)

= E(d
NFA

(1,a) U d
NFA

(3,a))

= E( U ) = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a bb

a

3

1 2

e
a

b

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,3}, b)

= E(d
NFA

(1,b) U d
NFA

(3,b))

= E({2,3} U ) = {1,2,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a bb

a

3

1 2

e
a

b

b

a

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({2,3}, a)

= E(d
NFA

(2,a) U d
NFA

(3,a))

= E({3} U ) = {1,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a bb

a

3

1 2

e
a

b

b

b

a

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({2,3}, b)

= E(d
NFA

(2,b) U d
NFA

(3,b))

= E( U ) = 

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a a
bb

a

3

1 2

e
a

b

b

b

a

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,2,3}, a)

=E(d
NFA

(1,a) U d
NFA

(2,a) U d
NFA

(3,a))

=E( U {3} U ) = {1,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a a
bb

a

3

1 2

e
a

b

b

b

a

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

d
DFA

({1,2,3}, b)

=E(d
NFA

(1,b) U d
NFA

(2,b) U d
NFA

(3,b))

=E({2,3} U  U ) = {1,2,3}

{1}

 {1,2,3}

{1,3}

{3}

{2,3}

{2}
{1,2}

baa,b

a a
bb

a

3

1 2

a

b

a

b

b

a

ANOTHER Example: NFA → DFA conversion

NFA DFA

e

b

b

d
DFA

(, a) = 

d
DFA

(, b) = 

a,b

{1}

 {1,2,3}

{1,3}

ba

a a
b

3

1 2

e
a

b

b

b

ANOTHER Example: NFA → DFA conversion

NFA DFA

We can delete the

unreachable states.

a,b

