
CSG399: Gems of Theoretical Computer Science Lectures 13-14. Feb. 20-24, 2009
Instructor: Emanuele Viola Scribe: Eric Miles

Cryptography in constant depth: II & III

1 Locally computable randomized encodings

In the last lecture, we saw that a randomized encoding of a one-way function is itself also one-
way. In this lecture, we will exhibit randomized encodings which are “locally” computable,
in the sense that each output bit depends on a (small) constant number of input bits. We
start by recalling the definition.

Definition 1. A randomized encoding of a function f : {0, 1}n → {0, 1}n with blow-up t is
a function f ′ : {0, 1}n × {0, 1}t → {0, 1}t for which the following conditions hold:

1. ∀ x, x′, r, r′ : f(x) 6= f(x′) =⇒ f ′(x, r) 6= f ′(x′, r′).

2. There exists a distribution D on circuits C of size t such that for any fixed string x, the
distribution C(f(x)) (for C ∈ D) is identical to the distribution f ′(x, r) (for r ∈ Ut).

Without loss of generality, we will focus on randomized encodings of functions
f : {0, 1}n → {0, 1}, whose output is a single bit; the encodings can be concatenated to
handle the more general case.

1.1 An encoding via Barrington’s theorem

Let f : {0, 1}n → {0, 1} be computable by an O(log n)-depth circuit. Then, as seen in Lec-
ture 11, Barrington’s theorem gives a group program [(g0

1, . . . , g
0
`), (g1

1, . . . , g
1
`), (k1, . . . , k`)] ∈

(S5)
` × (S5)

` × [n]` which α-computes f . That is,

∀x ∈ {0, 1}n :
∏̀
i=1

g
xki
i = αf(x)

Note that S5 is the permutation group on five elements, and α is any cycle in S5.

Our first attempt at transforming this group program into a randomized encoding of f
is to define f ′(x) := (g

xk1
1 , . . . , g

xkl
l). We can check if the necessary properties are satisfied:

• It’s locally computable, because each element in the output depends on one bit of x.

• f(x) 6= f(x′)⇒ f ′(x) 6= f ′(x′)

• Unfortunately, we cannot hope to find a distributionD of circuits C such that C(f(x)) ≡
f ′(x), because the input to each circuit is only a single bit.

1

Notice that in the preceding construction, the encoding function f ′ has no random input
in addition to the string x. The problem we encountered can be fixed with the use of
randomness. Let r = (r1, . . . , r`−1) ∈ (S5)

`−1 be a set of random group elements. Then,
define the randomized encoding f ′ : {0, 1}n × (S5)

`−1 → (S5)
` as

f ′(x, r) :=
(
g

xk1
1 · r1, (r1)

−1 · gxk2
2 · r2, . . . , (r`−2)

−1 · g
xk`−1

`−1 · r`−1, (r`−1)
−1 · gxk`

`

)
We can again check the necessary properties, and this time they are all satisfied:

• It’s locally computable, as each output element depends on a fixed-size portion of the
input.

• For a fixed x and any r ∈ (S5)
`−1, the group product of the elements in f ′(x, r) is equal

to αf(x) by construction. Thus, f(x) 6= f(x′)⇒ ∀r, r′ : f ′(x, r) 6= f ′(x′, r′).

• For a fixed x, the first ` − 1 elements of f ′(x, r) are independently distributed over
S5 (because they use “fresh” randomness), and the last is dependent. So, we define a
distribution D over circuits by again letting r ∈ (S5)

`−1, and defining Cr(f(x)) to be

the circuit which outputs

(
r1, . . . , r`−1,

(∏`−1
i=1 ri

)−1

αf(x)

)
. It is easy to see that for

every fixed x, the distribution Cr(f(x)) is identical to f ′(x, r).

One drawback of the above construction is that our randomized encoding f ′ does not operate
on bits, as the size of S5 is not a power of two. (In fact, no group with size which is a
power of two will work for Barrington’s theorem.) Next, we describe a randomized encoding
which does operate on bits, and furthermore which begins with functions f computable by
branching programs of width n (a less restrictive class than was considered in this section).

1.2 An encoding via matrices

Let f : {0, 1}n → {0, 1} be a function computable by a branching program of width n and
length poly(n), and let m+ 1 = poly(n) be the number of nodes in the branching program.
This program naturally defines a DAG on m + 1 nodes, denoted as G, with the following
properties:

• there are two distinguished “start” and “accept” nodes

• each node is labeled with “xi”, for some i ∈ [n]

• each node has two outgoing edges labeled “0” and “1” (except those in the last layer
of the branching program, which have none)

We fix a topological ordering ϕ on the m+ 1 nodes such that ϕ(start) = 0, ϕ(accept) = m,
and u v ⇒ ϕ(u) < ϕ(v). Given any string x ∈ {0, 1}n, define Gx to be the graph induced
by x on G’s nodes. Specifically, any node labeled xi has only the outgoing edge labeled with
the ith bit of x. Then, we can see that f(x) = 1 iff the accept node is reachable from the

2

start node in Gx. For technical reasons, we also define Gx to have a self-edge on every node.

Consider the adjacency matrix of Gx, which we denote as M(x). With the nodes of Gx

ordered according to ϕ, M(x) is an upper-triangular matrix, with 1s along the diagonal, and
at most one additional 1 per row (to the right of the diagonal):

1 0 0 · · · 1 · · · 0
0 1 0 1 · · · 0 0
0 0 1 0 · · · 1 0

...
. . .

...

1 0
0 0 · · · 0 1


Then, we define L(x) to be M(x) with the first column and last row removed:

0 0 · · · 1 · · · 0
1 0 1 · · · 0 0
0 1 0 · · · 1 0

...
. . .

...

0 · · · 1 0


Note that L(x) is an m×m matrix. In a sense, L(x) corresponds to taking one step from the
start node: the column number of the 1 in the first row tells us to which node we stepped.
In the remainder of this section, we will see how to transform L(x) (through matrix multipli-
cations) into a matrix which contains f(x) in the upper right corner, and how this implies a
randomized encoding of f . To this end, we define two families of matrices. All the matrices
are over GF(2) = {0, 1}, so addition is bit XOR.

R1: the family of upper triangular matrices with 1s along the diagonal.
1 ∗ · · · ∗

1
. . . ∗

. . .
...

0 1 ∗
1

 .

Multiplying a matrix M on the left with a matrix in R1 corresponds to summing to each
row of M a linear combination of the rows below it. For example, 1 a b

0 1 c
0 0 1

 x1 y1 z1

x2 y2 z2

x3 y3 z3

 =

 x1 + ax2 + bx3 y1 + ay2 + by3 z1 + az2 + bz3

x2 + cx3 y2 + cy3 z2 + cz3

x3 y3 z3

 .

3

R2: the family of matrices with 1s along the diagonal, and any other 1s in the last column.
1 0 · · · 0 ∗

1
. . . ∗

. . . 0
...

0 1 ∗
1

 .

Multiplying a matrix M on the right with a matrix in R2 corresponds to summing to the
last column of M a linear combination of the other columns. For example, x1 y1 z1

x2 y2 z2

x3 y3 z3

 1 0 a
0 1 b
0 0 1

 =

 x1 y1 ax1 + by1 + z1

x2 y2 ax2 + by2 + z2

x3 y3 ax3 + by3 + z3

 .

It is important to note that both R1 and R2 are algebraic groups, which is not difficult to
see given the intuition of what types of operations multiplying by the matrices corresponds
to. We now show how to transform L(x) using these matrices.

Lemma 2. For all x ∈ {0, 1}n, there exist matrices r1 ∈ R1 and r2 ∈ R2 such that

r1 · L(x) · r2 =


0 · · · 0 f(x)

1
. . . 0

. . .
...

0 1 0


Proof. Let c be the column number of the 1 in the first row of L(x) (numbering the columns
1 through m). Recall that this means c is the number of the node immediately following the
start node in Gx. We will “push” this 1 to the right by repeatedly summing the lower rows
to the first. To start, we sum row c + 1 to row 1, which has two effects: (i) the entry at
(1, c) is zeroed, because we are working over GF(2) and row c + 1 has a 1 in column c; (ii)
the entry at (1, d) is set to 1, where d is the node to which c points. We then sum row d+ 1
to row 1, and continue in this manner, ending when one of the following conditions holds:

• There is a 1 in entry (1,m). This indicates that there is a path from the start node to
the accept node in Gx, and thus that f(x) = 1.

• The first row consists of all 0s. This indicates that a non-accepting sink was reached,
and thus that f(x) = 0.

A key observation here is that, in either case, the upper right corner has the value f(x). Also,
note that this process will always terminate because Gx is a DAG. We repeat the process for
each of the lower rows, pushing the non-self-loop-1 to the right until it is in the rightmost

4

column or until the portion of the row to the right of the self-loop-1 is zeroed out. When we
have done this for every row, we have a matrix in the following form:

0 · · · 0 f(x)

1
. . . ∗

. . .
...

0 ∗
1 0


Each operation performed so far has been summing a row of L(x) to a row above it; as
previously mentioned, these operations can be performed by multiplying on the left by a
matrix from R1. Composing the multiplications then, we have shown that ∀x ∈ {0, 1}n :
∃r1 ∈ R1 such that r1 · L(x) has the above form. We now choose r2 ∈ R2 to be the
matrix which, when multiplied on the right, causes the first m − 1 columns of r1 · L(x)
to be summed to the last column so as to zero out all entries below the top. That is,
r2(i,m) := [r1 · L(x)] (i + 1,m) for 1 ≤ i < m, and all other entries of r2 are fixed from the
definition of R2. Then, r1 · L(x) · r2 has the form given in the statement of the lemma.

This construction leads naturally to a randomized encoding. We note that exactlym(m−1)/2
bits and m − 1 bits are needed to represent matrices in R1 and R2, respectively, and so we
abuse notation by referring to matrices from these families as bit strings of the correct length.

Theorem 3. Let f : {0, 1}n → {0, 1} be computable by an (m+ 1)-size branching program,
with m = poly(n). Then, the function f ′ : {0, 1}n × {0, 1}m(m−1)/2 × {0, 1}m−1 −→ {0, 1}m2

defined by f ′(x, r1, r2) := r1 · L(x) · r2 is a randomized encoding of f .

Proof. We verify the two properties of a randomized encoding.

1. f(x) 6= f(x′)⇒ f ′(x, r1, r2) 6= f ′(x′, r′1, r
′
2).

Fix x and x′ such that f(x) 6= f(x′). Notice that each matrix from R1 or R2 has full
rank. Therefore, due to Lemma 2 and the fact that a product of matrices has full rank
iff each of the matrices do, we see that L(x) has full rank iff f(x) = 1. Since exactly
one of L(x) and L(x′) has full rank, no choice of the r’s can make the products equal.

2. A distribution of circuits so that Cr1,r2(f(x)) ≡ f ′(x, r1, r2) for uniformly chosen r1, r2.
Fix a string x. Define Z(x) to be the matrix on the right side of the equation in the
statement of Lemma 2. That is, Z(x) is the m×m identity matrix with the diagonal
shifted “southwest” and f(x) in the upper right corner. Define Cr1,r2(f(x)) to be the
circuit which computes r1 · Z(x) · r2. Now, fix r1, r2; we need to give r′1, r

′
2 such that

Cr′1,r′2
(f(x)) = f ′(x, r1, r2). Let r̂1, r̂2 be the matrices guaranteed by Lemma 2 such

that r̂1 ·L(x) · r̂2 = Z(x). Then, using the fact that R1 and R2 are groups, the choices
which satisfy the equation are r′1 := r1 · (r̂1)−1 and r′2 := (r̂2)

−1 · r2. The reverse case
(fixing r′1, r

′
2 and finding r1, r2) is analogous.

5

1.3 A locally computable encoding via matrices

We now show how to transform the preceding randomized encoding into one in which each
output bit depends on at most four input bits. Each bit of the randomized encoding from
Theorem 3 is computable by a degree-3 polynomial, or more specifically, a sum ofm2 monomi-
als of degree at most 3. So, applying the next theorem to each bit of Theorem 3’s randomized
encoding gives the desired result.

Theorem 4. Let f : {0, 1}n → {0, 1} be a degree-3 polynomial. Then, f has a randomized
encoding with blow-up poly(n) in which each output bit depends on at most four input bits.

Proof. We separate f into its degree-3 monomials: f(x) := T1(x) + · · · + Tk(x), for some
parameter k = poly(n). Let r, r′ be randomly chosen bit strings with |r| = k, |r′| = k−1. We
define a randomized encoding similarly to how Barrington’s group program was randomized:

f ′ : {0, 1}n × {0, 1}k × {0, 1}k−1 −→ {0, 1}2k

f ′(x, r, r′) := (T1(x) + r1, T2(x) + r2, . . . , Tk−1(x) + rk−1, Tk(x) + rk,
r1 + r′1, r′1 + r2 + r′2, . . . , r′k−2 + rk−1 + r′k−1, r′k−1 + rk)

If we sum all the bits of f ′(x, r, r′), each bit of r and r′ appears exactly twice, and each
Ti(x) appears exactly once. Therefore, because we’re working over GF(2), summing the bits
of f ′(x, r, r′) will give back f(x) for any r, r′, and so the first condition of a randomized
encoding holds. For the second condition, note that for any fixed x, the first 2k − 1 bits
of f ′(x, r, r′) are uniformly distributed (for uniform r, r′) and the last bit is the one which
makes the parity of the entire output equal to f(x). Thus, our distribution is over circuits
C which output 2k − 1 bits at random, and then one final bit to ensure the parity is equal
to f(x); recall that we can do this because f(x) is the sole input to C. Finally, each output
bit of f ′ depends on at most four input bits because each Ti(x) is a degree-3 monomial.

2 Notation and Terminology

Here we briefly review the standard terminology for the classes of circuits we have seen in
the last several lectures.

NCk: the class of circuits with fan-in 2, depth O(logk n) and size poly(n)

ACk: the class of circuits with unbounded fan-in, depth O(logk n) and size poly(n)

NC0 is the class of fan-in 2 constant-depth circuits. We have just seen that there exist
one-way functions computable by this class if there exist one-way functions computable
by polynomial-size branching programs. In particular if factoring is hard, NC0 contains
one-way functions, because multiplication is computable by log-depth circuits (and thus by
polynomial-size BPs). AC0 is the class of polynomial-size constant-depth circuits with un-
bounded fan-in. We have seen previously that parity cannot be computed by circuits in AC0.

6

For any k ≥ 0, the following relationship holds:

NCk ⊆ ACk ⊆ NCk+1

Strict separations are only known in two instances. It is easy to see that NC0 (AC0,
because NC0 circuits are severely restricted by the fact that each output bit can only de-
pend on a constant number of input bits. (For instance, an n-way or is not computable
by NC0 circuits as n goes to infinity.) We also know that AC0 (NC1, because parity
is easily computable by an NC1 circuit. Additionally, the class of functions computable
by constant-width polynomial-length branching programs is sandwiched between NC1 and
AC1; Barrington’s theorem showed that NC1 functions are computable by these BPs, and
any such BP can be transformed into an AC1 circuit. In general, moving from right to left
along the chain of inclusions results in functions which are faster and more parallelizable.

Finally, we note that the circuits discussed have been of the non-uniform variety. A non-
uniform family of circuits is one in which the form of each circuit can vary arbitrarily based
on the input length. On the other hand, a uniform family of circuits is one for which there
exists a single algorithm that, when given 1n as input, constructs the circuit which operates
on inputs of length n. The space and time requirements on this construction algorithm can
vary to give different flavors of uniformity; some common choices are poly-time and log-space.

7

