On this problem set you must work on your own

Problem 1. CLRS Problem 30-5. Polynomial evaluation at multiple points.

Problem 2. MAX-2-SAT . A 2-CNF formula consists of a conjunction of clauses, where each clause contains at most 2 literals. A literal is either a Boolean variables x_i or its negation $\neg x_i$. For example $(x_1) \bigwedge (\neg x_1 \bigvee x_2)$ is a 2-CNF formula.

The MAX-2-SAT problem is the problem of finding, for a given 2-CNF formula, an assignment that satisfies as many clauses as possible.

(1) Prove that MAX-2-SAT can be efficiently written as a strict quadratic program. Hint: For a MAX-2-SAT instance in variables $x_1, \ldots, x_n \in \{0, 1\}$, let y_0, y_1, \ldots, y_n be variables $\in \{-1, 1\}$. Think of a variable $x_i, i \in \{1, \ldots, n\}$, in the MAX-2-SAT instance as being true if $y_i = y_0$ and false otherwise. Prove that the value of MAX-2-SAT can be written as

$$\max \sum_{0 \le i < j \le n} a_{i,j} (1 + y_i y_j) + b_{i,j} (1 - y_i y_j),$$

where the $a_{i,j}$ and $b_{i,j}$ are constants computable in polynomial time given the MAX-2-SAT instance.

(2) Consider the vector relaxation of the above. Recall this is the program where each variable y_i is replaced with a vector v_i (in n+1 dimensions) of length 1, and $y_i \cdot y_j$ is replaced with the inner product of the two vectors. You can assume that such programs can be solved exactly.

Give a randomized algorithm that produces a better approximation than 2 for MAX-2-SAT. Use (a) the above relaxation to a vector program, (b) the fact that the inner product between two vectors of length 1 equals the cosine of the angle between them, and (c) the following two trigonometric inequalities that hold for an absolute constant $\alpha > 0.87$ and any angle $\theta \in [0, \pi]$:

$$\frac{\theta}{\pi} \ge \frac{\alpha}{2}(1 - \cos\theta), \ 1 - \frac{\theta}{\pi} \ge \frac{\alpha}{2}(1 + \cos\theta).$$

Problem 3. Merging suffix arrays . In class we have seen a recursive procedure to compute a suffix array. The analysis had one missing detail. This problem asks you to complete that.

You are given as input an array T[0..n-1] of characters, a suffix array A[0..(2n/3)-1] for the suffixes of T at positions $i \equiv 1, 2 \mod 3$, and a suffix array B[0..n/3-1] for the suffixes of T at positions $i \equiv 0 \mod 3$.

Show how to construct a suffix array S[0..n-1] for all the suffixes of T in time O(n).