
CSG399: Gems of Theoretical Computer Science. Lecture 8. Feb. 3, 2009.
Instructor: Emanuele Viola Scribe: Sathyaseelan Nethaji

Arithmetic in Log-Depth Circuits

In this lecture we show how small-depth circuit can implement various fundamental
arithmetic operations.

1 Addition

Input: Two n-bit Integers X, Y ∈ {0, 1}n.
Output: X + Y ∈ {0, 1}n+1.

Theorem 1. Addition is computable by polynomial-size circuits of unbounded fan-in and
depth O(1). In particular, addition is computable by fan-in 2 circuits of depth O(log n).

Proof. The difficulty in proving the above theorem is that the computation of the carries
appears sequential. Note however that if the carries cn, ..., c1 ∈ {0, 1} are given then each
bit of X + Y can be computed by circuits of size O(1) (and hence depth O(1)). Specifically
(X + Y )1 = X1 + Y1 + c1 where here “+” denotes bit XOR, and similarly for the other bits.

Our approach is to compute all the carries in parallel using carry look-ahead. Specifically
we note that the i-th carry is 1 if and only if there is some less significant position j < i
where the carry is generated and it is propagated up to i. This can be written as

ci = 1⇐⇒
∨
j<i

(
Xj = 1 ∧ Yj = 1

i−1∧
k=j+1

(Xk = 1 ∨ Yk = 1)

)
.

The above is an unbounded fan-in circuit of size poly(n) and depth O(1). By the claim from
last lecture, this can be implemented by a fan-in 2 circuit of depth O(log n).

2 Iterated Addition

Input: n n-bit integers x1, ..., xn ∈ {0, 1}n.
Output:

∑
xi.

If we are able to compute iterated addition in depth O(log n), then Majority can also be
computed in depth O(log n).

Theorem 2. Iterated Addition is computable by fan-in 2 circuits of depth O(log n).

Proof. We use the technique “2-out-of-3:” given 3 integers X, Y, Z, we compute 2 integers
a, b such that

X + Y + Z = a + b,
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where each bit of a, b is a function of one bit from X, one from Y , and one from Z, and
thus can be computed by a circuit of constant size. If you can do this, then to compute
iterated addition we construct a tree of logarithmic depth to reduce the original sum to a
sum 2 terms, which we add as explained before.

Proof of trick: Xi + Yi + Zi ≤ 3, so ai will get the least significant bit, bi+1 will get the
most significant one. Note that ai is the XOR Xi +Yi +Zi ∈ {0, 1}, while bi+1 is the majority
of Xi, Yi, Zi.

3 Multiplication

Input: X, Y n-bit integers,
Output: X · Y 2n-bit integer.

Theorem 3. Multiplication is computable by fan-in 2 circuits of depth O(log n).

Proof. “Shift and Add:” X · Y =
∑

i(X · 2i · bi). Each term (X · 2i · bi) is easily computable
in constant depth, since multiplication by 2i is just a bit shift. Then we apply iterated
addition.

4 Division

Input: X n-bit integer,
Output: 1/X to within n bits of precision.
Note: if we can compute 1/X, can compute Y/X as Y · 1/X.

To divide, we are going to power.

Theorem 4 (Powering). Given X n-bit integer, we can compute Xn by fan-in 2 depth
O(log n) circuits.

Theorem 5 (Division). Given X ≥ 0 n-bit integer, we can compute 1/X to within n bits of
precision by fan-in 2 circuits of depth O(log n).

Proof of Theorem 5 assuming Theorem 4. Given X, determine j such that 2j ≤ X < 2j+1,
let U := 1−X/2j+1 ∈ (0, 1/2). Using iterated addition and multiplication, compute

2−(j+1)(1 + U + U2 + ... + Un) = 2−(j+1) · 1− Un+1

1− U

= 2−(j+1) · 1− Un+1

X · 2−(j+1)
=

1

X
− Un+1

X
=

1

X
± 2−n.

To power (Theorem 4) we use various tools from number theory.
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5 Tools from number theory

Theorem 6 (Chinese Remainder Theorem). Let p1, ..., pl be distinct primes and p′ :=
∏

i pi.
Zp′ is isomorphic to Zp1 × . . .× Zpl

.
The forward direction of the isomorphism is given by x ∈ Zp′ → (x mod p1, x mod p2, ..., x

mod pl) ∈ Zp1 × ...× Zpl
.

For the converse direction, we claim that there exist integers e1, ..., el ≤ poly(p′) such that
(x mod p1, x mod p2, ..., x mod pl) ∈ Zp1 × ...× Zpl

→ x :=
∑l

i=1 ei · (x mod pi).

Each integer ei is 0 mod pj for j 6= i, is 1 mod pi, and can be found using the extended
euclidean algorithm.

For example, Z6 ' Z2 × Z3, and 2 + 3 = 5→ (0, 2) + (1, 0) = (1, 2).

We recall the following celebrated result on the density of prime numbers, a weak version
of which will be proved in the next lecture.

Theorem 7 (Prime number theorem). limn→∞(Number of primes ≤ n)/(n/ loge n) = 1.

6 Powering

Input: X ∈ {0, 1}n. Output: Xn.

Beginning of the proof of Theorem 4 that powering has fan-in 2 circuits of depth O(log n). Let
l := n3. We use the following algorithm:

1. Compute (X mod p1, X mod p2, . . . , X mod pl),

2. Compute (Xn mod p1, . . . , X
n mod pl),

3. Compute Xn.

Correctness: Observe Xn ≤ 2n2
, thus the correctness follows from the Chinese remain-

dering theorem if p′ :=
∏l

i=1 pi ≥ 2n2
, which follows immediately by our choice of l and the

fact that each prime is at least 2.
In the next class we will show that the above algorithm can be implemented by log-depth

circuits.
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