Problems

Problem 1 [generator for \(P = \text{BPP} \)]: Suppose that for every \(n \) there is a generator \(G : \{0, 1\}^{c \log n} \rightarrow \{0, 1\}^n \) that fools circuits of size \(n \) with error \(1/n \), where \(c \) is an absolute constant. Suppose that there is an algorithm that, given \(x \in \{0, 1\}^{c \log n} \), computes \(G(x) \in \{0, 1\}^n \) in time polynomial in \(n = |G(x)| \). (This time requirement to compute the generator is more relaxed than the one seen in class, and is sufficient for this problem.)

Prove that \(P = \text{BPP} \).

Where is your proof using that the generator fools circuits, as opposed to polynomial-time algorithms?

Problem 2 [parameters of the generator for constant-depth circuits]: Assuming (1) the Nisan-Wigderson theorem (together with the remark that the reduction in the proof of correctness increases the depth by a constant at most), (2) the design construction via polynomials, and (3) the correlation bound for parity, prove (i.e., work out the parameters establishing) that for every \(d \) there is an explicit generator \(G : \{0, 1\}^{\log c \cdot d n} \rightarrow \{0, 1\}^n \) that fools circuits of size \(n \) and depth \(d \) with error \(1/n \), where \(c \) is an absolute constant.

Problem 3 [application of the generator for constant-depth circuits]: Somebody hands you an algorithm \(M : (\{0, 1\}^a)^b \rightarrow \{0, 1\} \) that on input \((x_1, \ldots, x_b) \in (\{0, 1\}^a)^b \) evaluates to 1 if and only if for every \(i, x_i \in A_i \), where \(A_1, \ldots, A_b \) are subsets of \(\{0, 1\}^a \).

Exhibit a trivial algorithm that makes \(2^a \cdot b \) queries to \(M \) and computes an approximation \(\epsilon \) to the volume \(\prod_{i=1}^b |A_i|/2^a \) such that \(|\epsilon - \prod_{i=1}^b |A_i|/2^a| \leq 1/100 \).

Now derive an algorithm that gives the same approximation but makes \(2^{\text{poly}(a, \log b)} \) queries to \(M \) (which for \(b \gg a \) is much less). Hint: Use Problem 2.

Problem 4 [constant-depth vs. majority]:

(1) Prove that the majority function on \(n \) bits requires (unbounded fan-in) circuits of depth \(d \) and size \(w \geq \exp\left(n^{\Omega(1/d)}\right) \) (i.e., qualitatively the same bound we obtained in class for the parity function). Hint: If you could compute majority with these resources, then you could compute parity as well.

(2) Exhibit a circuit of depth \(O(1) \) and size \(O(1) \) that has correlation at least \(1/n^{O(1)} \) with the majority function. Hint: The circuit is simple.

(3) Construct a circuit \(C \) of depth \(d = O(1) \) and size \(n^{O(1)} \) that computes approximate majority, i.e., for any input \(x \in \{0, 1\}^n \) whose hamming weight is at least \(2n/3 \), \(C(x) = 1 \), while for any input \(x \in \{0, 1\}^n \) whose hamming weight is at most \(n/3 \), \(C(x) = 0 \). The value of the circuit can be arbitrary on inputs whose hamming weight is between \(n/3 \) and \(2n/3 \). Hint: Build \(C \) incrementally and using the probabilistic method. As a first step, consider
the AND of $c \cdot \log n$ randomly selected input variables. Analyze the probability that this AND evaluates to 1 in the two cases. Flip the answer and repeat.

Problem 5 [branching programs vs. circuits]:

(1) Prove that any function $f : \{0,1\}^n \rightarrow \{0,1\}$ computable by branching programs of length n and width n can be computed by fan-in 2 circuits of depth $O(\log^2 n)$.

(2) Strengthen (1) to obtain unbounded fan-in circuits of depth $O(\log n)$.

Problem 6 [universal traversal sequences]: Let d be a fixed constant. Prove that for every n there is a sequence $U = (u_1, \ldots, u_\ell) \in [d]^\ell$ such that for any d-regular undirected graph G on n nodes and any starting node s, walking from s in G according to U will touch every node connected to s in G. Explain why this implies that undirected reachability can be computed by branching programs of polynomial width and polynomial length.