

4 - Case: Intermediate

- Means separated by $\Omega(\sqrt{k})$
- Spherical Gaussians: variances within $\Theta(1)$ of each other
- Means lie in a ball of radius $O(k\sqrt{d})$ around origin
- Uniform mixing weights

- **Step 1:** Private PCA Shrinks Gaussians whilst maintaining separation **Step 2:** Private clustering algorithm from [NS'18]
- **Step 3: New Private Spherical Gaussian learner**

Differentially Private Algorithms for Learning Mixtures of Separated Gaussians

Gautam Kamath¹, Or Sheffet², Vikrant Singhal³, and Jonathan Ullman³ ¹ University of Waterloo; ² Bar-Ilan University; ³ Northeastern University

spherical Gaussians, (2) has high sample complexity)

2 - Learning Gaussian Mixtures

 α -Learning: Given a mixture of k Gaussians $\{G_i \equiv G_i\}$ $N(\mu_i, \Sigma_i)_{i=1}^k$ in \mathbb{R}^d with mixing weights $\{w_i\}_{i=1}^k$, $\forall i$, estimate G_i to within α in TV distance and w_i to within $O\left(\frac{\alpha}{\nu}\right)$.

Parameter Constraints: $\forall i$, $\|\mu_i\|_2 \leq R$, $\mathbb{I} \leq \Sigma_i \leq K\mathbb{I}$, and $w_i \geq w_{min}$

Separation Condition: $\forall i, j$, $\left\|\mu_{i}-\mu_{j}\right\|_{2} \gtrsim \left(\left\|\Sigma_{i}\right\|_{2}+\left\|\Sigma_{i}\right\|_{2}\right)$

5 - Case: Pro

Mixture satisfies all conditions in Panel 2

Partition dataset to isolate components

- **Step 1: Recursive Private Partitioner (clustering)**
- **Step 2:** Adaptation of Gaussian learner from [KLSU'19] for when few points could be lost in Step 1

Recursive Private Partitioner (Key Ideas):

- Every group of nearby clusters could be treated as independent sub-problem
- Want to isolate such groups in small balls to reduce sensitivity for later
- Largest cluster in each group can be separated at low cost

$$\Sigma_{j} \|_{2} \left(\sqrt{k} + \frac{1}{\sqrt{w_{i}}} + \frac{1}{\sqrt{w_{j}}} \right).$$

- Uniform mixing weights

- using private PCA

3 - Case: Beginner Means separated by $\Omega(\sqrt{d})$ (clusters far from each other) Estimate individual Partition dataset to components isolate components **Step 1:** Private clustering algorithm from [NS'18] **Step 2:** Private Gaussian learner from [KLSU'19]

Step 1: Isolate distant groups of clusters within disjoint balls of radius $O(k\sqrt{d})$ using private annulus finding alg **Steps 2:** Separate large Gaussians from smaller ones

Steps 3: Isolate largest Gaussian from the remaining ones using algorithm in Step 1

Recurse on the sub-problems