
Regular-expression derivatives reexamined

SCOTT OWENS
University of Cambridge

Scott.Owens@cl.cam.ac.uk

JOHN REPPY
University of Chicago

jhr@cs.uchicago.edu

AARON TURON
University of Chicago

Northeastern University
turon@ccs.neu.edu

1 Introduction

The derivative of a set of strings S with respect to a symbol a is the set of strings gener-
ated by stripping the leading a from the strings in S that start with a. For regular sets of
strings, i.e., sets defined by regular expressions (REs), the derivative is also a regular set. In
a 1964 paper, Janusz Brzozowski presented an elegant method for directly constructing a
recognizer from a regular expression based on regular-expression derivatives (Brzozowski,
1964). His approach is elegant and easily supports extended regular expressions; i.e., REs
extended with Boolean operations such as complement. Unfortunately, RE derivatives have
been lost in the sands of time, and few computer scientists are aware of them.1 Recently,
we independently developed two scanner generators, one for PLT Scheme and one for
Standard ML, using RE derivatives. Our experiences with this approach have been quite
positive: the implementation techniques are simple, the generated scanners are usually opti-
mal in size, and the extended RE language allows for more compact scanner specifications.
Of special interest is that the implementation techniques are well-suited to functional lan-
guages that provide good support for symbolic term manipulation (e.g., inductive datatypes
and pattern matching).

The purpose of this paper is largely educational. Our positive experience with RE deriva-
tives leads us to believe that they deserve the attention of the current generation of func-
tional programmers, especially those implementing RE recognizers. We begin with a re-
view of background material in Section 2, introducing the notation and definitions of regu-
lar expressions and their recognizers. Section 3 gives a fresh presentation of Brzozowski’s
work, including DFA construction with RE derivatives. In addition to reexamining Brzo-
zowski’s work, we also report on the key implementation challenges we faced in Section 4,
including new techniques for handling large character sets such as Unicode (Unicode Con-
sortium, 2003). Section 5 reports our experience in general and includes an empirical com-

1 A quick survey of several standard compiler texts does not turn up any description of them (Aho et al., 1986;
Fisher & LeBlanc, Jr., 1988; Appel, 1998). The only mention we found, in fact, is an exercise in Aho and
Ullman’s Theory of Parsing and Translation (Aho & Ullman, 1972).

2 S. Owens, J. Reppy, and A. Turon

parison of the derivative-based scanner generator for SML/NJ with the more traditional
tool it replaces. We conclude with a review of related work and a summary.

2 Preliminaries

We assume a finite alphabet Σ of symbols and use Σ∗ to denote the set of all finite strings
over Σ. We use a, b, c, etc., to represent symbols and u, v, w to represent strings. The
empty string is denoted by ε. A language of Σ is a (possibly infinite) set of finite strings
L ⊆ Σ∗.

2.1 Regular expressions

Our syntax for regular expressions includes the usual operations: concatenation, Kleene-
closure, and alternation. In addition, we include the empty set (∅) and the Boolean opera-
tions “and” and “complement.”2

Definition 2.1

The abstract syntax of a regular expression over an alphabet Σ is given by the following
grammar:

r, s ::= ∅ empty set
| ε empty string
| a a ∈ Σ
| r · s concatenation
| r∗ Kleene-closure
| r + s logical or (alternation)
| r & s logical and
| ¬r complement

These expressions are often called extended regular expressions, but since the extensions
are conservative (i.e., regular languages are closed under Boolean operations (Rabin &
Scott, 1959)), we refer to them as regular expressions. Adding boolean operations to the
syntax of regular expressions greatly enhances their expressiveness, as we demonstrate in
Section 5.1. We use juxtaposition for concatenation and we add parentheses, as necessary,
to resolve ambiguities.

The regular languages are those languages that can be described by regular expressions
according to the following definition.

Definition 2.2

The language of a regular expression r is a set of strings L[[r]] ⊆ Σ∗ generated by the

2 Other logical operations, such as exclusive or, can also be added.

Regular-expression derivatives reexamined 3

following rules:

L[[∅]] = ∅
L[[ε]] = {ε}
L[[a]] = {a}

L[[r · s]] = {u · v | u ∈ L[[r]] and v ∈ L[[s]]}
L[[r∗]] = {ε} ∪ L[[r · r∗]]

L[[r + s]] = L[[r]] ∪ L[[s]]

L[[r & s]] = L[[r]] ∩ L[[s]]

L[[¬r]] = Σ∗ \ L[[r]]

To avoid notational clutter, we often let an RE r denote its language L[[r]] and refer to REs
and their languages interchangeably.

2.2 Finite state machines

Finite state machines (or finite automata) provide a computational model for implement-
ing recognizers for regular languages. For this paper, we are interested in deterministic
automata, which are defined as follows:

Definition 2.3
A deterministic finite automaton (DFA) over an alphabet Σ is 4-tuple 〈Q, q0,F , δ〉, where
Q is a finite set of states, q0 ∈ Q is the distinguised start state, F ⊆ Q is a set of final
(or accepting) states, and δ : Q × Σ → Q is a partial function called the state transition
function.

We can extend the transition function δ to strings of symbols

δ̂(q, ε) = q

δ̂(q, au) = δ̂(q′, u) when q′ = δ(q, a) is defined

The language accepted by a DFA is defined to be the set of strings

{u | δ̂(q0, u) ∈ F}

3 Regular expression derivatives

In this section, we introduce RE derivatives and show how they can be used to construct
DFAs directly from REs.

3.1 Derivatives

The notion of a derivative applies to any language. Intuitively, the derivative of a language
L ⊆ Σ∗ with respect to a symbol a ∈ Σ is the language that includes only those suffixes
of strings with a leading symbol a in L.

4 S. Owens, J. Reppy, and A. Turon

Definition 3.1

The derivative of a language L ⊆ Σ∗ with respect to a string u ∈ Σ∗ is defined to be
∂u L = {v | u · v ∈ L}.

For example, consider the language defined by the regular expression r = ab∗. The deriva-
tive of r with respect to a is b∗, while the derivative with respect to b is the empty set.

Derivatives are useful for scanner construction in part because the regular languages are
closed under the derivative operation, as stated in the following theorem:

Theorem 3.1

If L ⊆ Σ∗ is regular, then ∂uL is regular for all strings u ∈ Σ∗.

Proof

We start by showing that for any a ∈ Σ, the language ∂aL is regular. Let 〈Q, q0,F , δ〉 be
a DFA that accepts the regular language L. Then we can construct a DFA that recognizes
∂aL as follows: if δ(q0, a) is defined, then 〈Q, δ(q0, a),F , δ〉 is a DFA that recognizes
∂aL and, thus, ∂aL is regular. Otherwise ∂aL = ∅, which is regular. The result for strings
follows by induction.

For regular languages that are represented as REs, there is a natural algorithm for com-
puting the derivative as another RE. First we need a helper function, ν, from REs to REs.
We say that a regular expression r is nullable if the language it defines contains the empty
string, that is, if ε ∈ L[[r]]. The ν function has the property that

ν(r) =

{
ε if r is nullable

∅ otherwise.

and is defined as follows:

ν(ε) = ε

ν(a) = ∅
ν(∅) = ∅

ν(r · s) = ν(r) & ν(s)

ν(r + s) = ν(r) + ν(s)

ν(r∗) = ε

ν(r & s) = ν(r) & ν(s)

ν(¬r) =
{
ε if ν(r) = ∅
∅ if ν(r) = ε

Regular-expression derivatives reexamined 5

The following rules, owed to Brzozowski, compute the derivative of a regular expression
with respect to a symbol a.

∂a ε = ∅
∂a a = ε

∂a b = ∅ for b 6= a

∂a ∅ = ∅
∂a (r · s) = ∂a r · s+ ν(r) · ∂a s

∂a (r∗) = ∂a r · r∗

∂a (r + s) = ∂a r + ∂a s

∂a (r & s) = ∂a r & ∂a s

∂a (¬r) = ¬(∂a r)

The rules are extended to strings as follows:

∂ε r = r

∂ua r = ∂a (∂u r)

3.2 Using derivatives for RE matching

Suppose we are given an RE r and a string u and we want to determine if u ∈ L[[r]]. We
have u ∈ L[[r]] if, and only if, ε ∈ L[[∂u r]], which is true exactly when ε = ν(∂u r).
Combining this fact with the definition of ∂u leads to an algorithm for testing if u ∈ L[[r]].
We express the algorithm in terms of the relation r ∼ u (r matches the string u), defined
as the smallest relation satisfying:

r ∼ ε ⇔ ν(r) = ε

r ∼ a · w ⇔ ∂a r ∼ w

It is straightforward to show that r ∼ u if, and only if, u ∈ L[[r]].
Notice that when an RE matches a string, we compute a derivative for each of the char-

acters in the string. For example, consider the derivation of a · b∗ ∼ abb:

a · b∗ ∼ abb ⇔ ∂a a · b∗ ∼ bb

⇔ b∗ ∼ bb

⇔ ∂b b∗ ∼ b

⇔ b∗ ∼ b

⇔ ∂b b∗ ∼ ε
⇔ b∗ ∼ ε
⇔ ν(b∗) = ε

When the RE does not match the string, we reach a derivative that is the RE ∅, and stop.

6 S. Owens, J. Reppy, and A. Turon

For example,

a · b∗ ∼ aba ⇔ ∂a a · b∗ ∼ ba

⇔ b∗ ∼ ba

⇔ ∂b b∗ ∼ a

⇔ b∗ ∼ a

⇔ ∂a b∗ ∼ ε
⇔ ∅ ∼ ε
⇔ ν(∅) = ε (false)

3.3 Using derivatives for DFA construction

Before describing DFA construction, we need another definition:

Definition 3.2
We say that r and s are equivalent, written r ≡ s, if L[[r]] = L[[s]]. We write [r]≡ for the
set {s | r ≡ s}, which is the equivalence class of r under ≡.

For example, a + b ≡ b + a.
The matching relation gives an algorithm for testing a string against an RE by comput-

ing successive derivatives of the RE for successive characters in the string. At each step we
have a residual RE that must match a residual string. If, instead of computing the derivatives
on the fly, we precompute the derivative for each symbol in Σ, we can construct a DFA rec-
ognizer for the language of the RE. The states of the DFA are RE equivalence classes and
the transition function is the derivative function on those classes: δ(q, [a]≡) = [∂a (q)]≡.
This function is well-defined because the derivatives of equivalent REs are equivalent. In
constructing the DFA, we label each state with an RE representing its equivalence class.
Accepting states are those states labeled by nullable REs, and the error state is labeled by
∅. The key challenge in making this algorithm practical is developing an efficient test for
RE equivalence. We return to this point in the next section.

Figure 1 gives the complete algorithm for constructing a DFA 〈Q, q0,F , δ〉 using deriva-
tives. The goto function constructs the transition from a state q for when the symbol c is
encountered, while the explore function collects together all of the possible transitions
from the state q. Together, these functions perform a depth-first traversal of the DFA’s state
graph while constructing it. Note that we test RE equivalence when checking to see if qc is
a new state. Brzozowski proved that an RE can have only finitely-many derivatives (up to
RE equivalence), which guarantees the termination of the algorithm. Once the state graph,
represented by the (Q, δ) pair, has been constructed, it is simple to compute the accepting
states and construct the DFA 4-tuple.

3.4 An example

Consider the RE a · b + a · c over the alphabet {a,b, c}. The DFA construction for this
RE starts with q0 = ∂ε (a · b + a · c) = a · b + a · c and proceeds as follows:

1. compute ∂a q0 = ∂a (a · b + a · c) = b + c, which is new, so call it q1.

Regular-expression derivatives reexamined 7

fun goto q (c, (Q, δ)) =
let qc = ∂c q
in
if ∃q′ ∈ Q such that q′ ≡ qc

then (Q, δ ∪ {(q, c) 7→ q′})
else
let Q′ = Q∪ {qc}
let δ′ = δ ∪ {(q, c) 7→ qc}
in explore (Q′, δ′, qc)

and explore (Q, δ, q) = fold (goto q) (Q, δ) Σ

fun mkDFA r =
let q0 = ∂ε r
let (Q, δ) = explore ({q0}, {}, q0)
let F = {q | q ∈ Q and ν(q) = ε}
in 〈Q, q0,F , δ〉

Fig. 1. DFA construction using RE derivatives

b,c

a

a b,c

a,b,c

q0 = ab + ac q1 = b + c

q2 = ∅ q3 = ε

Fig. 2. The DFA for ab + ac

2. compute ∂a q1 = ∂a (b + c) = ∅, which is new, so call it q2.
3. compute ∂a q2 = ∂a ∅ = ∅ = q2.
4. likewise ∂b q2 = q2 and ∂c q2 = q2.
5. compute ∂b q1 = ∂b (b + c) = (ε+ ∅) ≡ ε, which is new, so call it q3.
6. compute ∂a q3 = ∂a ε = ∅ = q2.
7. likewise ∂b q3 = q2 and ∂c q3 = q2.
8. compute ∂c q1 = ∂c (b + c) = (∅+ ε) ≡ ε = q3
9. compute ∂b q0 = ∂b (a · b + a · c) = ∅ = q2.

10. compute ∂c q0 = ∂c (a · b + a · c) = ∅ = q2.

Note that since ν(q3) = ε, q3 is an accepting state. Figure 2 shows the resulting DFA in
graphical form.

4 Practical DFA construction

While the algorithm given in Figure 1 is simple, we are faced with three issues that must
be addressed to build an efficient implementation.

8 S. Owens, J. Reppy, and A. Turon

1. The problem of determining when two REs are equivalent, which is used to test if
q′ ≡ qc in the goto function, is expensive. In fact, deciding language equality for reg-
ular expressions with intersection and complement operators is of non-elementary
complexity (Aho et al., 1974).

2. The iteration over the symbols in Σ that is used to compute the δ function is not
practical for large alphabets (e.g., the Unicode character set has over 1.1 million
code points).

3. A scanner generator typically takes a collection of REs as its input specification,
whereas the algorithm in Figure 1 builds a DFA for a single RE.

These issues are addressed in the following three subsections.

4.1 Weaker notions of RE equivalence

The DFA construction algorithm in Figure 1 only introduces a new state when no equiv-
alent state is present. Brzozowski proved that this check for state equivalence guarantees
the minimality of the DFA produced by the algorithm, but checking RE equivalence is
expensive, so in practice we change the test to

∃q′ ∈ Q such that q′ ≈ qc

where ≈ is an approximation of RE equivalence that is defined as follows:

Definition 4.1
Let ≈ denote the least relation on REs including the following equations:

r & r ≈ r

r & s ≈ s& r

(r & s) & t ≈ r & (s& t)
∅& r ≈ ∅
¬∅& r ≈ r

(r · s) · t ≈ r · (s · t)
∅ · r ≈ ∅
r · ∅ ≈ ∅
ε · r ≈ r

r · ε ≈ r

(∗) r + r ≈ r

(∗) r + s ≈ s+ r

(∗) (r + s) + t ≈ r + (s+ t)
¬∅+ r ≈ ¬∅
∅+ r ≈ r

(r∗)∗ ≈ r∗

ε∗ ≈ ε

∅∗ ≈ ε

¬(¬r) ≈ r

Two regular expressions r and s are similar if r ≈ s and dissimilar otherwise.

Theorem 4.1
If r ≈ s then r ≡ s; that is, similar REs are equivalent.

Proof
By induction on the rules defining similarity. The noninductive cases are simple algebraic
consequences of Definition 2.2.

Brzozowski proved that a notion of RE similarity including only the above rules marked
with (∗) is enough to ensure that every RE has only a finite number of dissimilar deriva-
tives. Hence, DFA construction is guaranteed to terminate if we use similarity as an ap-
proximation for equivalence. In our experience, including only the marked rules results in

Regular-expression derivatives reexamined 9

very large machines, but using the full set yields the minimal machine in most cases (see
Section 5).

In our implementations, we maintain the invariant that all REs are in ≈-canonical form
and use structural equality to identify equivalent REs. To ensure this invariant, we rep-
resent REs as an abstract type and use smart-constructor functions to build ≈-canonical
forms. Each RE operator has an associated smart-constructor function that checks its argu-
ments for the applicability of the≈ equations. If an equation applies, the smart constructor
simplifies the RE using the equation as a reduction from left to right. For example, the
constructor for negation inspects its argument, and if it is of the form (¬r), the constructor
simply returns r.

For the commutativity and associativity equations, we use these equivalences to sort the
subterms in lexical order. We also use this lexical order to implement a functional finite
map with RE keys. This map is used as the representation of the set Q of DFA states in
Figure 1, where RE labels are mapped to states. The membership test qc ∈ Q is just a
lookup in the finite map.

4.2 Character sets

The presentation of traditional DFA construction algorithms (Aho et al., 1986) involves
iteration over the alphabet Σ, and the derivative-based algorithm in Figure 1 does as well.
Iteration over Σ is inefficient but feasible for small alphabets, such as the ASCII character
set, but for large alphabets, such as Unicode (Unicode Consortium, 2003), iteration over Σ
is impractical. Since the out degree of any given state is usually much smaller than the size
of the alphabet, it is advantageous to label state transitions with sets of characters. In this
section, we describe an extension to Brzozowski’s work that uses character sets to greatly
reduce the number of derivatives that must be computed when determining the transitions
from a given state.

The first step is to reformulate the abstract syntax of REs as follows:

r, s ::= S where S ⊆ Σ
| ε empty string
| r · s concatenation
| r∗ Kleene-closure
| r + s logical or (alternation)
| r & s logical and
| ¬r complement

Note that S covers both the empty set and single character cases from Definition 2.1, as
well as character classes. The definitions of Sections 2 and 3 extend naturally to character
sets.

L[[S]] = S
ν(S) = ∅

∂a S =
{
ε a ∈ S
∅ a 6∈ S

As before, our implementation uses simplification to canonicalize REs involving character

10 S. Owens, J. Reppy, and A. Turon

sets.

R+ S ≈ T where T = R ∪ S
¬S ≈ T where T = Σ \ S

where R,S, and T denote character sets.
As we remarked above, a given state q in a DFA will usually have many fewer distinct

outgoing state transitions than there are symbols in Σ. Let S1, . . . , Sn be a partition of Σ
such that whenever a, b ∈ Si, we have δ(q, a) = δ(q, b) (equivalently: ∂a q ≈ ∂b q). If we
somehow knew the partition S1, . . . , Sn for q in advance, we would only need to calculate
one derivative per Si when computing the transitions from q. Note that if the derivatives
are distinct, then the partition is minimal. This last situation is described by the following
definition:

Definition 4.2
Given an RE r over Σ and symbols a, b ∈ Σ, we say that a 'r b if and only if ∂a r ≡ ∂b r.
The derivative classes of r are the equivalence classes Σ/'r. We write [a]r = {b | a 'r b}
for the derivative class of r represented by a.

For example, the derivative classes for a + b · a + c are {a, c}, {b}, and Σ \ {a,b, c}.
Whenever two symbols belong to the same derivative class for two REs, those sym-

bols belong to the same derivative class for any combination of the REs. This insight is
formalized by the following lemma:

Lemma 4.1
Let r and s be regular expressions and a and b symbols such that a 'r b and a 's b. Then
the following equations hold:

• a '(r·s) b

• a '(r+s) b

• a '(r&s) b

• a 'r∗ b

• a '¬r b

Proof
The proof follows from simple equational reasoning. For example,

∂a (r · s) ≡ ∂a r · s+ ν(r) · ∂a s

≡ ∂b r · s+ ν(r) · ∂b s

≡ ∂b (r · s)

and thus a '(r·s) b. The other equations follow similarly.

We could determine the derivative classes of each state before finding any derivatives,
but in general it is not possible to compute them without doing O(|Σ|) work. Instead, we
define a function C : RE → 22Σ

by structural recursion that computes an approximation
of the derivative classes. For atomic REs, C gives an exact result:

C(ε) = {Σ}
C(S) = {S, Σ \ S}

Regular-expression derivatives reexamined 11

but compound REs are somewhat trickier. Lemma 4.1 provides guidance: if a and b are
related in both C(r) and C(s), then they should also be related in C(r + s), etc. Our
algorithm is conservative because it assumes that only those symbols that are related in
both C(r) and C(s) are related in C(r + s) as specified by the following notation:

C(r) ∧ C(s) = {Sr ∩ Ss | Sr ∈ C(r), Ss ∈ C(s)},

We can now define the remaining cases for C:

C(r · s) =

{
C(r) r is not nullable

C(r) ∧ C(s) otherwise

C(r + s) = C(r) ∧ C(s)

C(r & s) = C(r) ∧ C(s)

C(r∗) = C(r)

C(¬r) = C(r)

Consider once more the example a + b · a + c:

C((a + b · a) + c) = C(a + b · a) ∧ C(c)

= (C(a) ∧ C(b · a)) ∧ C(c)

= (C(a) ∧ C(b)) ∧ C(c)

= ({{a}, Σ \ {a}} ∧ {{b}, Σ \ {b}}) ∧ {{c}, Σ \ {c}}
= {∅, {a}, {b}, Σ \ {a, b}} ∧ {{c}, Σ \ {c}}
= {∅, {a}, {b}, {c}, Σ \ {a, b, c}}

As stated above, the exact derivative classes for this RE are {a, c}, {b}, and Σ\{a, b, c},
so the approximation overpartitioned the alphabet. Nevertheless, we have reduced consid-
eration to five symbol sets, and need only compute one derivative for each set.

The correctness of the derivative class approximation is easy to prove.

Theorem 4.2
Let r be a regular expression. Then for all S ∈ C(r) and a ∈ S, we have S ⊆ [a]r.

Proof
By induction on the structure of r, using Lemma 4.1.

With the approximation of derivative classes, we can modify the algorithm for DFA
construction to only compute one derivative per approximate class. This version of the
algorithm is shown in Figure 3.

4.3 Regular vectors

In order to use this DFA construction algorithm in a scanner generator, we need to extend
it to handle multiple REs in parallel. Brzozowski recognized this problem and introduced
regular vectors as an elegant solution.

Definition 4.3
An n-tuple of regular expressions, R = (r1, . . . , rn), is called a regular vector.

12 S. Owens, J. Reppy, and A. Turon

fun goto q (S, (Q, δ)) =
let c ∈ S
let qc = ∂c q
in
if ∃q′ ∈ Q such that q′ ≈ qc

then (Q, δ ∪ {(q,S) 7→ q′})
else
let Q′ = Q∪ {qc}
let δ′ = δ ∪ {(q,S) 7→ qc}
in explore (Q′, δ′, qc)

and explore (Q, δ, q) = fold (goto q) (Q, δ) (C(q))

fun mkDFA r =
let q0 = ∂ε r
let (Q, δ) = explore ({q0}, {}, q0)
let F = {q | q ∈ Q and ν(q) = ε}
in 〈Q, q0,F , δ〉

Fig. 3. DFA construction using RE derivatives and character classes

Rather than labeling DFA states with REs, we now label them with a regular vectors. The
transition function is still just the derivative function, where the derivative of a regular
vector is defined componentwise:

∂a (r1, . . . , rn) = (∂a r1, . . . , ∂a rn)

The definitions for accepting and error states must also be revised. A state is accepting if its
regular vector contains a nullable RE. The error state is the regular vector with components
all equal to the empty language, ∅. Finally, we can approximate the derivative classes of a
regular vector by intersecting the approximate derivative classes of its components:

C(r1, . . . , rn) =
∧
C(ri)

5 Experience

We have experience with two independent implementations of RE-derivative-based scan-
ner generators: ml-ulex, which is an SML scanner generator developed at the University
of Chicago, and the PLT Scheme scanner generator. Both of these tools support extended
REs and are being used on a regular basis.

5.1 Extended Regular Expressions

The inclusion of the complementation operator in the RE language increases its ability
to express natural and concise specifications. For example, the following RE matches C-
style comments, where a comment is started by the “/*” sequence and ended by the first
following “*/” sequence (comment opening sequences are ignored inside of comments,

Regular-expression derivatives reexamined 13

i.e., these comments do not nest):

/*¬(Σ∗*/Σ∗)*/

The inner RE “(Σ∗*/Σ∗)” denotes the strings that contain the comment ending sequence
“*/,” and so its negation denotes the strings that do not contain the comment ending se-
quence. Thus, the entire RE denotes strings that start with the comment opening sequence
and do not contain the comment ending sequence except as the last two elements. Express-
ing this pattern without the complement operator is more cumbersome:

/*((Σ \ {*})∗(ε+ *
∗(Σ \ {/,*})))∗*/

One common use of the boolean operations on REs is to implement RE subtraction; i.e.,
r & ¬s to denote the strings in L[[r]] \ L[[s]]. For example, the DrScheme programming
environment (Findler et al., 2002) uses a generated lexer to interactively color the program
text of PLT Scheme programs. To detect erroneous lexemes, which are highlighted in red,
the the following style of regular expression is used:

(idchar)+ & ¬(identifier + number)

where idchar is the set of characters that can appear in an identifier, identifier is an RE
matching valid identifiers, and number is an RE that matches numeric literals. The RE on
the left of the “&” includes all potential bad identifiers, but it also includes valid strings,
such as valid identifiers and numbers. To match just the erroneous identifiers, we subtract
out the valid identifiers and numbers. In this example, the RE subtraction idiom removes
the need to devise a positive definition of just the invalid lexemes. Such a definition would
be exceptionally complex because of the nature of PLT Scheme’s lexical syntax. For ex-
ample, an identifier can start with the # character, but only when one of several specific
strings immediately follow it.

5.2 DFA Size

Our experience has been that using RE derivatives is a straightforward way to generate
recognizers from REs. It also turns out that the use of RE derivatives produces smaller state
machines than the algorithm used by tools like lex and ml-lex (Appel et al., 1994).
We compared the size of the state machines generated by the ml-lex tool with those
generated by our new ml-ulex tool. We also ran a DFA minimization algorithm over the
state machines generated by ml-ulex. As test cases, we used 14 pre-existing ml-lex
specifications for various languages, a specification for R5RS Scheme (translated from
PLT-Scheme), a specification for mining system logs for interesting events (translated from
a Python script provided by Nick Russo), and an RE that recognizes the language L2 (Sen
& Roşu, 2003), where

Lk = {u#w#v$w | w ∈ {0,1}k and u, v ∈ {0,1,#}∗}

This last example requires use of the boolean operations for concise specification, so we
did not test the ml-lex tool on it. The results are presented in Table 1.3 In most cases, the

3 We adjusted the number of states reported by ml-lex downward by 2, because it includes the error state and
a redundant initial state in its count, whereas ml-ulex reports only the non-error states.

14 S. Owens, J. Reppy, and A. Turon

Table 1. Number of states (best results in bold)

Lexer ml-lex ml-ulex Minimal Description

Burg 61 58 58 A tree-pattern match generator
CKit 122 115 115 ANSI C lexer
Calc 12 12 12 Simple calculator
CM 153 146 146 The SML/NJ compilation manager
Expression 19 19 19 A simple expression language
FIG 150 144 144 A foreign-interface generator
FOL 41 41 41 First-order logic
HTML 52 49 49 HTML 3.2
MDL 161 158 158 A machine-description language
ml-lex 121 116 116 The ml-lex lexer
Scheme 324 194 194 R5RS Scheme
SML 251 244 244 Standard ML lexer
SML/NJ 169 158 158 SML/NJ lexer
Pascal 60 55 55 Pascal lexer
ml-yacc 100 94 94 The ml-yacc lexer
Russo 4803 3017 2892 System-log data mining
L2 n/a 147 106 Monitoring stress-test

RE derivatives method produced a smaller state machine. Most of the time, the difference
is small, but in two cases (Scheme and Russo), the ml-ulex DFAs have a third fewer
states. Furthermore, ml-ulex produces the minimal state machine for every example
except Russo, where the DFA is 4% larger than optimal, and L2, where the DFA is 39%
larger. In both of these cases, ml-lex did significantly worse.

The reason that the derivative approach produces smaller machines can be illustrated
using a small example, but first we must give a quick description of the algorithm used
by ml-lex. This algorithm was invented by McNaughton and Yamada (McNaughton & Ya-
mada, 1960) and is described in the “Dragon Book” (Aho et al., 1986). It directly translates
the abstract syntax tree (AST) representation of an RE to a DFA. The non-ε leaves in the
AST are are annotated with unique positions and sets of positions are used to represent
the DFA states. Intuitively, if ai is a symbol in the RE and i is in a state q, then there is
a non-error transition from q on a in the DFA. The state transition from a state q on the
symbol a s computed by⋃

Follow(i) such that i ∈ q and ai is in the RE

where Follow(i) is the set of positions that can follow ai in a string matched by the RE. We
demonstrate this algorithm on the following RE, which also illustrates why the derivative
algorithm produces smaller DFAs:

(a1c2 + b3c4)$5

Here we have annotated each symbol with its position and denoted the position at the end
of the RE by $5. The initial state is q0 = {1, 3}. The construction of the DFA proceeds as
follows:

Regular-expression derivatives reexamined 15

q2 = {4}

q3 = {5}

a

b

c

c

q0 = {1, 3}

q1 = {2}

(a) DFA generated by the Dragon-book algorithm.

a,b cq0 = ac + bc q1 = c q2 = ε

(b) DFA generated by the derivative algorithm.

Fig. 4. DFAs for (ac + bc).

1. compute δ(q0,a) = {2}, which is new, so call it q1.
2. compute δ(q0,b) = {4}, which is new, so call it q2.
3. compute δ(q1, c) = {5}, which is new, so call it q3.
4. compute δ(q2, c) = {5}, which is q3.

This construction produces the four-state DFA shown in Figure 4(a).4

Now consider building a DFA for this RE using the derivative algorithm. The first state
is q0 = ∂ε ac + bc = ac + bc.

1. compute δ(q0,a) = ∂a (ac + bc) = c, which is new, so call it q1.
2. compute δ(q0,b) = ∂b (ac + bc) = c = q1.
3. compute δ(q1, c) = ∂c c = ε, which is new, so call it q2.

This construction produces the smaller, three-state, DFA shown in Figure 4(b). As can be
seen from this example, the use of positions in the Dragon-book algorithm causes equiva-
lent states (i.e., q1 and q2 in the example) to be distinguished, whereas the use of canonical
REs to label the states in the derivative algorithm allows their equivalence to be detected.

5.3 Effectiveness of character classes

We also used the above suite of lexer specifications to measure the usefulness of character
classes. For a DFA with n states andm distinct state transitions, one has to compute at least
m but no more than n|Σ| derivatives. We instrumented ml-ulex to count the number of
distinct state transitions and the number of approximate character classes computed by
our algorithm. In all but two cases (Scheme and L2), the approximation was perfect. In

4 For this exercise, we are ignoring the error state.

16 S. Owens, J. Reppy, and A. Turon

the two cases where it was not perfect, our algorithm computed 5.4% and 6.2% more
derivatives than necessary. What is more impressive is the number of derivatives that we
avoid computing. If we assume the 7-bit ASCII character set as our input alphabet, then
our algorithm computes only 2–4% of the possible derivatives. Thus, we conclude that
character classes provide a significant benefit in the construction of DFAs, even when the
underlying alphabet is small.

6 Related Work

Regular expression derivatives have been occasionally used to perform on-the-fly RE match-
ing (without building automata) in XML validation tasks (English, 1999; Schmidt, 2002).
Other than our systems, we know of at least two uses of derivatives in DFA construction.
The first two versions of the Esterel language used derivatives, but the approach was aban-
doned in 1987 as too memory intensive (Berry, 1999); furthermore, the REs and DFAs were
not used for lexical analysis. More recently, Sen and Roşu used RE derivatives to construct
DFAs for program trace monitoring (Sen & Roşu, 2003). Their system generates minimal
DFAs by testing full RE equivalence, using a technique called circular coinduction. This
approach seems less practical than the approximate equivalence testing of our systems:
for example, they report that computing the optimal DFA for the L2 RE mentioned in the
previous section took 18 minutes, whereas ml-ulex takes less than a second to compute
a DFA that has only 40% more states than the optimal machine. The slowness of their
approach may be owed to the fact that their method is based on rewriting, since even if
we apply state minimization to this example, ml-ulex still takes less than a second to
construct the optimal DFA.

Derivatives have largely been ignored by the scanning literature. One exception is a pa-
per by Berry and Sethi (Berry & Sethi, 1986) that shows how a derivative-based algorithm
for DFA construction can be used to derive the McNaughton and Yamada (a.k.a. Dragon-
book) algorithm (McNaughton & Yamada, 1960). The key difference between their work
and Brzozowski’s derivatives algorithm is that they mark each symbol in the RE with a
unique subscript. These subscripts mean that states that Brzozowski’s algorithm would
conflate are instead distinguished as illustrated in Figure 4. Ken Thompson, in his seminal
paper on regular-expression matching (Thompson, 1968), claims

In the terms of Brzozowski, this algorithm continually takes the left derivative of the given regular
expression with respect to the text to be searched.

This claim is true if one is computing derivatives for REs where occurrences of symbols
have been marked to distinguish them, but not if one is using Brzozowski’s algorithm.
Again, the example from Figure 4 can be used to illustrate this difference.

Berry and Sethi observed that the unmarking homomorphism does not commute with
RE complement and intersection (Berry & Sethi, 1986), so algorithms based on marked
symbols (e.g., the Dragon-book algorithm) cannot be easily modified to support these op-
erations. On the other hand, since the complement of a DFA is simple to compute, the
standard NFA to DFA construction can be extended to support RE complements. When the
algorithm encounters a complemented RE ¬r, it builds a NFA for r as usual, then converts
the NFA to a DFA, which can be simply complemented and converted back to an NFA.

Regular-expression derivatives reexamined 17

The algorithm then proceeds as usual. The lexer generator for the DMS system (Baxter
et al., 2004), supports complement in exactly this way.5 We are unaware of any other lexer
generators that support the complement operator.

7 Concluding remarks

In this paper, we have presented RE derivatives, which are an old, but largely forgotten,
technique for constructing DFAs directly from REs. Our experience has been that RE
derivatives are a superior technique for generating scanners from REs and they should be in
the toolkit of any programmer. Specifically, RE derivatives have the following advantages:

• They provide a direct RE to DFA translation that is well suited to implementation in
functional languages.

• They support extended REs almost for free.
• The generated scanners are often optimal in the number of states and are uniformly

better than those produced by previous tools.

In addition to presenting the basic RE to DFA algorithm, we have also discussed a num-
ber of practical issues related to implementing a scanner generator that is based on RE
derivatives, including supporting large character sets.

Acknowledgments

Comments from Russ Cox and the anonymous referees were quite helpful in improving
the presentation. Aaron Turon’s work on ml-ulex at the University of Chicago was sup-
ported, in part, by NSF Grant CRI: Standard ML Software Infrastructure.

References

Aho, Alfred V., & Ullman, Jeffrey D. (1972). The Theory of Parsing, Translation, and Compiling.
Vol. 1. Englewood Cliffs, NJ: Prentice-Hall.

Aho, Alfred V., Hopcroft, John E., & Ullman, Jeffrey D. (1974). The Design and Analysis of Com-
puter Algorithms. Reading, MA: Addison Wesley.

Aho, Alfred V., Sethi, Ravi, & Ullman, Jeffry D. (1986). Compilers: Principles, Techniques, and
Tools. Reading, MA: Addison Wesley.

Appel, Andrew W. (1998). Modern Compiler Implementation in ML. Cambridge, UK: Cambridge
University Press.

Appel, Andrew W., Mattson, James S., & Tarditi, David R. 1994 (Oct.). A lexical analyzer generator
for Standard ML. Available from http://smlnj.org/doc/ML-Lex/manual.html.

Baxter, Ira, Pidgeon, Christopher, & Mehlich, Michael. (2004). DMS: Program transformations for
practical scalable software evolution. International Conference on Software Engineering.

Berry, Gérard. (1999). The Esterel v5 Language Primer Version 5.21 release 2.0. ftp://
ftp-sop.inria.fr/meije/esterel/papers/primer.pdf.

Berry, Gérard, & Sethi, Ravi. (1986). From regular expressions to deterministic automata. Theoreti-
cal Compter Science, Dec., 117–126.

5 Personal correspondence, Michael Mehlich, May 5, 2004

18 S. Owens, J. Reppy, and A. Turon

Brzozowski, Janusz A. (1964). Derivatives of regular expressions. Journal of the ACM, 11(4), 481–
494.

English, Joe. (1999). How to validate XML. http://www.flightlab.com/˜joe/sgml/
validate.html.

Findler, Robert Bruce, Clements, John, Flanagan, Cormac, Flatt, Matthew, Krishnamurthi, Shri-
ram, Steckler, Paul, & Felleisen, Matthias. (2002). DrScheme: A programming environment for
Scheme. Journal of Functional Programming, 12(2), 159–182.

Fisher, Charles N., & LeBlanc, Jr., Richard J. (1988). Crafting a Compiler. Menlo Park, CA:
Benjamin/Cummings.

McNaughton, R., & Yamada, H. (1960). Regular expressions and state graphs for automata. IEEE
Transactions on Electronic Computers, 9, 39–47.

Rabin, M. O., & Scott, D. (1959). Finite automata and their decision problems. IBM Journal of
Research and Development, 3(2), 114–125.

Schmidt, Martin. (2002). Design and Implementation of a Validating XML Parser in Haskell. Mas-
ters thesis, University of Applied Sciences Wedel, Computer Science Department.

Sen, Koushik, & Roşu, Grigore. (2003). Generating optimal monitors for extended regular expres-
sions. Proceedings of runtime verification (RV’03). Electronic Notes in Theoretical Computer
Science, vol. 89, no. 2. Elsevier Science.

Thompson, Ken. (1968). Regular expression search algorithm. Communications of the ACM, 11(6),
419–422.

Unicode Consortium. (2003). The Unicode Standard, Version 4. Reading, MA: Addison-Wesley
Professional.

