
Advanced Algorithms, Fall 2009 Problem Set 5
Instructor: Emanuele Viola Assigned: December 8. Due: December 18, 3:25 PM

On this problem set you must work on your own

Problem 1. CLRS Problem 30-5. Polynomial evaluation at multiple points. .

Problem 2. MAX-2-SAT . A 2-CNF formula consists of a conjunction of clauses,
where each clause contains at most 2 literals. A literal is either a Boolean variables xi or
its negation ¬xi. For example (x1)

∧
(¬x1

∨
x2) is a 2-CNF formula.

The MAX-2-SAT problem is the problem of finding, for a given 2-CNF formula, an
assignment that satisfies as many clauses as possible.

(1) Prove that MAX-2-SAT can be efficiently written as a strict quadratic program. Hint:
For a MAX-2-SAT instance in variables x1, . . . , xn ∈ {0, 1}, let y0, y1, . . . , yn be variables
∈ {−1, 1}. Think of a variable xi, i ∈ {1, . . . , n}, in the MAX-2-SAT instance as being true
if yi = y0 and false otherwise. Prove that the value of MAX-2-SAT can be written as

max
∑

0≤i<j≤n

ai,j(1 + yiyj) + bi,j(1− yiyj),

where the ai,j and bi,j are constants computable in polynomial time given the MAX-2-SAT
instance.

(2) Consider the vector relaxation of the above. Recall this is the program where each
variable yi is replaced with a vector vi (in n+1 dimensions) of length 1, and yi ·yj is replaced
with the inner product of the two vectors. You can assume that such programs can be solved
exactly.

Give a randomized algorithm that produces a better approximation than 2 for MAX-2-
SAT. Use (a) the above relaxation to a vector program, (b) the fact that the inner product
between two vectors of length 1 equals the cosine of the angle between them, and (c) the
following two trigonometric inequalities that hold for an absolute constant α > 0.87 and any
angle θ ∈ [0, π]:

θ

π
≥ α

2
(1− cos θ), 1− θ

π
≥ α

2
(1 + cos θ).

Problem 3. Merging suffix arrays . In class we have seen a recursive procedure to
compute a suffix array. The analysis had one missing detail. This problem asks you to
complete that.

You are given as input an array T [0..n− 1] of characters, a suffix array A[0..(2n/3)− 1]
for the suffixes of T at positions i ≡ 1, 2 mod 3, and a suffix array B[0..n/3 − 1] for the
suffixes of T at positions i ≡ 0 mod 3.

Show how to construct a suffix array S[0..n− 1] for all the suffixes of T in time O(n).

1


