CSG399: Gems of Theoretical Computer Science. Lecture 8. Feb. 3, 2009.
Instructor: Emanuele Viola Scribe: Sathyaseelan Nethaji

Arithmetic in Log-Depth Circuits

In this lecture we show how small-depth circuit can implement various fundamental
arithmetic operations.

1 Addition

Input: Two n-bit Integers X,Y € {0, 1}".
Output: X +Y € {0,1}"+%,

Theorem 1. Addition is computable by polynomial-size circuits of unbounded fan-in and
depth O(1). In particular, addition is computable by fan-in 2 circuits of depth O(logn).

Proof. The difficulty in proving the above theorem is that the computation of the carries
appears sequential. Note however that if the carries ¢,,...,c; € {0,1} are given then each
bit of X 4+ Y can be computed by circuits of size O(1) (and hence depth O(1)). Specifically
(X +Y); = Xy + Y]+ ¢; where here “+” denotes bit XOR, and similarly for the other bits.

Our approach is to compute all the carries in parallel using carry look-ahead. Specifically
we note that the i-th carry is 1 if and only if there is some less significant position j < ¢
where the carry is generated and it is propagated up to ¢. This can be written as

i—1
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The above is an unbounded fan-in circuit of size poly(n) and depth O(1). By the claim from
last lecture, this can be implemented by a fan-in 2 circuit of depth O(logn). O

2 Iterated Addition

Input: n n-bit integers z1, ..., z,, € {0, 1}™.
Output: > ;.

If we are able to compute iterated addition in depth O(logn), then Majority can also be
computed in depth O(logn).

Theorem 2. [terated Addition is computable by fan-in 2 circuits of depth O(logn).

Proof. We use the technique “2-out-of-3:” given 3 integers X,Y, Z, we compute 2 integers
a, b such that
X+Y+Z=a+b,



where each bit of a,b is a function of one bit from X, one from Y, and one from Z, and
thus can be computed by a circuit of constant size. If you can do this, then to compute
iterated addition we construct a tree of logarithmic depth to reduce the original sum to a
sum 2 terms, which we add as explained before.

Proof of trick: X; +Y; + Z; < 3, so a; will get the least significant bit, b;,; will get the
most significant one. Note that a; is the XOR X;+Y;+ Z; € {0, 1}, while b, is the majority
of XZ‘, Y;, Zz ]

3 Multiplication

Input: X, Y n-bit integers,
Output: X -Y 2n-bit integer.

Theorem 3. Multiplication is computable by fan-in 2 circuits of depth O(logn).

Proof. “Shift and Add:” X -Y = > (X -2"-b;). Each term (X -2 b;) is easily computable
in constant depth, since multiplication by 2° is just a bit shift. Then we apply iterated
addition. O

4 Division
Input: X n-bit integer,
Output: 1/X to within n bits of precision.

Note: if we can compute 1/X, can compute Y/X as Y - 1/X.
To divide, we are going to power.

Theorem 4 (Powering). Given X n-bit integer, we can compute X™ by fan-in 2 depth
O(logn) circuits.

Theorem 5 (Division). Given X > 0 n-bit integer, we can compute 1/X to within n bits of
precision by fan-in 2 circuits of depth O(logn).

Proof of Theorem 5 assuming Theorem 4. Given X, determine j such that 2/ < X < 2/+1,
let U :=1— X/2/"! € (0,1/2). Using iterated addition and multiplication, compute
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To power (Theorem 4) we use various tools from number theory.



5 Tools from number theory

Theorem 6 (Chinese Remainder Theorem). Let py, ..., p; be distinct primes and p' := [, p;.
Ly 15 1somorphic to Zy, X ... X Ly,.

The forward direction of the isomorphism is given by x € Z,y — (x mod py,x mod pa, ..., x
mod p;) € Ly, X ... X Lyp,.

For the converse direction, we claim that there exist integers ey, ...,e; < poly(p') such that
(x mod py,x mod pa,...,x mod p;) € Ly, X ... X Ly, — T = Zﬁzl e; - (x mod p;).

Each integer e; is 0 mod p; for j # ¢, is 1 mod p;, and can be found using the extended
euclidean algorithm.
For example, Zg ~ Zs X Z3, and 2+ 3 =5 — (0,2) + (1,0) = (1, 2).

We recall the following celebrated result on the density of prime numbers, a weak version
of which will be proved in the next lecture.

Theorem 7 (Prime number theorem). lim,,_,..(Number of primes < n)/(n/log,n) = 1.

6 Powering
Input: X € {0,1}". Output: X"

Beginning of the proof of Theorem 4 that powering has fan-in 2 circuits of depth O(logn). Let
[ :=n3. We use the following algorithm:

1. Compute (X mod p1, X mod py, ..., X mod p),
2. Compute (X™ mod py,..., X" mod p),
3. Compute X".

Correctness: Observe X" < 2”2, thus the correctness follows from the Chinese remain-
dering theorem if p’ := Hi’:l p; > 2", which follows immediately by our choice of I and the
fact that each prime is at least 2.

In the next class we will show that the above algorithm can be implemented by log-depth
circuits. O



