
CSG399: Gems of Theoretical Computer Science. Lecture 10. Feb. 10, 2009.
Instructor: Emanuele Viola Scribe: Ravi Sundaram

Log-depth linear-size ⊆ depth-3 subexponential-size

A major challenge in complexity theory is to exhibit an explicit function f : {0, 1}n →
{0, 1} that cannot be computed by fan-in 2 circuits of linear size O(n) and logarithmic
depth O(log n). This is sometimes referred to as the “linear-size log-depth barrier.” In this
lecture we prove that these circuits can be simulated by unbounded fan-in sub-exponential
size circuits of depth 3. Thus, proving an exponential lower bound for depth-3 circuits would
break the linear-size log-depth barrier.

At the end of the lecture we discuss the role of depth-reduction in complexity theory.

Theorem 1. Let C : {0, 1}n → {0, 1} be a circuit of size c · n, depth c · log n and fan-in
2. The function computed by C can also be computed by an unbounded fan-in circuit of size
2c

′·n/ log logn and depth-3 with inputs x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n, where c′ depends only on c.

The proof of this result uses graph-theoretic techniques developed by Erdős, Graham,
and Szemerédi in ’75 and refined by Valiant in ’77. The result is usually credited to Valiant.
We are unaware of any paper where it is fully presented.

The idea of the simulation is to identify ε ·n wires to remove from C so that the resulting
circuit is disconnected and each of its connected components has depth ≤ ε · log n. Each
component can only depend on nε input bits, and so, given the assignment to the removed
edges, can be computed in brute-force by a depth-2 circuit of sub-exponential size. Trying
all 2ε·n assignments to the removed edges completes the simulation. We now proceed with a
formal proof. See Figure 1 for an example.

A circuit can be viewed as an acyclic directed graph with nodes representing gates and
directed edges representing the flow of computed values from the output of one gate to the
input of the next. The graph corresponding to C is connected, but we will also work with
disconnected graphs, called forests.

Definition 2 (Depth). The depth of a node in a forest is the number of nodes in a longest
directed path terminating at that node. The depth of the forest is the depth of a deepest node
in the forest.

Given a forest G = (V,E), a depth function D is a map D : V → {1, 2, . . . , 2k} such
that if (a, b) ∈ E then D(a) < D(b).

Claim 1. A forest G = (V,E) has depth at most 2k if and only if there is a depth function
D : V → {0, 1}k.

Proof. ⇒: if the depth is at most 2k then setting D to be the function that maps each node
to its depth is a depth function.
⇐: suppose G has a node of depth > 2k. Then there is a directed path with > 2k nodes

in G. No depth function with range {1, 2, . . . , 2k} can assign values to all nodes on that
path.

1

��
��
X2

�I

��
��
X3

��
��
∧

I �
��
��
∨ ��

��
∨

��
��
X1

�

I

�I
��
��
∧

6

��
���
¬ ��

��
X4

a

b c d

a = x1

1 = (b ∨ c) ∧ (d ∨ x4)

b = ¬a
c = x2 ∧ x3

d = x2 ∧ x3

Figure 1: The removal of edges a, b, c, and d reduces the depth. The circuit evaluates to 1 if
and only if there are a, b, c, d ∈ {0, 1} satisfying the corresponding equations.

The following is the key lemma which allows us to reduce the depth of a forest by removing
few edges.

Lemma 3. Let G = (V,E) be a forest with w edges and depth 2k. It is possible to remove
≤ w/k edges so that the depth of the resulting forest is ≤ 2k−1.

Proof. Let D : V → {1, 2, . . . , 2k} be a depth function for G. Define

Ei := {(a, b) ∈ E| the most significant bit position where D(a) and D(b) differ is the i-th.}

Note that E1, E2, . . . , Ek is a partition of E. And since |E| = w there exists an index
i, 1 ≤ i ≤ k, such that |Ei| ≤ w/k. We remove Ei. We now show that the depth of the
resulting forest is at most 2k−1. To do so we exhibit a depth function D′ : V → {0, 1}k−1.
Specifically, let D′ be D without the i-th bit.

We claim that D′ is a valid depth function for the forest G′ := (V,E \Ei). To do this we
need to show that if (a, b) ∈ E \Ei then D′(a) < D′(b). Let (a, b) ∈ E \Ei. Since (a, b) ∈ E,
we have D(a) < D(b). Now, consider the most significant bit position j where D(a) and
D(b) differed. There are three cases to consider:

• j is more significant than i. In this case, since the j-th bit is retained, the relationship
is maintained, i.e., D′(a) < D′(b);

2

• j = i. This case cannot occur because the edge (a, b) ∈ Ei;

• j is less significant than i. In this case, the i-th bit of D(a) and D(b) is the same and
so removing maintains the relationship, i.e., D′(a) < D′(b).

Now we prove the the main theorem.

Proof of Theorem 1. For simplicity, we assume that both c and log n are powers of two. Let
2` := c · log n.

Applying the above lemma we can reduce the depth by a factor 1/2, i.e. from 2` to 2`−1,
by removing c·n/` edges. Applying the lemma again we reduce the depth to 2`−2 by removing
c · n/(`− 1) edges. If we repeatedly apply the lemma log(2c) times the depth reduces to

c log n

2log(2c)
=

log n

2
,

and the total number of edges removed is at most

c · n
(

1

`
+

1

`− 1
+ . . .+

1

`− log(2c) + 1

)
≤ (log 2c)c · n
`− log(2c) + 1

=
(log 2c)c · n

log log n
.

For convenience we also think of removing the output edge eoutput of the circuit. This
way we can represent the output of the circuit in terms of the value of eoutput. We define
the depth of an edge e = g → g′ as the depth of g, and the value of e on an input x as the
value of the gate g.

For every input x ∈ {0, 1}n there exists a unique assignment h to the removed edges that
corresponds to the computation of C(x). Given an arbitrary assignment h and an input
x we check if h is the correct assignment by verifying if the value of every removed edge
e = g → g′ is correctly computed from (1) the values of the removed edges whose depth is
less than that of e, and (2) the values of the input bits g is connected to. Since the depth
of the component is ≤ (log n)/2, at most

√
n input bits are connected to g; we denote them

by x|e. Thus, for a fixed assignment h, the check for e can be implemented by a function
f eh : {0, 1}

√
n → {0, 1} (when fed the ≤

√
n input bits connected to g, i.e. x|e).

Induction on depth shows:

C(x) = 1⇔∃ assignment h to removed edges :

h(eoutput) = 1 and

∀ removed edge e : f eh(x|e) = 1.

We now claim that the above expression for the computation C(x) can be implemented
with the desired resources. Since we removed O(n/ log log n) edges, the existential quan-
tification over all assignments to these edges can be implemented with an OR gate with
fan-in 2O(n/ log logn). Each function f eh(x|e) can be implemented via brute-force by a CNF,

3

i.e. a depth-2 AND-OR circuit, of size O
(√

n · 2
√
n
)
. By collapsing the top AND gate of

these AND-OR circuits with the universal quantification over all removed edges, we obtain
a depth-3 circuit of size

2O(n/ log logn) ·O
(√

n · 2
√
n
)

= 2O(n/ log logn).

Earlier we proved lower bounds for depth-d circuits of 2n
Ω(1/d)

. The above result shows
an interesting consequence of improving such bounds to 2ω(n/ log logn), even for d = 3. The
bounds were proved for the parity function, which can be computed by depth-3 circuits of
size 2O(

√
n), so one needs a different candidate.

The central role of depth reduction in complexity

Theorem 1 can be seen as one of the many depth-reduction results in complexity, where one
computational model is simulated by a shallower one. Other notable examples are:

• SAT is NP-complete: To prove this central result one shows that given an NP machine
with an input x, i.e. a polynomial-size non-deterministic circuit, the associated compu-
tation can be written as a SAT instance, i.e. a polynomial-size non-deterministic circuit
of depth 2. Note how much power non-determinism gives! This lecture shows a simula-
tion of linear-size log-depth circuits by deterministic depth-3 circuits of subexponential
size.

• Toda’s theorem that PH is in P#P : Any constant number of ∃,∀ quantifications can
be replaced by three quantifications: majority, majority, ∀.

• The lower bounds for parity: They go by showing that any constant-depth circuit can
be simulated by a low-degree polynomial, which can be seen as a depth-2 circuit. (This
result and Toda’s share many features.)

4

