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Cryptography in constant depth: I

In this class we will make some remarks on Ben-Or and Cleve’s proof of Barrington’s theorem;
we will also examine Applebaum, Ishai, and Kushilevitz’s cryptograhy in constant depth.

1 Remarks on Barrington’s theorem

Recall Barrington’s theorem:

Theorem 1. Let f : {0, 1}n → {0, 1} have fan-in 2 circuits of depth d. Then there exists a
group program (g0

1, . . . , g
0
l ), (g1

1, . . . , g
1
l ), (k1, . . . , kl) and l = 4d, such that ∀x, Πg

xki
i = αf(x),

where g0
i , g

1
i ∈ S5, the group of permutations of 5 objects, and α = (1 2 3 4 5) ∈ S5.

Ben-Or and Cleve gave a variant of Barrington’s theorem. Under the same hypothesis,
they show that there exist l = O(1)d 3× 3 matrices M1, . . . ,Ml, over GF (2) = {0, 1}, where
for each i, each entry in Mi is either 0, 1 or xj for some j, such that ∀x,

Πl
i=1Mi =

 1 0 f(x)
0 1 0
0 0 1

 .

A typical matrix Mi in the above product is

Mi =

 1 0 x7

0 1 0
0 0 1

 .

2 Fast (shallow) cryptography

Cryptography is the study of protocols that achieve various communication goals in a way
that is secure against adversaries that are more powerful than the honest parties. These
protocols are built out of various primitives, like one-way functions. A one-way function is
a function that is easy to compute but “hard to invert,” the computational equivalent of
physical actions that are hard to reverse, such as breaking a glass. We now define “hard to
invert.”

Definition 2. A function f : {0, 1}n → {0, 1}n is w-hard to invert (w-HI) if every circuit C
of size w satisfies: Prx∈{0,1}n [C(f(x)) ∈ f−1(f(x))] ≤ 1/w.
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Note: To reduce the number of parameters we make the output length and the input
length coincide, and similar choices are made later. This can always be achieved up to
polynomial losses which is what we are willing to tolerate in this context.

A typical setting of parameters, corresponding to “one-way functions,” is a function
f : {0, 1}n → {0, 1}n that is poly(n)-time computable and also nω(1)−HI. One-way functions
have lots of applications. A one-way function immediately gives rise to a “basic signature
scheme” where one can sign a message by writing f(x) into it, and later claim ownership
by exhibiting x. More sophisticated and useful signature schemes can be built as well.
One-way functions also imply the existence of a type of pseudorandom generators that is
different from the one we saw before. Specifically from a one-way function one can construct
a pseudorandom generator that looks random even to adversaries that have more resources
than those used to compute the generator, whereas earlier in this course we saw a different
paradigm which gives pseudorandom generators that fool tests using less resources than
those used in computing the generator.

Multiplication f(a, b) := a · b looks somewhat one-way, because it seems like we need
to factor the output to get back (a, b), a task for which the best known algorithm runs in
exponential time. However that does not quite work immediately, because z := a · b is even
with probability at least 1/2 and thus we can invert it as z = f(2, z/2). Still, when a, b
happen to be prime, the function is believed to be hard to invert. Although primes are only
a polynomial fraction of the numbers, one can get a one-way function via the direct product
construction f(a1, b1, . . . , al, bl) := (a1 · b1, . . . , al · bl), for l = poly(n).

Thus we see that we have candidate one-way functions that are quite easy to compute. For
example, we have seen that multiplication can be computed by circuits of depth d = O(log n).
Today and the next times we will see that if there are one-way functions that can be computed
by such circuits of log depth, then in fact there are one-way functions that are computed by
circuits of constant depth. These circuits have bounded fan-in, and so our one-way function
will have the local property that each output bit depends on a constant number of input bits.

Theorem 3. Suppose f = {0, 1}n → {0, 1}n is computable by Branching Programs of width
n and length n (i.e. n2 nodes) and f is w −HI, for some w. Then ∃f ′ : {0, 1}n′ → {0, 1}n′

such that each output bit of f ′ depends on 4 input bits, n′ = nO(1), and f ′ is w′ − HI, for
w′ = w − nO(1).

The above theorem shows how we can construct a function f ′ from f which is very
efficient and nearly as secure. Observe in particular that Theorem’s 3 hypothesis holds for
functions f that have circuits of depth O(log n).

In our approach we will use a randomized encoding of f .

Definition 4 (Randomized encoding). A randomized encoding of f : {0, 1}n → {0, 1}n with
blow-up t is a function f ′ : {0, 1}n × {0, 1}t → {0, 1}t, such that:

1. ∀x, x′, r, r′: f(x) 6= f(x′)⇒ f ′(x, r) 6= f ′(x′, r′), and

2. there exists a distribution D on circuits C of size t: ∀x, the distribution C(f(x)) for
C ∈ D is equal to the distribution of f ′(x, r) for uniform r.
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We now prove Theorem 3 assuming there exists a randomized encoding f ′ of f with
blow-up t = nO(1) and such that each output bit of f ′ depends on 4 input bits.

Proof of Theorem 3 under above assumption. f ′ obviously has the “4-bit” property and also
n′ = nO(1) ⇐ t = nO(1). To complete the proof, we need to prove that the Hard-to-Invert
property holds. To prove this assume for contradiction that A′ inverts f ′:

Pr
x,r

[
A′(f ′(x, r)) ∈ f ′−1(f ′(x, r))

]
≥ 1/w′,

where the size of A′ is at most w′ := w − nO(1). Define a distribution on A:

On input z: A(z) := A′(C(z)) |n, where C is random from D.

Note (size of A) = (size A′) + (size C) ≤ w′ + nO(1) = w. Also:

Pr
x,A

[A(f(x)) ∈ f−1(f(x))] = Pr
x,C

[A′(C(f(x))) |n∈ f−1(f(x))]

= Pr
x,r

[A′(f ′(x, r)) |n∈ f−1(f(x))]

≥ 1/w′

which means that A inverts f with probability at least 1/w. Fixing the choice of C ∈ D in
the definition of A we contradict the assumption that f is w −HI.

In the above derivation, the first equality is by definition. The second is Property 2 of
Definition 4. The last inequality follows from our assumption on A′ and because we claim that
whenever the output A′(f ′(x, r)) = (x′, r′) satisfies f ′(x, r) = f ′(x′, r′) then also f(x) = f(x′).
This is because otherwise, by Property 1 of Definition 4, f ′(x, r) 6= f ′(x′, r′).

In the next classes we will construct randomized encodings.
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