
A separation logic for refining concurrent objects

Aaron Turon Mitchell Wand
Northeastern University

{turon, wand}@ccs.neu.edu

Abstract
Fine-grained concurrent data structures are crucial for gaining per-
formance from multiprocessing, but their design is a subtle art. Re-
cent literature has made large strides in verifying these data struc-
tures, using either atomicity refinement or separation logic with
rely-guarantee reasoning. In this paper we show how the owner-
ship discipline of separation logic can be used to enable atomicity
refinement, and we develop a new rely-guarantee method that is lo-
calized to the definition of a data structure. We present the first se-
mantics of separation logic that is sensitive to atomicity, and show
how to control this sensitivity through ownership. The result is a
logic that enables compositional reasoning about atomicity and in-
terference, even for programs that use fine-grained synchronization
and dynamic memory allocation.

1. Introduction
1.1 The goal
Our story begins with a very simple data structure: the counter.
Counters permit a single operation, inc, implemented as follows:

int inc(int *C) {
tmp = *C; *C = tmp+1; return tmp;

}

Of course, this implementation only works in a sequential setting.
If multiple threads use it concurrently, an unlucky interleaving can
lead to several threads fetching the same value from the counter.
The usual reaction to this problem is to use mutual exclusion, wrap-
ping the operation with lock instructions. But as Moir and Shavit
put it, “with this arrangement, we prevent the bad interleavings by
preventing all interleavings” [20]. Fine-grained concurrent objects
permit as many good interleavings as possible, without allowing
any bad ones. The code

int inc(int *C) {
do { tmp = *C; } until CAS(C, tmp, tmp+1);
return tmp;

}

implements inc using an optimistic approach: it takes a snapshot
of the counter without acquiring a lock, computes the new value
of the counter, and uses compare-and-set (CAS) to safely install the
new value. The key is that CAS compares *C with the value of tmp,

[Copyright notice will appear here once ’preprint’ option is removed.]

atomically updating *C with tmp + 1 and returning true if they
are the same, and just returning false otherwise.

Even for this simple data structure, the fine-grained imple-
mentation significantly outperforms the lock-based implementa-
tion [17]. Likewise, even for this simple example, we would prefer
to think of the counter in a more abstract way when reasoning about
its clients, giving it the following specification:

inc(c, ret) , 〈∀x : c 7→ x, c 7→ x+ 1 ∧ ret = x〉

This specification says that, for any value x, inc atomically trans-
forms a heap in which c points to x into one where c points to x+1,
moreover ensuring that the value of ret (an out-parameter) is x.

We express both implementations and their specifications in a
single specification language, and take the perspective of refine-
ment: ϕ refines (implements) ψ if for every context C[−], each
behavior of C[ϕ] is a possible behavior of C[ψ].1 That is, no client
can detect that it is interacting with ϕ rather than ψ, even if the
client invokes many operations of ϕ concurrently.

This paper presents a logic for proving such refinements, based
on separation logic. The key idea is to use a notion of ownership,
expressed through separation logic, to reason about both atomicity
and interference. The key contributions are the semantics (“fenced
refinement”) and proof rules enabling this reasoning. We will be
able to easily verify the counter given above (§4.1), as well as more
complex, nonblocking data structures (e.g. a nonblocking stack §6).

1.2 The approach
Since this paper is focused on verification rather than development,
we will take the perspective of abstraction, which is converse to
refinement: ϕ refines ψ iff ψ abstracts ϕ. The appeal of abstraction
is that, to prove something about the behaviors of C[ϕ] for a
particular client C, it suffices to consider the behaviors of C[ψ]
instead—and ψ is usually much simpler than ϕ. For verifying data
structures in a sequential setting, one is primarily interested in data
abstraction, where ψ abstracts away representation details from
ϕ. In a concurrent setting, we want simplicity in another respect:
atomicity abstraction, where ψ appears to perform an operation in
one atomic step even though ϕ takes many steps.

Refinement hinges on the power of the context C[−]: what can
it observe, and with what can it interfere? The more powerful the
context, the less freedom we have in implementing a specification.
Concurrency changes not what, but when. In a first-order language,
a sequential context can only interact with the state before or after
running the program fragment in its hole. A concurrent context
might do so at any time.

In his classic 1973 paper, “Protection in Programming Lan-
guages”, Morris argued that “a programmer should be able to prove
that his programs . . . do not malfunction solely on the basis of what

1 We take the perspective, advanced by Filipović et al. [8], that linearizabil-
ity [11] is a proof technique for refinement—and we choose not to use it.
See §8 for more discussion.

1 2010/7/15

he can see from his private bailiwick” [22]. That paper and its con-
temporaries showed how to enable such reasoning by weakening
the context, e.g. by hiding data through lexical scoping [22], pro-
tecting data by dynamic sealing [22] or by giving it an opaque (ex-
istential) type [15, 19]. A basic message of this paper is that these
and other hiding techniques serve just as well to localize reason-
ing in a concurrent setting. Of course, hiding mechanisms appear
in various guises in concurrency theory (restriction in CCS [18],
existentials in Lamport’s TLA [13]). So what is new in this paper
are the particulars. They are as follows.

We present a new approach for proving refinement of concurrent
objects. By concurrent object we mean a set of methods, one of
which is a constructor, the others operators. Each method takes
as an argument a pointer to an object instance. The methods are
implemented using purely sequential code, but the client of an
object (i.e., its context) may invoke many methods on the same
instance, concurrently.

When reasoning about concurrent objects, we make use of an
ownership discipline enforced by the logic:

• Each concurrent object instance is owned by the methods as-
sociated with the object; clients of an object cannot modify it
except by invoking these methods.
• Each method has access to one object instance, but this instance

may be concurrently modified by other method invocations.
• Each method may allocate private memory, and may assume

this memory will not be interfered with.
• No method may access memory other than its private memory,

and its shared object instance. In particular, it cannot access
memory that belongs to a client.

Just what constitutes an “object instance” is determined by the
prover, who selects a heap predicate as the representation invariant
for an object instance. The invariant, in addition to expressing well-
formedness constraints, also picks out what portion of the heap
belongs to a given instance. Thus, as in concurrent separation logic,
“ownership is in the eye of the prover” [23].

A key point about this ownership discipline—typically for a
separation logic—is that it is dynamic. For example, data private
to a method can become reachable as part of an object instance. At
that point, the method must relinquish sole ownership of the data,
and must contend with concurrent interference on it. On the other
hand, a method may withdraw data from an instance, at which point
it becomes method-private. It is this dynamic flavor of ownership
and hiding that differentiates our logic from prior work applying
hiding to concurrency.

We derive two major benefits from our ownership discipline.
First, it enables us to perform atomicity abstraction, under the basic
principle that “if you don’t own it, you can’t see it”. Thus an atomic
step modifying only method-private data can be absorbed into an
adjacent atomic step, to form a single, large atomic step.

Claim 1: By making both atomicity and ownership explicit,
we can clarify and exploit their relationship: atomicity is
relative to ownership.

Atomicity abstraction stems from the notion of private data. The
other benefit of ownership is to do with object instances, which are
shared among concurrently-running methods.

Claim 2: Because ownership limits possible interference,
we can exploit it to give a modular and dynamic account of
rely/guarantee reasoning.

Rely/guarantee reasoning [12] is a well-known technique for com-
positionally reasoning about interference: you prove that each
thread guarantees certain behavior, as long as it can rely on other

Domains

x, y, z ∈ VAR variables
LOC locations

v ∈ VAL values
ρ ∈ VAR ⇀ VAL environments
σ ∈ Σ , LOC ⇀ VAL heaps
o ∈ Σ , Σ ∪ { } outcomes

Syntax

Specifications ϕ,ψ, θ ::= ϕ;ψ | ϕ ‖ ψ | ϕ ∨ ψ | ∃x.ϕ
| µX.ϕ | X | let f = F in ψ

| F e | 〈∀x : p, q〉 | {p}
Procedures F ::= f | λx.ϕ
Configurations κ ::= ϕ, σ | o
Predicates p, q, r ::= true | false | emp | e 7→ e′

| e = e′ | p ∗ q | p ∧ q | p ∨ q
| p⇒ q | ∀x.p | ∃x.p

Expressions e ::= x | n | e+ e′ | (e, e′)

Figure 1.

threads to interfere in a limited way. Traditionally, the rely con-
straint must be carried through the whole verification, even if it
is only relevant to a small portion. Using ownership, we localize
rely/guarantee reasoning to the definition of a concurrent object,
since we know all interference must stem from the methods making
up its definition. In our approach, rely/guarantee reasoning is done
with respect to a hypothetical object instance; at runtime, there
may be zero, one, or many such instances, each residing in its own
region of the heap. A broadly similar form of rely/guarantee rea-
soning appeared in very recent work by Dinsdale-Young et al. [4];
we compare the approaches in §8.

To our claims, we make the following contributions:

• We present a new specification language in the tradition of re-
finement calculi [1, 21], but tailored to separation logic-style
reasoning (§2). We give it an operational semantics, which de-
termines the definition of refinement. Our notion of refinement
captures safety properties only, but we expect most of our re-
sults to easily transfer to a model incorporating liveness.
• We adapt Brookes’s transition trace model [2] to handle dy-

namic memory allocation, and use it to give our specification
language a simple denotational semantics (§3). The semantics
is adequate for the operational model, so it can be used to jus-
tify refinements. To our knowledge, this is the first model of
separation logic that captures atomicity explicitly.
• On the strength of the denotational model, we are able to give

many basic refinement laws (§4), and we show how these laws
can be used to verify a simple nonblocking counter (§4.1). They
are not strong enough, however, to handle more complex data
structures—for that, we need ownership-based reasoning.
• In §5.2 we introduce our ownership discipline, formally cap-

tured by the notion of fenced refinement. The semantics of
fenced refinement is a hybrid between trace semantics and in-
put/output relations: traces for shared state, I/O for private state.
We give laws of fenced refinement that justify our two claims
above. Finally, we give a law DATA2 relating fenced and stan-
dard refinement, which allows us to employ fenced refinement
compositionally in correctness proofs. We sketch the soundness
proof for this law in §7.

2 2010/7/15

• We present a case study—the verification of a nonblocking
stack—to demonstrate fenced refinement (§6).

This paper draws on several ideas from recent work, especially that
of Vafeiadis et al. [27, 28] and Elmas et al. [5, 6]. We refer the
reader to §8 for a detailed discussion of prior work.

2. Specifications
The standard view of refinement calculus is as follows [21]: we are
broadly interested in “specifications”, the most concrete of which
are “programs”. Thus, we have an expressive language of speci-
fications ϕ (so it is easy to say what behavior is wanted), and a
sublanguage of programs (that say how to produce such behavior).
It will be possible, for instance, to write a specification that solves
the halting problem, but this will not correspond to any program.
The distinction between programs and general specifications is not
important for our purposes here; suffice it to say that the implemen-
tations we will verify are clearly executable on a machine.

The language of specifications (Figure 1) includes traditional
programming constructs like sequential composition ϕ;ψ and par-
allel composition ϕ ‖ ψ, let-binding of first-order procedures, and
recursion µX.ϕ. In addition, there are logical constructs like dis-
junction ϕ ∨ ψ and quantification ∃x.ϕ. These latter can be read
operationally as nondeterminism: ϕ ∨ ψ either behaves like ϕ or
behaves like ψ. The remaining specification constructs (shaded in
gray) will be explained in §2.2.

Operational semantics of specifications κ→ κ′

ϕ1, σ → ϕ′1, σ
′

ϕ1;ϕ2, σ → ϕ′1;ϕ2, σ
′

ϕ1, σ → σ′

ϕ1;ϕ2, σ → ϕ2, σ
′

ϕ1, σ →
ϕ1;ϕ2, σ →

ϕ1 ‖ ϕ2, σ → κ

ϕ2 ‖ ϕ1, σ → κ

ϕ1, σ → ϕ′1, σ
′

ϕ1 ‖ ϕ2, σ → ϕ′1 ‖ ϕ2, σ
′

ϕ1, σ → σ′

ϕ1 ‖ ϕ2, σ → ϕ2, σ
′

ϕ1, σ →
ϕ1 ‖ ϕ2, σ →

ϕ1 ∨ ϕ2, σ → ϕ1, σ ϕ1 ∨ ϕ2, σ → ϕ2, σ

v ∈ VAL

∃x.ϕ, σ → ϕ[v/x], σ
µX.ϕ, σ → ϕ[µX.ϕ/X], σ

let f = F in ϕ, σ → ϕ[F/f], σ (λx.ϕ)e, σ → ϕ[JeK /x], σ

(σ, o) ∈ act(p, q)
〈∀x : p, q〉 , σ → o

σ |= p ∗ true
{p}, σ → σ

σ 6|= p ∗ true
{p}, σ →

In this largely-standard semantics, a specification interacts step-by-
step with a heap σ. A configuration κ of the abstract machine is
typically a pair ϕ, σ of the remaining specification to execute, and
the current heap. In addition, there are two terminal configurations,
called outcomes: either successful termination with heap σ, or else
a fault . Faulting will be explained in §2.2; the important point
at the moment is that faulty termination propagates up through
sequential and parallel composition.

A few other points of note:

• Variables x, y, z are immutable; only the heap is mutable.
• The domain of values VAL is unspecified, but at least includes

locations, integers, and pairs.
• We assume a denotational semantics JeKρ : VAL for expressions
e, which is straightforward. We write JeK for JeK∅.
• A composition ϕ;ψ steps to ψ exactly when ϕ terminates.

• The first rule for ‖ makes it symmetric.
• We abbreviate let f = λx.ϕ in ψ by let f(x) = ϕ in ψ.

2.1 Heap predicates
To describe the remaining forms of specifications (shaded in gray),
we first need to define heap predicates p. These are the usual
predicates of separation logic: they make assertions about both
program variables (e.g. x = 3) and the heap (e.g. x 7→ 3). As such,
the entailment relation σ, ρ |= p holds when p is true both of the
heap σ and the environment ρ, which gives the values of program
variables:
Predicate semantics σ, ρ |= p

σ, ρ |= emp iff σ = ∅
σ, ρ |= e 7→ e′ iff σ = [JeKρ 7→ Je′Kρ]
σ, ρ |= e = e′ iff JeKρ = Je′Kρ

σ, ρ |= p ∗ q iff ∃σ1, σ2. σ = σ1] σ2, σ1, ρ |= p, σ2, ρ |= q
σ, ρ |= p ∨ q iff σ, ρ |= p or σ, ρ |= q
σ, ρ |= ∀x.p iff ∀v. σ, ρ[x 7→ v] |= p

The predicates emp, e 7→ e′ and p ∗ q come from separation logic.
The predicate emp asserts that the heap is empty, while e 7→ e′

asserts that the heap contains a single location e which contains the
value e′. Thus x 7→ 3 is satisfied when ρ takes x to the only location
in σ, and σ maps that location to 3. The separating conjunction p∗q
is satisfied by any heap separable into one subheap satisfying p and
one satisfying q. Thus x 7→ 3∗y 7→ 4 asserts that the heap contains
exactly two locations, containing 3 and 4. In particular, it implies
that the locations x 6= y.

The remaining predicates are familiar from first-order logic; we
give two illustrative cases.

Finally, we write σ |= p for σ, ∅ |= p.

2.2 Actions, assertions, and assumptions
In separation logic, a Hoare triple {p}C{q} for a command C
asserts that, if σ |= p, then C running on σ

• will not fault (by, say, following a dangling pointer) and,
• if it terminates, will do so with a heap σ′ such that σ′ |= q.

Note that p and q may be quite specific about the shape of the heap,
for example insisting that it consists of a single cell. A key idea of
separation logic is to view these predicates not as describing the
entire heap, but as describing the portion relevant to C; the rest of
the heap is neither accessed nor modified by C. This idea leads
to the frame rule, allowing {p ∗ r}C{q ∗ r} to be inferred from
{p}C{q}.

In our specification language, we forgo basic commands in favor
of a single construct: the action 〈∀x : p, q〉. An action describes
an atomic step of computation in terms of the strongest partial
correctness assertion it satisfies (cf. Morgan’s specification state-
ments [21]). In other words, it permits every behavior that satisfies
the triple {p} − {q}. The variables x are in scope for both p and q,
and are used to link them together (as in inc above).

To understand the behavior of a simple action 〈p, q〉, it is
helpful to think in terms of a specific starting heap σ. First, suppose
that σ 6|= p ∗ true, meaning that no subheap of σ satisfies p. In this
case, the behavior is unconstrained, and in particular the action is
permitted to fault. Hence, faults arise when preconditions are not
satisfied. On the other hand, if σ can be decomposed into subheaps
σ = σ1] σ2 such that σ1 |= p, then the action must take a step
to some heap σ′1] σ2 such that σ′1 |= q; it must establish the
postcondition without modifying the frame σ2, and cannot fault.

The semantics of actions is in essence that of Calcagno et al. [3]:

3 2010/7/15

Action semantics act(p, q) ⊆ Σ× Σ

(σ, o) ∈ act(p, q) iff ∀σ1, σ2, ρ. ∃σ′1.
if σ = σ1] σ2 and σ1, ρ |= p
then o = σ′1] σ2 and σ′1, ρ |= q

Many familiar commands can be expressed as actions. The
following are used in our examples, and provide some intuition for
the semantics of actions:

abort , 〈false, true〉
miracle , 〈true, false〉

skip , 〈emp, emp〉
new(x, ret) , 〈emp, ret 7→ x〉
put(a, x) , 〈a 7→ −, a 7→ x〉
get(a, ret) , 〈∀x : a 7→ x, a 7→ x ∧ x = ret〉

cas(a, old, new, ret) ,〈
∀x : a 7→ x,

(x 6= old ∧ ret = 0 ∧ a 7→ x)
∨ (x = old ∧ ret = 1 ∧ a 7→ new)

〉
where the predicate a 7→ − is shorthand for ∃z.a 7→ z. The abort
action can always fault, as its precondition is never satisfied. On
the other hand, miracle never faults, but it also never takes any
steps, as its postcondition is never satisfied. From the standpoint of
the operational semantics, miracle neither faults nor successfully
terminates; from a partial correctness standpoint, it satisfies every
specification [21]. The skip action cannot fault, because any heap
has a subheap that satisfies emp. Likewise, new cannot fault, and it
furthermore ensures that ret is distinct from any address allocated
in the frame. Finally, put, get and cas fault if a is unallocated.
Notice that get and cas both quantify over a variable x in order to
connect an observation made in the precondition to a constraint in
the postcondition.

One common theme in these examples is the use of postcondi-
tions to filter possible behaviors, miracle being the most extreme
case. For procedures like get, the postcondition is used to constrain
the out-parameter ret. Where one might write let x = get(a) in ϕ
as a program, we write ∃x.get(a, x);ϕ as a specification. Execu-
tions where x took on the wrong value simply disappear, neither
terminating nor faulting.

One use of postcondition filtering is so common that we in-
troduce shorthand for it: an assumption [p] stands for the action
〈emp, emp ∧ p〉. Because its precondition is emp, an assumption
cannot fault, and because its postcondition implies emp as well, it
cannot alter the heap; it is a refinement of skip. Since it is conjoined
with emp, the predicate p cannot further constrain the heap; it is
used only to constrain the environment ρ. Assumptions are used
for control flow: the specification if p then ϕ else ψ is sugar for
([p];ϕ) ∨ ([¬p];ψ).

Finally, assertions {p} simply test a predicate: if some subheap
satisfies p then the heap is left unchanged, and otherwise the asser-
tion faults. Assertions provide a way to introduce a claim during
verification while postponing its justification (cf. [5]).

We can write the fine-grained concurrent version of inc in our
specification language as follows:

inc′(c, ret) , µX. ∃t.get(c, t);
∃b.cas(c, t, t+ 1, b);
if b = 1 then [ret = t] elseX

3. Refinement: model theory
We have seen what specifications are, how they behave, and how
they express common programming constructs. But the point of
working with specifications is to compare them: we want to say
when a relatively concrete specification “implements” a more ab-

stract one. Informally, a specification ϕ implements ψ if no client
can observe that it is interacting with ϕ instead of ψ, i.e., every be-
havior of ϕ is a possible behavior of ψ. Formally, this situation is
expressed as refinement:
Refinement ϕ vop ψ

ϕ vop ψ iff ∀C, σ.
{

if C[ϕ], σ then C[ψ], σ
if C[ϕ], σ ⇓ then C[ψ], σ ⇓ or C[ψ], σ

where κ iff κ→∗ and κ ⇓ iff ∃σ.κ→∗ σ

whereC is a specification context (a specification with a hole) clos-
ing ϕ and ψ. The “op” stands for operational semantics. In this
definition, we collapse the possible outcomes of a C[ϕ], σ to three
cases: nontermination, successful termination, and faulting termi-
nation. If the specification ψ can fault in a given context, then ϕ
is relieved of any obligations for that context. In this way, fault-
ing behavior is treated as “unspecified” behavior, and as we will
soon see, it follows that abort is the most permissive specification
(ϕ vop abort for all ϕ).

Ultimately, our goal is to give useful axioms and inference rules
for proving such refinements. However, as usual, the quantification
over all contexts in the definition of refinement makes it difficult
to work with directly. As a stepping stone, in this section we give
a denotational semantics for specifications, which will give us a
sound (but not complete) denotational version vden of refinement.
Readers primarily interested in the proof rules can read §4 first,
taking the soundness of the rules on faith.

The denotational model is based on Brookes’s transition trace
model [2], which gave a fully abstract semantics for a parallel
WHILE language. We adjust this model to deal with pointers and
the heap, as well as faulting.

The challenge in giving a denotational model for concurrency is
the semantics of parallel composition: to define Jϕ ‖ ψK in terms
of JϕK and JψK we must “leave room” for interference from ψ in
the meaning of ϕ, and vice-versa. With transition traces, we give
meaning to ϕ and ψ in terms of discrete timeslices of execution,
between which we allow for arbitrary interference. To calculate the
meaning of ϕ ‖ ψ, we need only interleave these timeslices.

In detail: we model the behavior of each specification as a set
of transition traces. A transition trace is a finite sequence of moves
(σ, σ′). Each move represents one timeslice of execution, which
may correspond to zero, one, or some finite number of steps→ in
the operational semantics. A trace of ϕ like (σ1, σ

′
1)(σ2, σ

′
2) arises

from an execution where first ϕ, σ1 →∗ ϕ′, σ′1, then some as-yet
unknown specification in the environment changed the heap from
σ′1 to σ2, then ϕ′, σ2 →∗ ϕ′′, σ′2. A trace can be terminated by a
fault, either on the part of the specification as in (σ,), or on the
part of its environment as in (,):
Domains

MOVE , Σ× Σ

FAULT , Σ × { }
TRACE , MOVE∗; FAULT?

s, t, u ∈ TRACE
S, T, U ⊆ TRACE

The transition traces of a specification can be read directly from the
operational semantics:
Observed traces t ∈ OJϕK

(,) ∈ OJϕK
ϕ, σ →∗ o

(σ, o) ∈ OJϕK
ϕ, σ →∗ ϕ′, σ′ t ∈ O

q
ϕ′
y

(σ, σ′)t ∈ OJϕK

The inference rules say, respectively: the environment might fault at
any time; a terminating timeslice (whether successful or faulting)

4 2010/7/15

results in a singleton trace; a nonterminating timeslice allows the
specification to resume later (under a possibly-changed heap).

Our denotational semantics gives an alternative definition of
OJϕK that is compositional in the structure of ϕ; this composition-
ality is ultimately how we connect transition traces to refinement
(Theorem 1 below).

An important insight in Brookes’s model is that the transition
traces of a specification are closed under stuttering (addition of
a step (σ, σ)) and mumbling (merging of two steps with a com-
mon midpoint). Closure under stuttering means that the context
of a specification cannot observe timeslices in which it does not
change the heap; this justifies that skip is a unit for sequential com-
position. Closure under mumbling will imply that, for example,
〈p, r〉 vop 〈p, q〉 ; 〈q, r〉, because the scheduler might give the
latter specification a long enough timeslice to execute both actions,
so that its behavior looks just like that of the former.

In giving the denotational semantics, we must explicitly apply
stuttering and mumbling closure, which we do via the closure
operator † (in effect a quotient, blurring together observationally
indistinguishable trace sets):

Closure t ∈ T †

t ∈ T
t ∈ T †

st ∈ T †

s(σ, σ)t ∈ T †
s(σ, σ′)(σ′, o)t ∈ T †

s(σ, o)t ∈ T †

(,) ∈ T †
t(σ,) ∈ T †

t(σ, σ′)u ∈ T †

The unshaded rules for † appeared in Brookes’s original paper. To
them, we add two rules concerning faults. The first captures the fact
that the environment of a specification might cause a fault at any
time. The second reflects that faulting on the part of a specification
is permissive, so a specification that faults after some interactions t
can be implemented by one that continues without faulting after t.

The reason (,) steps are important is to handle cases like
(µX.X) ‖ abort. Without the (,) steps, OJ(µX.X)K would
be empty, but the semantics of the composition is nonempty. The
effect of including (,) in the closure is that every finite prefix
of the behavior of a specification is included in its set of traces, but
with the marker (,) at the end signifying that the specification
was terminated early by a fault on the part of the environment.

With those preliminaries out of the way, the denotational se-
mantics is straightforward. Sequential composition is concatena-
tion and parallel composition is nondeterministic interleaving. One
caveat: when concatenating traces, a fault on the left wipes out
everything on the right, since faulting causes early termination:
t(o,);u = t(o,). This rule applies to both sequential and par-
allel composition. Recursion is defined using the Tarskian least-
fixed point over closed sets of traces; the order on trace sets is
set inclusion. Disjunction and existential quantification are given
by least upper bounds according to that ordering. Here, environ-
ments ρ map variables x to values v, specification variables X
to closed sets of traces T , and procedure variables f to functions
VAL → 2TRACE. Environments are ordered pointwise, leading to the
following lemma.

Lemma 1. For each ϕ, the function JϕK from environments to
trace sets is monotonic.

We connect the denotational semantics to refinement in two
steps. First, we show that the denotational semantics gives the
sames trace sets as the operational semantics, modulo †-closure:

Lemma 2. If ϕ is a closed specification then OJϕK† = JϕK∅.

Denotational semantics of specifications JϕKρ ⊆ TRACE

Jϕ;ψKρ , (JϕKρ ; JψKρ)†

Jϕ ‖ ψKρ , (JϕKρ ‖ JψKρ)†

Jϕ ∨ ψKρ , JϕKρ ∪ JψKρ

J∃x.ϕKρ ,
⋃
v JϕK

ρ[x 7→v]

Jlet f = F in ψKρ , JψKρ[f 7→JF K
ρ]

JF (e)Kρ , JF Kρ (JeKρ)
JµX.ϕKρ ,

⋂
{T : T † = T, JϕKρ[X 7→T] ⊆ T}

JXKρ , ρ(X)

J〈∀x : p, q〉Kρ , act(ρ(p), ρ(q))†

J{p}Kρ , {(σ, σ) : σ ∈ Jp ∗ trueKρ}†

∪ {(σ,) : σ /∈ Jp ∗ trueKρ}†

Procedures:

JfKρ , ρ(f) Jλx.ϕKρ , λv. JϕKρ[x 7→v]

Figure 2.

This lemma is proved separately in each direction; the ⊆ direction
goes by induction on the rules defining OJ−K, while ⊇ goes by
induction on the structure of ϕ.

We define a denotational version of refinement, and prove that
it soundly approximates the operational version (“adequacy”):

Definition 1. ϕ vden ψ iff for all closing ρ, JϕKρ ⊆ JψKρ.

Theorem 1 (Adequacy). If ϕ vden ψ then ϕ vop ψ.

Proof. Suppose ϕ vden ψ. Let C be a specification context that
closes ϕ and ψ. By the monotonicity of the semantics, one can
show that JC[ϕ]K∅ ⊆ JC[ψ]K∅. By Lemma 2, OJC[ϕ]K† ⊆
OJC[ψ]K†. It follows that if C[ϕ], σ then C[ψ], σ , and that
if C[ϕ], σ ⇓ then either C[ψ], σ or C[ψ], σ ⇓.

4. Refinement: proof theory
With the denotational semantics in hand, it is easy to prove a
number of basic refinement laws. These laws will be powerful
enough to verify a basic nonblocking counter (§4.1), but to tackle
more advanced examples we will need to employ ownership-based
reasoning, the subject of §5.

We writev for axiomatic refinement, which is justified in terms
of vden, and we write ≡ when the refinement goes in both direc-
tions. The benefit of the setup in the previous two sections is that
axiomatic refinement is a congruence—which is what enables us to
verify implementations in a stepwise, compositional manner.

Many of the rules in Figure 3 are familiar. The top group comes
from first-order and Hoare logic; we leave those rules unlabeled
and use them freely. The two DST rules, giving the interaction
between nondeterminism and sequencing, are standard for a linear-
time process calculus [29]. IND is standard fixpoint induction. FRM
is the frame rule from separation logic, capturing the locality of
actions. CSQ1 is the consequence rule of Hoare logic.

The less familiar rules are still largely straightforward. EXT pro-
vides an important case where actions and assertions are equiva-
lent: on exact predicates, which are satisfied by exactly one heap,
and hence are deterministic as postconditions. The STR rules allow
us to manipulate quantifier structure in a way reminiscent of scope
extrusion in the π-calculus [25]; like the DST rules, they express
that the semantics is insensitive to when a nondeterministic choice

5 2010/7/15

Some laws of refinement ϕ v ψ

miracle v ϕ v abort

ϕ ∨ ϕ v ϕ v ϕ ∨ ψ
ϕ[e/x] v ∃x.ϕ v ϕ

skip;ϕ ≡ ϕ ≡ ϕ; skip

DSTL (ϕ1 ∨ ϕ2);ψ ≡ ϕ1;ψ ∨ ϕ2;ψ

DSTR ψ; (ϕ1 ∨ ϕ2) ≡ ψ;ϕ1 ∨ ψ;ϕ2

STR1 ∃x.ϕ;ψ ≡ ϕ; (∃x.ψ)

STR2 ∃x. 〈∀y : p, q〉 v 〈∀y : p, ∃x.q〉
FRM 〈∀x : p, q〉 v 〈∀x : p ∗ r, q ∗ r〉
EXT 〈∀x : p, p〉 ≡ {∃x.p} (p exact)
IDM1 {p}; {p} ≡ {p}
IDM2 {∃x.p}; 〈∀x : p, q〉 ≡ 〈∀x : p, q〉
ASM 〈∀x : p, q ∧ r〉 ≡ 〈∀x : p, q〉 ; [r] (r pure)

IND
ϕ[ψ/X] v ψ
µX.ϕ v ψ

CSQ1

∀x. p⇒ p′ ∀x. q′ ⇒ q〈
∀x : p′, q′

〉
v 〈∀x : p, q〉

CSQ2

q ⇒ p

{p} v {q}

NB: syntax appearing both in and outside a binder for x
in a refinement (as in ∃x.ϕ v ϕ) cannot mention x.

Figure 3.

is made. The IDM rules express the idempotence of assertions—
recall that the precondition of an action acts as a kind of assertion.
ASM allows us to move a guard into or out of a postcondition when
that guard is pure (does not use emp or 7→). CSQ2 tells us that as-
sertions are antitonic, which follows from the permissive nature of
faulting.

Theorem 2. The laws of refinement are sound: if ϕ v ψ then
ϕ vop ψ.

Proof. We prove the laws sound using the denotational semantics:
we show that ϕ v ψ implies ϕ vden ψ, which by Theorem 1
(adequacy) implies ϕ vop ψ. Using the denotational semantics,
the laws are almost trivial to show sound. The only nontrivial
case, IND, uses the Knaster-Tarski fixpoint theorem in the standard
way.

As a simple illustration of the proof rules, we have:

Lemma 3.
get(a, ret)

definition ≡ 〈∀x : a 7→ x, a 7→ x ∧ x = ret〉
CSQ1 v 〈∀x : a 7→ x, a 7→ x〉

EXT v {a 7→ −}
This lemma shows that we can forget (abstract away) the constraint
that get places on its out-parameter, allowing it to vary freely. But
we cannot forget that get(a, ret) faults when a is unallocated.

4.1 Example: a nonblocking counter
We now return to the example of an atomic counter:

inc(c, ret) , 〈∀x : c 7→ x, c 7→ x+ 1 ∧ ret = x〉
inc′(c, ret) , µX. ∃t.get(c, t);

∃b.cas(c, t, t+ 1, b);
if b = 1 then [ret = t] elseX

To show inc′ v inc, we first prove some useful lemmas about
optimistic concurrency:

Lemma 4.
cas(a, t, e, b); [b = 1]

def ≡
〈
∀x : a 7→ x,

(x 6= t ∧ b = 0 ∧ a 7→ x)
∨ (x = t ∧ b = 1 ∧ a 7→ e)

〉
; [b = 1]

ASM ≡
〈
∀x : a 7→ x,

(
(x 6= t ∧ b = 0 ∧ a 7→ x)
∨ (x = t ∧ b = 1 ∧ a 7→ e)

)
∧ b = 1

〉
CSQ1 v 〈∀x : a 7→ x, a 7→ e ∧ x = t〉

Lemma 5. cas(a, t, e, b); [b 6= 1] v {a 7→ −}.

Proof. Similar.

Corollary 1.

µX.∃t.get(a, t);ϕ;
∃b.cas(a, t, e, b);
if b = 1 then ψ

elseX

v

µX.∃t.get(a, t);ϕ; 〈
∀x :

a 7→ x,
a 7→ e ∧ x = t

〉
;ψ

∨ {a 7→ −};X

Proof. Expand if , apply DSTR, and use Lemmas 4, 5.

Lemma 6 (Optimism).
µX.∃t.get(a, t);ϕ;
∃b.cas(a, t, e, b);
if b = 1 then ψ

elseX

v
(∃t.get(a, t);ϕ)∗;
∃t.get(a, t);ϕ;
〈∀x : a 7→ x, a 7→ e ∧ x = t〉 ;ψ

where θ∗ is shorthand for µX.skip ∨ θ;X . Notice, too, that the
scope of quantifiers continues over line breaks. The specification
on the left captures a typical optimistic, nonblocking algorithm:
take a snapshot of a cell a, do some work ϕ, and update a if it
has not changed; otherwise, loop. The specification on the right
characterizes the (partial correctness) effect of the algorithm: it
performs some number of unsuccessful loops, and then updates a.

Proof. Apply Corollary 1. At a high level, the result follows by
induction (rule IND), using IDM2 to remove assertions {a 7→ −}.

Applying Lemma 6 to inc′ (letting ϕ be skip, which we drop), we
have:

inc′(c, ret)
1 v (∃t.get(c, t))∗;

∃t.get(c, t); 〈∀x : c 7→ x, c 7→ x+ 1 ∧ x = t〉 ; [ret = t]
2 v (∃t.{c 7→ −})∗;

∃t.{c 7→ −}; 〈∀x : c 7→ x, c 7→ x+ 1 ∧ x = t〉 ; [ret = t]
3 v {c 7→ −}∗;∃t. 〈∀x : c 7→ x, c 7→ x+ 1 ∧ x = t〉 ; [ret = t]
4 v {c 7→ −}∗;∃t. 〈∀x : c 7→ x, c 7→ x+ 1 ∧ x = t ∧ ret = t〉
5 v {c 7→ −}∗;∃t. 〈∀x : c 7→ x, c 7→ x+ 1 ∧ ret = x〉
6 v {c 7→ −}∗; 〈∀x : c 7→ x, c 7→ x+ 1 ∧ ret = x〉
7 v 〈∀x : c 7→ x, c 7→ x+ 1 ∧ ret = x〉

Step (1) is the application of Lemma 6. In step (2), we abstract away
the gets (the snapshots) using Lemma 3. In (3), we remove the first
existential, and apply IDM2 inductively to coalesce the assertions;
(4) applies ASM; (5) applies CSQ1; (6) removes the remaining
existential; (7) applies IDM2 inductively.

The abstraction of get in step (2) is reminiscent of havoc ab-
straction [5], and it illustrates that the snapshots are not necessary
for the safety of the algorithm (though essential for liveness).

Notice that we do not give and did not use any rules for reason-
ing about parallel composition. We certainly could give such rules
(e.g., an expansion law [18]), but that would be beside the point.
Our aim is to reason about concurrent objects, which are defined
by sequential methods that clients may choose to execute in paral-
lel. Having proved the refinement, we can conclude that even for a
concurrent client C[−] we have C[inc′] v C[inc].

6 2010/7/15

5. Ownership
In the previous section, we were able to reason about the non-
blocking counter because it possesses a very helpful property: it
works correctly regardless of interference. No matter what concur-
rent reads and writes occur to the counter, the inc′ method will only
modify the counter by atomically incrementing it. Such an imple-
mentation is possible because a counter can be represented in a
single cell of memory, and so cas can be used to operate on the en-
tire data structure at once. For more complex data structures, such
as the stack we will study in §6, this will not be the case; such data
structures cannot cope with arbitrary interference.

In this section, we will develop an ownership discipline that will
enable reasoning about (lack of) interference. We will leverage the
denotational semantics to give a meaning to, and find the conse-
quences of, the ownership discipline. The resulting laws give voice
to the key claims of the paper: atomicity is relative to ownership,
and interference is modularized by ownership.

5.1 The discipline
The ownership discipline we have in mind is tied to the notion of
a concurrent object, which is given by a collection of methods,
one of which is a constructor. For example, imagine a counter that
supported both incrementing and decrementing:

let newcnt(ret) = new(0, ret) in
let inc(c, ret) = · · · in
let dec(c, ret) = · · · in ϕ

Intuitively, the representation of a counter can be described by a
simple predicate: ` 7→ x. Notice that this predicate is specific to a
counter located at address ` and with value x. A client

ϕ = ∃a.newcnt(a); ∃b.newcnt(b)
that called newcnt twice would expect to be left with a subheap
satisfying a 7→ 0 ∗ b 7→ 0.

More complex data structures are described by more complex
predicates. Consider the specification of a thread-safe stack:

let newStk(ret) = new(0, ret) in

let push(s, x) =

〈
∀h :

s 7→ h,
∃h′. s 7→ h′ ∗ h′ 7→ (x, h)

〉
in

let pop(s, ret) =

〈
∀h, h′, x :

s 7→ h ∗ h 7→ (x, h′),
s 7→ h′ ∧ ret = x

〉
in ϕ

In this representation, an instance of a stack consists of at least a
memory cell s which points to the head of the stack (0 if the stack
is empty). The contents of the stack is given by a linked list, which
can be described by the following recursive predicate:

list(`, ε) , ` = 0

list(`, x · xs) , ∃`′.` 7→ (x, `′) ∗ list(`′, xs)

The second parameter to list is a sequence of list items; this se-
quence is “abstract” in the sense that it exists only at the level
of the logic, not as a value in a program. Altogether, a stack lo-
cated at ` with abstract contents x is described by the predicate
∃a. ` 7→ a ∗ list(a, x).

In general, the memory belonging to an instance of a concurrent
object is described by a predicate p[`, x] with free variables ` and
x. The variable ` gives the location of the object, while x gives its
abstract value. The predicate ∃x.p[`, x] then describes a heap that
contains an object instance at `, with unknown contents. We call
this latter predicate the representation invariant for a concurrent
object, and use the metavariable I to designate such predicates.
We introduce a new metavariable not just as a mnemonic, but
also because we restrict representation invariants to be precise. A
predicate is precise if, for every heap σ, there is at most one way to
split σ = σ1]σ2 such that σ1 satisfies the predicate. Thus, precise

predicates serve to pick out (“fence” [7]) precisely the region of
memory relevant to an object instance. For example, the invariant
I[`] = ∃a.∃x.` 7→ a ∗ list(a, x) in some sense “discovers” the
linked list associated with a stack, whatever its contents may be.

Our ownership discipline works as follows: a concurrent object
is given (in the logic) a representation invariant I[`] parameterized
by location `; an object instance at ` consists of the subheap de-
scribed by I[`]. Clients may not access these subheaps directly, but
must invoke methods of the object instead. Each method is param-
eterized by a location ` of the object to operate on, and is given ac-
cess only to the subheap described by I[`]. Since multiple methods
may be invoked on the same instance concurrently, this memory is
shared between invocations. But because the object’s methods are
the only code with access to this memory, we may assume that any
concurrent interference is due to one of these methods.

When a method begins executing, its view of the heap consists
solely of some object instance I[`]. As it executes, the method may
in addition allocate private memory, which is initially free from
interference. If, however, the private memory is made reachable
from the object instance, so that it falls into the region described
by I[`], it at that point becomes shared, and subject to interference.
Conversely, memory unlinked from the object instance becomes
private to the method. An implementation of push, for example,
will first allocate a private linked list node, and only later actually
link it into the list.

5.2 Fenced refinement
Now for the punchline: our ownership discipline enables partly-
sequential reasoning about method bodies, through fenced refine-
ment I, θ ` ϕ v ψ. As above, I describes a specific object in-
stance; we leave the location ` implicit. Fenced refinement says
that ϕ refines ψ under the assumption that all memory is either part
of the shared instance described by I , or private. Moreover, inter-
ference on the shared memory is bounded by the specification θ
(the “rely” [12]). Here are the key rules:

Some laws of fenced refinement I, θ ` ϕ v ψ

INV
I, θ ` {I} ≡ skip

LIFT
ϕ v ψ

I, θ ` ϕ v ψ

SEQL
I, θ ` 〈∀x : p, q〉 ;

〈
∀x : q ∗ p′, r

〉
v {I ∗ ∃x.p};

〈
∀x : p ∗ p′, r

〉
STAB

θ v 〈∀x : q, q〉
I, θ ` 〈∀x : p, q〉 ; {∃x.q} v 〈∀x : p, q〉

INV expresses that the representation invariant I always holds,
so asserting it will always succeed. We check that the method itself
maintains the invariant elsewhere, in the DATA2 rule.

LIFT reflects the fact that fenced refinement is more permissive
than standard refinement.

In fenced refinement, any data that is not part of the data struc-
ture instance fenced by I is private, and hence can be reasoned
about sequentially. Suppose that, at some point, we know that I ∗p;
that is, our view of the heap includes both a shared object instance
described by I , and some other memory described by p. By our
ownership discipline, we know that p is private. In this case, the ex-
ecution of an action like 〈p, q〉 will not be visible to other threads,
because it is operating on private memory. The SEQ rules permit
atomicity abstraction: two sequenced atomic actions can be com-
bined if one of them only operates on private data. We give one
rule, SEQL, which combines two actions when the first (the Left)
is unobservable. Notice that SEQL introduces the assertion I ∗∃x.p

7 2010/7/15

as a verification condition for showing that the data operated on by
the first action really is private. We omit the similar SEQR rule.

Finally, STAB allows as assertion {q} to be removed if it is
stably satisfied after an action. That is, the predicate q must be
established by an action, and once established, must be maintained
under any interference θ.

In addition to those rules, fenced refinement is also nearly a
congruence: if I, θ ` ϕ v ψ then I, θ ` C[ϕ] v C[ψ] for
any context C that does not contain parallel composition. It is not
a congruence for parallel composition because of the sequential
reasoning it permits on private data. Since we use fenced refinement
only to reason about the method bodies implementing a concurrent
object—which we assume to be sequential—this is all we need.

To give a semantics for fenced refinement, we want to ignore
certain aspects of the denotational semantics. In some cases we
throw away traces: for example, traces where the environment does
not obey the rely θ should be discarded. A deeper issue is the dis-
tinction between private and shared memory. Because private mem-
ory cannot be observed or interfered with by concurrent threads, we
do not model it with a trace. Instead, we view private memory in
terms of “input-output” behavior, recording its value only at the
beginning and end of a computation ϕ. As a consequence, sequen-
tial reasoning (e.g. SEQL) is valid for steps involving only private
memory.

In short, the fenced semantics of method bodies is a hybrid
between trace semantics and input-output relations. We thus define:

FENCEDTRACE , Σ × TRACE × Σ

A fenced trace contains three components: the initial state of private
memory, a trace involving only the shared memory, and the final
state of private memory. Suppose ϕ is a fragment of a method body.
We calculate its fenced traces as follows:
Fenced projection JI, θ ` ϕKρ ⊆ FENCEDTRACE

JI, θ ` ϕKρ ,

(fst(u), t, lst(u)) :

t] u ∈ JϕKρ
σ ∈ t⇒ σ, ρ |= I
u seq
t rely(θ, ρ)

where

ε] ε , ε (o1, o
′
1)t] (o2, o

′
2)u , (o1] o2, o′1] o′2)(t] u)

(o, o′) seq
u seq

(o, fst(u))u seq

(o, o′) rely(θ, ρ)

t rely(θ, ρ) (o′, fst(t)) ∈ JθKρ

(o, o′)t rely(θ, ρ)

The functions fst(u) and lst(u) return the first and last heaps (or
outcomes) that appear in a trace u.

Fenced projection separates each trace of ϕ into a part t dealing
with the shared state and a part u dealing with the rest of the heap,
which is presumed to be method-private. We do this by lifting] to
traces. Notice that t and u have the same length and represent the
same moves of ϕ; we are just splitting the heap involved in each
move into a shared part and a private part.

The requirement that t satisfies I throughout is how we force t
to represent precisely the shared state. This is where the fact that
I is precise comes in: it means that, if (σ, σ′) was a move in ϕ,
there will be at most one subheap of σ and σ′ satisfying I . If no
such t can be found, the invariant must have been broken—and
we do not include such traces. In other words, we are assuming
that both ϕ and its environment maintain the invariant. Both of
these assumptions are checked when we try to derive a standard
refinement from a fenced refinement (DATA2 below).

More generally, recall that the transition trace semantics gen-
erates traces where the environment may modify the heap in an
arbitrary way between each atomic step. In fenced projection, we
do not want to include all such traces, because we are making some
assumptions about what the environment can and cannot do. Thus,
we filter out any traces in which the environment breaks our rely
assumption. The rely is, of course, only relevant to the shared state
described by t. We also require the private trace u to be sequential,
meaning that we filter any traces where the private data appears to
have been interfered with at all.

Fenced projection gives us the fenced traces of a specification.
Fenced refinement just compares these traces:

Semantics of fenced refinement I, θ |= ϕ v ψ

I, θ |= ϕ v ψ iff ∀ closing ρ. JI, θ ` ϕKρ ⊆ JI, θ ` ψKρ

Theorem 3. The laws of fenced refinement are sound: if I, θ `
ϕ v ψ then I, θ |= ϕ v ψ.

Proof. The semantics of fenced refinement was designed to make
this theorem straightforward. Each law corresponds to one of the
basic assumptions of fenced projection: INV, that the invariant is
satisfied; STAB, that the rely is obeyed; SEQL, that the private
traces are sequential. The LIFT rule expresses that fenced projec-
tion is monotonic.

5.3 Enforcing ownership: hiding
So far, fenced refinement is just a fantasy: we have no way to
deduce standard refinements from fenced refinements. To do so,
we have to justify the assumptions made in fenced projection. The
ownership discipline described in §5.1 is the desired policy; now
we turn to the mechanism for carrying it out.

Consider the following specification:

let f(ret) = 〈emp, ret 7→ 0〉 in ∃x.f(x); put(x, 1)

Here we have a simple concurrent object with a constructor, f , and
no methods. Its client, however, violates our ownership discipline
by directly modifying an object instance, using put. If the assump-
tions of fenced refinement are to be met, such clients must some-
how be ruled out.

Our solution is to introduce an abstraction barrier. We extend
the language of specifications to include abs α.ϕ, which binds
the abstraction variable α in ϕ, and we likewise extend heaps to
include abstract cells ` α7→ e. Each location in the heap is either
concrete (7→) or abstract (

α7→), so the predicate ` 7→ − ∧ ` α7→ − is
unsatisfiable. The purpose of abstract cells is to deny clients access
to concurrent objects. Revisiting the misbehaved client above, we
could instead write:

abs α.let f(ret) =
〈
emp, ret α7→ 0

〉
in ∃x.f(x); put(x, 1)

In this case, the client will fault when attempting the put, because
put operates on concrete cells, but f allocates an abstract cell.

In general, the concrete representation of an object may involve
multiple memory cells. When we introduce an abstraction variable,
we also have an opportunity to switch to a more abstract represen-
tation, as in the following rule (applicable when r[`,−] is precise):

DATA1

let fi(`, x) = 〈∀y : pi ∗ r[`, ei], qi ∗ r[`, e′i]〉 in ϕ
v abs α. let fi(`, x) =

〈
∀y : pi ∗ `

α7→ ei, qi ∗ `
α7→ e′i

〉
in ϕ

As before, the predicate r[`, z] is meant to describe an object
instance located at ` with abstract contents z. Notice that the client

8 2010/7/15

DATA2

r[`,−] precise pi pure r[`,−], (
∨
θi) ` ϕi v θi θi v 〈∀y : r[`, y], r[`, ei] ∧ pi〉

let f(`) = 〈emp, r[`, e]〉 in
let gi(`, x) = ϕi in ψ

v abs α.let f(`) =
〈
emp, `

α7→ e
〉

in

let gi(`, x) =
〈
∀y : `

α7→ y, `
α7→ ei ∧ pi

〉
in ψ

Figure 4. Rely/guarantee reasoning

ϕ is unconstrained, except for the implicit constraint that α cannot
appear free in it. The idea is that, in applying this abstraction rule,
we swap a concrete version of a concurrent object for an abstract
one. Cases where the client might have accessed a concrete object
instance directly will, in the context of the abstract object, result
in a fault. Since a faulting specification is permissive (§3), this
means that behaviors where the client performed such an access are
irrelevant for this refinement; they are masked out by the fault. On
the other hand, to ultimately verify that, say, abs α.ϕ v 〈p, q〉, it
will be necessary to show that the client is well-behaved as long as
the precondition p is satisfied. In short: when we introduce hiding,
we can assume the client is well-behaved; when we verify a full
program, we must check this assumption.

We define Jabs α.ϕKρ as follows:

{s] u : s]α t ∈ JϕKρ, t, u seq, fst(t, u) = ∅}†

∪

{
(s1] u)(σ,) : s1s2]α t ∈ JϕKρ, t, u seq, fst(t, u) = ∅,

lst(u) 6⊆ σ

}†
The notation s]α t denotes s] t, but is only defined when no heap
in s contains α7→ cells, and every heap in t consists only of α7→ cells
(so it is not commutative!). Thus, as in fenced refinement, we are
isolating in trace t the contents of the heap specific to an abstract
variable.

We split out the α resources because an implementation should
be able to use concrete resources instead. The role of abs is to
ensure that these concrete resources are not interfered with:

• In the first clause of the definition, we swap the abstract trace t
with a concrete trace u. We require that both traces are sequen-
tial (hence free from interference). We also require the traces to
start with the empty heap, because initially no object instances
are allocated.
• In the second clause of the definition, we introduce new fault

steps whenever the concrete resources are interfered with. We
truncate the trace at the point where interference occurs, and
add a faulting move. Interference has occurred if lst(u) 6⊆ σ,
meaning that the subheap containing the concrete resources has
changed.

The introduction of faults in this semantics is akin to runtime
contract checking; an alternative would have been to introduce a
type system or other hiding mechanism.

As before, the effect of the introduced faults is to mask out
behavior when the client or environment is ill-behaved. To reiterate:
abs allows reasoning about an object while assuming its client is
well-behaved, but in order to verify a whole program (that includes
the client) one must show that it does not fault, which entails
showing that particular client to be well-behaved.

Finally, we have the DATA2 rule in Figure 4, which allows us to
derive standard refinements from fenced refinements, ensuring that
the assumed ownership discipline is actually followed; “ownership
is in the eye of the asserter” [23].

In DATA2, we are working with a concurrent object with con-
structor f and methods gi. The predicate r[`, y] describes a con-
crete object instance at location ` with abstract contents y. As in

DATA1, the abstracted version of the object works on abstract cells
`
α7→ y instead.
We introduce θi as a midpoint between ϕi and the specification

〈∀y : r[`, y], r[`, ei] ∧ pi〉 because we want to keep the rely ∨θi
as simple as possible. In particular, methods usually operate on
small portions of the object, while r[`, y] refers to the entire object
instance.

The definition of abs ensures that the client or environment
of an object cannot interfere with it. But fenced refinement also
assumes that (1) methods do not violate the invariant r[`,−] and
(2) methods do not violate the rely ∨θi.
• The invariant is maintained because each method body ϕi is

a fenced refinement 〈∀y : r[`, y], r[`, ei] ∧ pi〉, which clearly
maintains the invariant.
• The rely is never violated because each method body ϕi is a

fenced refinement of θi, and the rely permits the behavior of
any of the θi’s.

A key feature of DATA2 is its provision for modular and dy-
namic rely/guarantee reasoning. It is modular because we have
isolated the memory involved (to r[`,−]) and the code involved
(each ϕi)—we do not constrain the clients ψ, nor the contexts in
which the data refinement holds. It is dynamic because it encom-
passes arbitrary allocation of new data structure instances—we get
rely/guarantee reasoning for each individual instance, even though
we do not know how many instances the client ψ will allocate.

As given, DATA2 only applies to methods whose action on the
shared state is given in a single atomic step. The rule can easily
be extended to allow methods which also take an arbitrary number
of steps refining 〈∀y : r[`, y], r[`, y]〉, which make internal adjust-
ments to the object instance (often known as “helping” [10]) but
look like skip to the client. We will not need this for our case study
below, but it is necessary for related data structures such as queues.

The soundness proof for DATA2 is sketched in §7.

6. Case study: Treiber’s nonblocking stack
Using fenced refinement, we will be able to verify a version of
Treiber’s nonblocking stack [26]:

newStk(ret) = new(0, ret)

push(s, x) = ∃n.new((x, 0), n);
µX. ∃t.get(s, t);

put2(n, t);
∃b.cas(s, t, n, b);
if b = 0 thenX

pop(s, ret) = µX. ∃t.get(s, t); {t 6= 0};
∃n.get2(t, n);
∃b.cas(s, t, n, b);
if b = 0 thenX else get1(t, ret)

The specifications geti and puti operate on the ith component of
pairs, e.g., put2(a, x) , 〈∀y : a 7→ (y,−), a 7→ (y, x)〉. We have
simplified pop so that it asserts that the stack is nonempty.

9 2010/7/15

Stacks provide two new challenges compared to counters. First,
the loop in push modifies the heap every time it executes, by calling
put2, rather than just at a successful cas; this makes atomicity non-
trivial to show. Second, pop has a potential “ABA” problem [10]:
it assumes that if the head pointer s is unchanged (i.e. equal to t at
the cas), then the tail of that cell is unchanged (i.e. equal to n at the
cas). Intuitively this assumption is justified because stack cells are
never changed or deallocated once they are introduced;2 we must
make such an argument within the logic.

First, we introduce the following procedures:

getHd(s, ret) = 〈∀x : s 7→ x, s 7→ x ∧ ret = x〉
pushHd(s, t, n) = 〈∀x : s 7→ x, s 7→ n ∧ x = t〉
popHd(s, t, n) = 〈∀x : s 7→ x, s 7→ n ∧ x = t〉

We apply Lemma 6 (Optimism) to push and pop:3

push(s, x) v ∃n.new((x, 0), n);
(∃t.getHd(s, t); put2(n, t))∗;
∃t.getHd(s, t); put2(n, t);
pushHd(s, t, n)

pop(s, ret) v (∃t.getHd(s, t); {t 6= 0};∃n.get2(t, n))∗;
∃t.getHd(s, t); {t 6= 0}; ∃n.get2(t, n);
popHd(s, t, n)

Notice that pop, after recording a pointer t to the current head node
and checking that it is non-null, attempts to read the tail of that node
(using get2). In a sequential setting this would be unproblematic;
in our concurrent setting, we must worry about interference. What
if, between taking the snapshot t and getting its tail, the node t was
popped from the stack, or worse, deallocated? Clearly the push and
pop methods will give no such interference, but we must find an
appropriate representation invariant I and interference description
θ to explain that to the logic.

It turns out to be slightly tricky to formulate an appropriate
representation invariant, because part of what we want to assert—
that cells, even when popped, are neither altered nor deallocated—
can involve memory that is no longer reachable from the head of
the stack. In order to state the invariant, we need some way of
remembering the addresses of cells which used to be part of the
stack, but no longer are. To do this, we will introduce an internal
abstract value α which caries a “ghost” parameterA, using DATA1:

getHd(s, ret) =

〈
∀x,A :

s
α7→ (x,A),

s
α7→ (x,A) ∧ ret = x

〉
pushHd(s, t, n) =

〈
∀x,A :

s
α7→ (x,A),

s
α7→ (n,A) ∧ x = t

〉
popHd(s, t, n) =

〈
∀x,A :

s
α7→ (x,A),

s
α7→ (n, x ·A) ∧ x = t

〉
In order to apply DATA1, we have used the predicate p[`, (x,A)] =
` 7→ x. Notice that the parameterA does not appear in the concrete
predicate. The idea is that the abstract A is a sequence of addresses
of popped cells, while the concrete representation of A is simply—
nothing!

We can now give a representation invariant I for stacks, along
with a bound on interference, θ:

I[`] , ∃n.∃A. ` α7→ (x,A) ∗ cells(A) ∗ ∃x.list(n, x)

cells(ε) , emp
cells(x ·A) , x 7→ − ∗ cells(A)

2 We assume garbage collection here, but we can also verify a stack that
manages its own memory using hazard pointers [16].
3 Technically, for pop, we need a slight variant of the lemma allowing the
existential ∃n to scope over the cas.

push(s, x)

1 v ∃n.new((x, 0), n);
(∃t.getHd(s, t); put2(n, t))∗;
∃t.getHd(s, t); put2(n, t); pushHd(s, t, n)

2 v ∃n.new((x, 0), n); (∃t.put2(n, t))∗;
∃t.put2(n, t); pushHd(s, t, n)

3 v ∃n.new((x,−), n);∃t.put2(n, t); pushHd(s, t, n)

4 v ∃n.∃t.new((x,−), n); put2(n, t); pushHd(s, t, n)

5 v ∃n.∃t.new((x, t), n); pushHd(s, t, n)

6 v ∃n.∃t.
〈
∀z,A :

s
α7→ (z,A),

s
α7→ (n,A) ∗ n 7→ (x, t) ∧ z = t

〉
7 v

〈
∀z,A :

s
α7→ (z,A),

∃n.∃t.s α7→ (n,A) ∗ n 7→ (x, t) ∧ z = t

〉
8 v

〈
∀z,A :

s
α7→ (z,A),

∃n.s α7→ (n,A) ∗ n 7→ (x, z)

〉
Figure 5. High-level proof of push

θ ,

〈
∀x,A :

`
α7→ (x,A),

∃n. ` α7→ (n,A) ∗ n 7→ (−, x)

〉
∨
〈
∀x, x1, x2, A :

`
α7→ (x,A) ∗ x 7→ (x1, x2),

`
α7→ (x2, x ·A) ∗ x 7→ (x1, x2)

〉
Notice that θ describes interference only in terms of the effect

on the head of the stack. Implicitly (by framing) this means that the
rest of the stack described by I—including the heap cells given by
A—remain invariant under interference.

6.1 Proving push

We verify push using the refinements in Figure 5, which are fenced
by I and θ. Step (1) just restates what we have done already. In step
(2), we abstract getHd into the assertion {s 7→ −} (as in §4.1), and
then apply INV to abstract these assertions to skip (because they
are implied by the invariant). In steps (3) and (5) we use SEQL
to merge the calls to new and put2 into a single atomic action,
new; this introduces an assertion {I ∗ emp}, again implied by the
invariant. Step (4) is just STR2. Step (6) again applies SEQL, again
producing a trivial assertion which we remove with INV. Step (7)
applies STR1, and step (8) is by CSQ1.

6.2 Proving pop

We do not give the full proof of pop, but instead we show one
important step in very careful detail (Figure 6). Recall that in pop,
we take two snapshots every time we loop: one of the address of the
current head node, and one of its tail. We will show that, although
these snapshots take place at distinct points in time, they may as
well have happened in a single atomic step. The justification is that
no interference could change the tail between the two steps.

We have labeled each step with the rule it applies, except
for the step (*), which applies the derived rule 〈∀x : p, q〉 v
〈∀x : p ∧ r, q ∧ r〉 for r pure. This rule follows from the frame
rule and CSQ1, because for pure r we have p ∗ r ⇐⇒ p ∧ r.

The proof mostly consists in structural steps which we give for
illustrative purposes. These steps serve to introduce enough names
and frame to actually say what we want to say about the snapshots.
The (*) step strengthens the precondition of the second snapshot
by asserting that it has a fixed value t2. The STAB step actually
demonstrates that the tail of t has a stable value; strictly speaking, it
requires a use of CSQ2 to strengthen the assertion so that it matches
the postcondition.

10 2010/7/15

∃t.getHd(s, t);∃n.get2(t, n);ϕ

defn ≡ ∃t.
〈
∀x,A : s

α7→ (x,A), s
α7→ (x,A) ∧ t = x

〉
; ∃n. 〈∀y1, y2 : t 7→ (y1, y2), t 7→ (y1, y2) ∧ y2 = n〉 ;ϕ

FRM v ∃t. 〈∀x, x1, x2, A : p, p ∧ t = x〉 ; ∃n. 〈∀y1, y2 : t 7→ (y1, y2), t 7→ (y1, y2) ∧ y2 = n〉 ;ϕ
CSQ1 v ∃t. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ x2 = x2〉 ; ∃n. 〈∀y1, y2 : t 7→ (y1, y2), t 7→ (y1, y2) ∧ y2 = n〉 ;ϕ
∃ intr v ∃t.∃t2. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ t2 = x2〉 ; ∃n. 〈∀y1, y2 : t 7→ (y1, y2), t 7→ (y1, y2) ∧ y2 = n〉 ;ϕ

(*) v ∃t.∃t2. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ t2 = x2〉 ; ∃n. 〈∀y1, y2 : t 7→ (y1, y2) ∧ y2 = t2, t 7→ (y1, y2) ∧ y2 = n ∧ y2 = t2〉 ;ϕ
CSQ1 v ∃t.∃t2. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ t2 = x2〉 ; ∃n. 〈∀y1, y2 : t 7→ (y1, y2) ∧ y2 = t2, t 7→ (y1, y2) ∧ y2 = t2 ∧ t2 = n〉 ;ϕ
ASM ≡ ∃t.∃t2. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ t2 = x2〉 ; ∃n. 〈∀y1, y2 : t 7→ (y1, y2) ∧ y2 = t2, t 7→ (y1, y2) ∧ y2 = t2〉 ; [t2 = n];ϕ

EXT ≡ ∃t.∃t2. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ t2 = x2〉 ; ∃n.{t 7→ (−, t2)}; [t2 = n];ϕ

STR ≡ ∃t.∃t2.∃n. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ t2 = x2〉 ; {t 7→ (−, t2)}; [t2 = n];ϕ

STAB ≡ ∃t.∃t2.∃n. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ t2 = x2〉 ; [t2 = n];ϕ

Asm ≡ ∃t.∃t2.∃n. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ t2 = x2 ∧ t2 = n〉 ;ϕ
CSQ1 v ∃t.∃t2.∃n. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ n = x2〉 ;ϕ

∴ v ∃t.∃n. 〈∀x, x1, x2, A : p, p ∧ t = x ∧ n = x2〉 ;ϕ where p , s
α7→ (x,A) ∗ x 7→ (x1, x2)

Figure 6. Detailed atomicity abstraction for pop

7. Soundness of DATA2

As with the other refinement laws, we prove DATA2 by means of
the denotational model. However, unlike the other laws, this proof
is nontrivial.

In order to prove the law, we first show that if the hypotheses of
the law hold, then

let f(`) = 〈emp, r[`, e]〉 in let gi(`, x) = ϕi in ψ

simulates

let f(`) =
〈
emp, `

α7→ (e)
〉

in

let gi(`, x) =
〈
∀y : `

α7→ (y), `
α7→ (ei) ∧ pi

〉
in ψ

Simulation relates the concrete traces of the first specification to
the abstract traces of the second. It is a generalization of fenced
refinement: instead of dealing with a single object instance, we
must track the arbitrary instances that may arise as a specification
executes. For each object instance, we assume that the environment
obeys the rely.

We prove the simulation result by induction on the structure of
the client ψ. The noninductive cases include method calls, which
interact with the concrete objects in known ways, and client actions,
which cannot interact with the concrete objects. For the latter, we
use the fact that in the second specification, the concrete objects do
not exist at all—they are held abstract. Thus, if the client (which
does not mention α) attempts to interact with them, it will fault,
which as usual is permissive.

For inductive cases, we are assured inductively that the client
itself never breaks the rely.

This simulation tells us that the neither the methods nor the
client can break the rely condition. To prove DATA2 we introduce
abs, which further guarantees that the environment will not inter-
fere at all.

An important lemma for showing simulation is locality:

Definition 2. T is local if, whenever t(σ1] σ2, σ
′)u ∈ T either

• σ′ = σ′1] σ2 and t(σ1, σ
′
1)u ∈ T or

• t(σ1,) ∈ T .

Lemma 7 (Locality). For every ϕ, ρ, the set JϕKρ is local (assum-
ing we take the fixpoint µ over only local trace sets).

Locality captures the idea that if, at some point, a specification
is given fewer resources to execute with it will either fault, or it

did not need those resources (so they are part of the frame for that
step). We use this lemma when reasoning about steps that the client
takes: we know that if we remove the concrete object instances,
either the client would fault (and hence was ill-behaved) or else did
not modify those instances.

The details of this and other proofs can be found online at

http://www.ccs.neu.edu/home/turon/sepref/

8. Evaluation and related work
In the last several years, there has been stunning progress in the
formal verification of fine-grained concurrent data structures [4, 6,
9, 27], giving logics appropriate for hand verification as well as
automated verification. We have sought in this work to clarify and
consolidate this literature—the linchpin for us being the connection
between ownership, atomicity, and interference. Our main contri-
bution lies in making this connection, formalizing it with a new se-
mantics for separation logic, and formulating proof rules based on
the idea. While the logic resulting from our work offers some sig-
nificant new features, more experience using it is required before its
practicality or applicability can be compared to other approaches.

The most closely related work is “Concurrent Abstract Pred-
icates,” (CAP, [4]), a recent paper that also seeks to modularize
reasoning about interference by using ownership and separation
logic. CAP takes a radically different approach toward atomicity:
rather than proving linearizability or refinement, in CAP one al-
ways uses self-stable predicates which are invariant under internal
interference—thus sidestepping atomicity issues entirely. By con-
trast, we have focused on the semantic issues related to both atom-
icity and interference, and have shown both in terms of semantics
and proof rules how these issues interact. It should be possible to
apply our semantic insights to explain CAP in terms of contextual
refinement as we have done.

Separation logic has also been used to localize rely/guarantee
reasoning in Feng’s work [7], from which we borrow the “fence”
terminology. However, it does not appear possible to use that tech-
nique to both localize reasoning about interference to a group of
methods and also let clients make use of the methods.

The abstract predicates in CAP are related to Bierman and
Parkinson’s work [24] investigating data abstraction in a sequen-
tial separation logic setting. In particular, Bierman and Parkinson
use abstract predicates whose definition is known to the data struc-
ture implementation, but opaque to the client—a form of second-

11 2010/7/15

order existential quantification. There is clearly a close relation-
ship to our abstract resources, but we do not define abs in terms
of second-order quantification, because we need the ability to in-
troduce faults and require sequentiality. The connections between
these approaches certainly merits further investigation.

The basic form of our calculus clearly bears resemblance to
Elmas et al.’s calculus of atomic actions [5, 6]. The key idea in
that work is to combine Lipton’s technique of reduction [14] for
enlarging the grain of atomicity, with abstraction (e.g. weakening
a Hoare triple) on atomic actions. The authors demonstrate that the
combination of techniques is extremely powerful; they were able to
automate their logic and use it to verify a significant number of data
structures and other programs. A significant difference between
their calculus and ours is what refinement entails, semantically.
For them, refinement is ultimately about the input-output relation
of a program, where for us, it is about the reactive, trace-based
semantics. The distinction comes down to this: is refinement a
congruence for parallel composition? For us it is, and this means
that our system as a whole is compositional. We also demonstrate
that reduction is not necessary for atomicity refinement, at least
for the class of examples we have considered; we instead use
ownership-based reasoning. Finally, aside from these points, we
have shown how to incorporate separation logic into a calculus of
atomic actions, enabling cleaner reasoning about the heap.

A significant departure in our work is that we have dispensed
with linearizability, which is usually taken as the basic correctness
condition for the data structures we are studying [11]. Here we are
influenced by Filipović et al. [8], who point out that “program-
mers expect that the behavior of their program does not change
whether they use experts’ data structures or less-optimized but
obviously-correct data structures.” The authors go on to show that,
if we take refinement as our basic goal, we can view linearizabil-
ity as a sound (and sometimes complete) proof technique. But im-
plicit in their proof of soundness—and indeed in the definition
of linearizability—is the assumption that the heap data associated
with data structures is never interfered with by clients. In a set-
ting where clients are given pointers into those data structures, this
is an assumption that should be checked. In contrast, we are able
to give a comprehensive model including both data structures and
their clients, and make explicit assumptions about ownership.

Our use of separation logic and rely/guarantee clearly derives
from Vafeiadis et al.’s work [28], especially Vafeiadis’s ground-
breaking thesis [27]. In that line of work, it was shown how to
combine separation logic and rely/guarantee reasoning, which pro-
vided a basis for verifying fine-grained concurrent data structures.
While their logic for proving Hoare triples was proved sound,
no formal connection to linearizability or refinement was made;
there is only an implicit methodology for proving certain Hoare
triples about data structures and concluding that those data struc-
tures are linearizable. We show how to make that methodology ex-
plicit, and moreover compositional, by tying it to data abstraction.
As a byproduct, we get a modularized account of rely/guarantee.
We also eliminate any need for explicit linearization points (which
sometimes require prophecy variables) or annotations separating
shared from private resources.

Finally, it should be noted that our semantics owes a debt both
to Brookes [2] and to Calcagno et al. [3].

Acknowledgements Thanks to Dan Brown, Claudio Russo and
Sam Tobin-Hochstadt for feedback and discussions. The first au-
thor was supported by a grant from Microsoft Research.

References
[1] R. J. Back and J. von Wright. Refinement calculus: a systematic

introduction. Springer, 1998.

[2] S. Brookes. Full abstraction for a shared variable parallel language.
Information and Computation, 127(2):145–163, 1996.

[3] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract
separation logic. In LICS, pages 366–378. IEEE Computer Society,
2007.

[4] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP, June 2010.

[5] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In
POPL, pages 2–15. ACM, 2009.

[6] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying
linearizability proofs with reduction and abstraction. In TACAS, pages
296–311. Springer, 2010.

[7] X. Feng. Local rely-guarantee reasoning. In POPL, pages 315–327.
ACM, 2009.

[8] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for
concurrent objects. In ESOP, pages 252–266. Springer, 2009.

[9] L. Groves. Reasoning about nonblocking concurrency. JUCS, 15(1):
72–111, 2009.

[10] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. TOPLAS, 12(3):463–492, 1990.

[12] C. B. Jones. Tentative steps toward a development method for inter-
fering programs. TOPLAS, 5(4):596–619, 1983.

[13] L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923,
1994.

[14] R. J. Lipton. Reduction: a method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[15] B. Liskov and S. Zilles. Programming with abstract data types. In
Symposium on Very high level languages, pages 50–59. ACM, 1974.

[16] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems,
15:491–504, 2004. ISSN 1045-9219.

[17] M. M. Michael and M. L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory mul-
tiprocessors. J. Parallel Distrib. Comput., 51(1):1–26, 1998.

[18] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., 1982.

[19] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type.
TOPLAS, 10(3):470–502, 1988.

[20] M. Moir and N. Shavit. Concurrent data structures. In Handbook
of Data Structures and Applications, D. Metha and S. Sahni Editors,
pages 47–14–47–30, 2007. Chapman and Hall/CRC Press.

[21] C. Morgan and T. Vickers. On the refinement calculus. Springer, 1993.
[22] J. H. Morris, Jr. Protection in programming languages. CACM, 16(1):

15–21, 1973.
[23] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.

Comput. Sci., 375(1-3):271–307, 2007.
[24] M. Parkinson and G. Bierman. Separation logic and abstraction.

POPL, 40(1):247–258, 2005.
[25] D. Sangiorgi and D. Walker. Pi-Calculus: A Theory of Mobile Pro-

cesses. Cambridge University Press, 2001.
[26] R. K. Treiber. Systems programming: coping with parallelism. Tech-

nical report, Almaden Research Center, 1986.
[27] V. Vafeiadis. Modular fine-grained concurrency verification. PhD

thesis, University of Cambridge, 2008.
[28] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and

separation logic. In CONCUR, pages 256–271. Springer, 2007.
[29] R. J. van Glabbeek. The linear time - branching time spectrum. In

CONCUR, pages 278–297. Springer, 1990.

12 2010/7/15

