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1 - Private Distribution Learning

Distribution P Samples X = (X; - Algorithm M Output Q = P
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Each sample is a
person’s sensitive data

= Goal: "Learn” P while “hiding” the sample X “for free":
(1) sample efficiency, (2) time efficiency, and (3) minimal
constraints on distribution parameters
= Our Work: Learning mixtures of high-dimensional
Gaussians with Differential Privacy
= New private annulus finding algorithm (technical
strengthening of [NS'18])
= New guarantees for private PCA
= New private Gaussian clustering algorithm
= Beats Subsample & Aggregate ((1) only works for
spherical Gaussians, (2) has high sample complexity)
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2 - Learning Gaussian Mixtures

- Learning Given a mixture of k Gaussians {G; =
N(u;, )3}, in RY with mixing weights {w;}*_,, Vi, estimate

G; to within a In TV distance and w; to within O (E)

Parameter Constraints: Vi, |[y;]|, < R, I < Z;
Wi = Wmin
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Separation Condition: Vi, j,
| = wsl, = (HZin + HZJ'HZ) ( + F + J__)

4 Theorem: 3 (&, 6)-DP alg for a-learning mixtures of A

Gaussians that has sample complexity:
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4 - Case: Intermediate

= Means separated by Q(Vk)

= Spherical Gaussians: variances within ©(1) of each other
= Means lie in a ball of radius 0(kvd) around origin

= Uniform mixing weights

) PCA to separate
-+~ | clusters
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= Step 1: Private PCA

= Shrinks Gaussians whilst maintaining separation
= Step 2: Private clustering algorithm from [NS'18]
= Step 3: New Private Spherical Gaussian learner

3 - Case: Beginner

= Means separated by Q(vd) (clusters far from each other)
= Uniform mixing weights
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= Step 1: Private clustering algorithm from [NS’18]
= Step 2: Private Gaussian learner from [KLSU'19]

5 -Case: Pro

= Mixture satisfies all conditions in Panel 2
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= Step 1: Recursive Private Partitioner (clustering)
= Step 2: Adaptation of Gaussian learner from [KLSU'19]
for when few points could be lost in Step 1

Recursive Private Partitioner (Key Ideas):

= Every group of nearby clusters could be treated as
Independent sub-problem

= Want to isolate such groups in small balls to reduce
sensitivity for later

= |[argest cluster in each group can be separated at low
cost

6 - Case: Pro (Clustering)
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= Step 1: Isolate distant groups of clusters within disjoint

balls of radius 0(k+d) using private annulus finding alg

= Steps 2: Separate large Gaussians from smaller ones
using private PCA

= Steps 3: Isolate largest Gaussian from the remaining
ones using algorithm in Step 1

= Recurse on the sub-problems

Step 3
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