1 - Private Distribution Learning

- **Goal:** “Learn” P while “hiding” the sample X “for free”: (1) sample efficiency, (2) time efficiency, and (3) minimal constraints on distribution parameters
- **Our Work:** Learning mixtures of high-dimensional Gaussians with Differential Privacy
 - New private annulus finding algorithm (technical strengthening of [NS’18])
 - New guarantees for private PCA
 - New private Gaussian clustering algorithm
 - Beats Subsample & Aggregate ((1) only works for spherical Gaussians, (2) has high sample complexity)

2 - Learning Gaussian Mixtures

α-Learning: Given a mixture of k Gaussians $\{G_i \equiv N(\mu_i, \Sigma_i)\}_{i=1}^k$ in \mathbb{R}^d with mixing weights $\{w_i\}_{i=1}^k$, $\forall i$, estimate G_i to within α in TV distance and $\forall i$ to within $\Theta \left(\frac{\epsilon}{\delta_i^2} \right)$.

Parameter Constraints: $\forall i$, $\|\mu_i\|_2 \leq R$, $\|\Sigma_i\|_2 \leq k \Sigma_{\text{min}}$, and $w_i \geq w_{\text{min}}$

Separation Condition: $\forall i,j$, $\|\mu_i - \mu_j\|_2 \geq \left(\|\Sigma_i\|_2 + \|\Sigma_j\|_2 \right) \left(\sqrt{\epsilon} + \frac{1}{\sqrt{w_i}} + \frac{1}{\sqrt{w_j}} \right)$.

Theorem: $\exists (\epsilon, \delta)$-DP alg for α-learning mixtures of Gaussians that has sample complexity:

$$\tilde{O} \left(\frac{d^2}{\alpha^2 w_{\text{min}}} + \frac{d^2}{\alpha w_{\text{min}}^2} + \frac{k^{0.66} d^{1.5}}{w_{\text{min}}^2} \right)$.?

3 - Case: Beginner

- **Step 1:** Private clustering algorithm from [NS’18]
- **Step 2:** Private Gaussian learner from [KLSU’19]

4 - Case: Intermediate

- Means separated by $\Omega(\sqrt{k})$
- Spherical Gaussians: variances within $\Theta(1)$ of each other
- Means lie in a ball of radius $O(k\sqrt{d})$ around origin
- Uniform mixing weights

Step 1: Private PCA
- Shrink Gaussians whilst maintaining separation
Step 2: Private clustering algorithm from [NS’18]
Step 3: New Private Spherical Gaussian learner

5 - Case: Pro

- Mixture satisfies all conditions in Panel 2

Step 1: Recursive Private Partitioner (clustering)
Step 2: Adaptation of Gaussian learner from [KLSU’19] for when few points could be lost in Step 1

Recursive Private Partitioner (Key Ideas):
- Every group of nearby clusters could be treated as independent sub-problem
- Want to isolate such groups in small balls to reduce sensitivity for later
- Largest cluster in each group can be separated at low cost

6 - Case: Pro (Clustering)

- Isolate distant groups of clusters within disjoint balls of radius $O(k\sqrt{d})$ using private annulus finding alg
- **Steps 2:** Separate large Gaussians from smaller ones using private PCA
- **Steps 3:** Isolate largest Gaussian from the remaining ones using algorithm in Step 1
- **Recurse on the sub-problems**