CSG399: Gems of Theoretical Computer Science. Lectu Instructor: Emanuele Viola Scr

Lecture 28. Apr. 21, 2009. Scribe: Emanuele Viola

Natural Proofs

The central challenge of computational complexity is to prove lower bounds, i.e. exhibiting explicit functions that cannot be computed with limited resources. In this lecture we discuss the *Natural Proofs* result by Razborov and Rudich which shows that some of the known techniques for lower bounds fall in a class of techniques which, under well-known assumptions, cannot prove the strong, desired lower bounds such as that NP cannot be computed by polynomial-size circuits. In some cases, for example to establish an exponential lower bound for the discrete-log function, one needs no assumption but can prove unconditionally that the class of techniques cannot prove such bounds.

Informally, to show that some function $f : \{0,1\}^n \to \{0,1\}$ cannot be computed with limited resources (e.g., by small circuits), most lower bounds proceed by exhibiting some property P(f) of boolean functions such that:

- 1. P holds for functions computable with limited resources, and
- 2. P does not hold for f.

For example, when we showed that parity cannot be computed by small constant-depth circuits, the property P(f) was "f is approximable by a low-degree polynomial." For the communication lower bound, P was "R(f) is close to 1."

As it turns out, many lower bound proofs actually show more and give a property P that satisfies:

- I. (1, unchanged) P holds for functions computable with limited resources, and
- II. P does not hold for 2^{-cn} fraction of n-bit functions (i.e., a noticeable fraction of functions), and
- III. P is efficiently computable: Given a truth-table of length 2^n of a function $f : \{0, 1\}^n \to \{0, 1\}, P(f) \in \{0, 1\}$ can be computed by a circuit of size $\leq 2^{cn}$ (i.e., polynomial in the input length).

A proof that yields a property P satisfying the three conditions above is called *natural*. In the communication lower bound the quantity R is indeed efficiently computable (if k is not too large), and the same is true for many other properties in the literature. (Warning: as far as I know, it has not been pointed out whether the property we used for the lower bound for parity is efficiently computable, though related properties are.)

The idea is that such a proof will not work for models like polynomial-size circuits because the associated property P could be used to distinguish random functions (i.e., a random truth table of length 2^n) from functions $f: \{0, 1\}^n \to \{0, 1\}$ computable in the model. But this is known to be impossible under well-known assumptions. **Theorem 1.** Assume for every k there is a function $f : \{0,1\}^k \to \{0,1\}^k$ that is one-way with the following parameters:

- f is computable by circuits of size poly(k),
- f is $2^{k^{\Omega(1)}}$ -hard to invert.

Then, interpreting "limited resources" in (I) with "poly(n)-size circuits," we have that (I) + (II) + (III) is impossible.

As we discussed, a candidate function for the hypothesis of the theorem is basically integer multiplication (under the assumption that factoring integers is sufficiently hard).

Proof sketch. Set $k := n^d$ for d to be chosen later. From f, we construct a distribution $C_a : \{0, 1\}^n \to \{0, 1\}$ such that

- For every a, C_a is computable by circuits of size poly(n), and
- there is $\epsilon > 0$ (independent from d) such that any circuit D of size $2^{k^{\epsilon}}$ is fooled by C_a :

$$\left|\Pr_{a}[D(C_{a}(0)C_{a}(1)\ldots C_{a}(2^{n}-1))=1]-\Pr_{U}[D(U)=1]\right| \leq 2^{-k^{\epsilon}},$$

where U is the uniform distribution over truth-tables of length 2^n .

But this yields a contradiction as follows: P is computable by a circuit of size 2^{cn} (by III) and we have

$$\left|\Pr_{a}[P(C_{a}(0)C_{a}(1)\ldots C_{a}(2^{n}-1))=1]-\Pr_{U}[P(U)=1]\right| \geq 1-(1-2^{cn}) \geq 2^{cn},$$

where we use (I) and (II). This is a contradiction for $d = 2/\epsilon$.

How do we construct C_a ? The generic construction has two steps. First, we construct a length-doubling pseudorandom generator $G : \{0,1\}^{\ell} \to \{0,1\}^{2\ell}$ where $\ell = \text{poly}(k)$, then we use a tree construction to obtain C_a . The tree is binary; each node is an application of G whose input is half the output of the parent. The root is fed with a. The input to C_a specifies a path in the tree and the output is, say, the first bit of the leaf we reach.

This construction has large depth and is not usable for constant-depth circuits. But Naor and Reingold showed how, under more specific assumptions (the hardness of factoring is among them), a suitable C_a can be computed by unbounded fan-in depth-5 circuits with majority gates. So the natural proofs result already applies to this seemingly restricted computational model.