
DRAFT

A separation logic for the π-calculus

Aaron Turon Mitchell Wand
Northeastern University

{turon, wand}@ccs.neu.edu

Abstract
Reasoning about concurrent processes requires distinguishing com-
munication from interference, and is especially difficult when the
means of interaction change over time. We present a new logic for
the π-calculus that combines temporal and separation logic, and
treats channels as resources that can be gained and lost by pro-
cesses. The resource model provides a lightweight way to constrain
interference. By interpreting process terms as formulas, our logic
directly supports compositional reasoning.

1. Introduction
Concurrency is notoriously hard. What makes it hard is what makes
it powerful: the ability of concurrent processes to influence each
other. Whether this influence is interference or communication is a
question of perspective, but the distinction matters: few processes
behave correctly under arbitrary influence by their environment.

How do we specify and reason about the influence processes
that have on each other? There is a huge literature addressing this
question, in the settings of both shared-state and message-passing
concurrency, making use of both logical [AL95, Jon83] and type-
theoretic [IK01, PS93] tools. Compositionality is a central goal.

Compositional reasoning requires environmental assumptions
that constrain the influence of one subsystem on another. Processes
influence each other through shared resources, e.g., a shared mem-
ory, or shared message channels. When these resources are fixed,
environmental assumptions are usually fixed as well. When these
resources change dynamically, environmental assumptions must
evolve to match. Techniques for reasoning about fixed resources
are relatively well-understood [Roe01], but dynamic resources re-
main a focus of current research.

For shared-state concurrency with dynamic allocation and
pointers, concurrent separation logic (CSL) has recently gained
a foothold [O’H07]. CSL is oriented around resource ownership,
where the resources in question are shared heap cells. The logic
provides a concise and elegant means of describing dynamic re-
sources, and tracking them as they flow between processes. Its
ownership paradigm provides a simple kind of environmental as-
sumption: the environment of a process is assumed not to use re-
sources owned by the process. Because it is a Hoare logic, CSL
deals with input-output behavior of programs.

This paper presents a separation logic for the π-calculus, a core
calculus for message-passing concurrency in which channels can

[Copyright notice will appear here once ’preprint’ option is removed.]

be allocated and communicated. Broadly, our aim is to adapt ideas
from CSL to the π-calculus. The π-calculus opens the door to non-
terminating, reactive programs, which interact over time rather than
computing a single result. Thus we move to a temporal logic capa-
ble of expressing behavior over time. Integrating separation and
temporal logic while maintaining compositional reasoning poses a
significant challenge, and is a central goal of this paper.

In the π-calculus, interference can arise through competition
for communication, for example when multiple processes attempt
to send messages over the same channel. Consider the process
P , c(3).end|c(n).P ′, consisting of a process sending 3 along
channel c in parallel with a process receiving a number n along c. If
the communication between the two processes succeeds,P behaves
like P ′{3/n}. However, the environment in which the P executes
can interfere with the intended communication: if we place P in
parallel with the process c(2).end, we can no longer say for sure
what value n will take.

The π-calculus has a mechanism for controlling such interfer-
ence: private channels. A channel private to a process cannot be
used by its environment. But it is not always possible to make
channels private, especially when a channel represents a resource
shared between several processes. What we seek is an analog to pri-
vacy within a temporal logic, allowing us to make assertions such
as “right now, the environment will not interfere along channel c.”
The thesis of this paper is that, by treating channels as resources,
we can exclude the possibility of interference for public channels.

Contributions and outline

• We show how to view the π-calculus in terms of resource own-
ership and transfer (Section 2). In particular, permission to send
or receive on a channel is a resource that can (conceptually) be
transferred during communication. This perspective on permis-
sion is not new, but in the past it was usually restricted to point-
to-point communication: because the send and receive permis-
sions were owned by only one process, communication at any
point in time was only allowed between one sender and one
receiver [TA08, HO08].
In contrast, we develop a novel interpretation of fractional per-
missions [Boy03], allowing multiple processes to share a given
resource. Thus, competition over communicating on a channel
is allowed, but it can still be controlled by tracking permissions.

• Using our resource interpretation, we define a novel operational
semantics for a variant of the π-calculus (Section 3). The dis-
tinctive feature of the semantics is its lack of scope extrusion,
which is the mechanism most often used to model the channel
mobility of the π-calculus. We instead use our resource model
to constrain possible communication.
To incorporate separation logic we explicitly model faults,
which occur when a process attempts to use resources it does
not own. We allow a process to be annotated with local ex-
pectations about the behavior of its environment, e.g., if the

1 2009/7/16

environment sends a number n along channel c, then n is even.
These assumptions are checked when the process is composed
with an actual environment, and a violation causes a fault.

• We propose a temporal separation logic (Section 4). It is not
a Hennessy-Milner logic—it does not express predicates on
labelled transition systems. Instead, the logic is interpreted over
complete traces, and its observables are similar to those of
the failures/divergences model over infinite traces [RB90]. The
temporal and separation aspects of the logic interact through
strongest postcondition reasoning. Faulting plays an important
role in our treatment of refinement, and in particular leads to
our logic being intuitionistic.
We focus primarily on the syntax and model theory of the logic,
giving only a cursory treatment of its proof theory.

• We include parallel composition as a connective in our logic,
which provides the decisive step toward compositional reason-
ing. Its inclusion allows us to view processes as temporal for-
mulas. Thus, the formulas of the logic cover a spectrum from
concrete (pure processes) to abstract (pure specifications). Be-
cause the logic is defined compositionally, it gives a denota-
tional semantics for our variant of the π-calculus (Section 5).
Because processes are formulas, we can express refinement
through implication: if P ⇒ ϕ is a valid formula, then the
process P refines the specification ϕ. The logic supports com-
positional reasoning in two directions: by reasoning about sub-
formulas, and by reasoning about chains of implications. For
example, if P ⇒ ϕ and Q⇒ ψ, we deduce that P |Q⇒ ϕ|ψ.
Moreover, if ϕ|ψ ⇒ θ, we conclude that P |Q⇒ θ.

• We give examples in Section 6 illustrating resource-based,
process-algebraic, and temporal reasoning.

We are not the first to propose the application of separation logic
to the π-calculus. Hoare and O’Hearn took the first step in a paper
that provided key inspiration for our work [HO08]. They developed
a semantics for the π-calculus based on separation logic, but left
open several questions, including

• how to allow more than point-to-point communication,
• how to incorporate liveness properties, and
• how to incorporate faulting and distinguish it from other forms

of failure, such as deadlock.

We answer all of these questions, in service of our goal: combining
temporal and separation logic for compositional, resource-based
reasoning. We discuss Hoare and O’Hearn’s paper in more detail,
along with other related work, in Section 7.

2. A resource analysis of the π-calculus
We begin with a treatment of the π-calculus based on resources.
This section develops our resource model and process language,
and lays the technical foundation for the semantics and logic.

2.1 Resources
The resources we wish to track are permissions for sending and
receiving along a channel, modeled as follows:
Resource model

c, d ∈ Chan f ∈ Perm , [0, 1] δ ∈ Dir , {!, ?}
σ ∈ Σ , Chan× Dir→ Perm

We assume an infinite collection of channel names, Chan. A re-
source σ maps each channel-direction pair to a permission quantity;
dom(σ) is the set of channel-direction pairs mapped to a nonzero

quantity. We allow permissions to be fractionally owned [Boy03].
The idea is simple. Suppose a process owns resources σ.

• If σ(c!) = 0, the process is not permitted to send on channel c.
• If σ(c!) = 1, the process is permitted to send on channel c, and

is the only process that may do so.
• If 0 < σ(c!) < 1, the process is permitted to send on channel

c, but other processes owning fractions of c! may do so as well.

and similarly for c?. The motivation for tracking permissions quan-
titatively is addition: when reasoning about multiple processes, we
add their resources to determine what they collectively own. Con-
sider the processes P , c(3).P ′ and Q , c(x).Q′. The process
P first attempts to send the value 3 on channel c, then continues
on as P ′. Likewise Q attempts to receive a value on c and continue
as Q′. If we place them in parallel with another process R, yield-
ing P |Q|R, what happens? In general, the outcome depends on R,
which could interfere with the attempted communication.

We can use resources to reason about the situation. If P and Q
are each assumed to own resources 1

2
c! and 1

2
c?, then P |Q owns

1c! and 1c?—and therefore, R is assumed not to communicate
along c. In the logic we present later, this will allow us to conclude
that P |Q|R ⇒ P ′|Q′{3/x}|R: the communication between P
andQ succeeds even in the presence ofR, as long as the ownership
assumptions are satisfied.

The basic operations on resource are given below. Note that ⊕
and 	 are partial: if σ1(cδ) + σ2(cδ) /∈ [0, 1] for any cδ, then
σ1 ⊕ σ2 is undefined, and similarly for 	.
Resource operations ⊕,	 : Σ× Σ ⇀ Σ

(σ1 ⊕ σ2)(cδ) , σ1(cδ) + σ2(cδ)

(σ1 	 σ2)(cδ) , σ1(cδ)− σ2(cδ)

σ1 ≤ σ2 ⇔ ∀cδ . σ1(cδ) ≤ σ2(cδ)

σ1#σ2 ⇔ σ1 ⊕ σ2 defined

We work with resources through a language of resource predi-
cates p, which includes separating conjunction p ∗ q and septrac-
tion p ~−q from separation logic. Resource predicates denote sub-
sets p ⊆ Σ, and we use them extensively in the syntax, semantics,
and logic for processes. We use italic, serifed font for metavari-
ables ranging over syntactic expressions, and use the same letter
sans serif to range over the domain of denotations.
Channel and fraction expressions, resource predicates

c ::= c | x
f ::= f | ι | f + f | · · ·
p ::= emp | fcδ | p ∗ q | p ~−q | tt | p ∨ q

| ¬p | ∃x.p | ∃ι.p | c1 = c2 | f1 ≤ f2 | δ1 = δ2

In defining resource predicates, we use both channel and fraction
expressions. Channel expressions are either channel constants or
channel variables. For fraction expressions, we do not specify a
complete syntax, but we do assume that fraction constants f ∈
[0, 1], variables ι, and addition are included. The operators ∗ and
~− bind tighter than the other operators. We treat tt, ff, ∧,⇒, and
∀ as derived constructs in the usual way.

Figure 1 gives the semantics of resource predicates: σ satisfies
p in environment ρ if σ |=ρ p, where ρ maps channel variables
to channels and fraction variables to fractions. We drop ρ when it
is empty. We write JpKρ for the subset {σ : σ |=ρ p} of Σ. We
take as given a map J−Kρ from fraction expressions to fractions and
from channel expressions to channels.

2 2009/7/16

σ |=ρ emp iff dom(σ) = ∅
σ |=ρ fcδ iff dom(σ) = {JcKρ}, σ(JcKρ δ) = Jf Kρ

σ |=ρ p ∗ q iff σ1 |=ρ p, σ2 |=ρ q for some σ1 ⊕ σ2 = σ

σ |=ρ p ~−q iff σ = σ1 	 σ2 for some σ1 |=ρ p, σ2 |=ρ q

σ |=ρ tt iff always
σ |=ρ p ∨ q iff σ |=ρ p or σ |=ρ q

σ |=ρ ¬p iff σ 6|=ρ p

σ |=ρ ∃x.p iff σ |=ρ[x7→c] p for some c

σ |=ρ ∃ι.p iff σ |=ρ[ι 7→f] p for some f

σ |=ρ c1 = c2 iff Jc1Kρ = Jc2Kρ

σ |=ρ f1 ≤ f2 iff Jf1Kρ ≤ Jf2Kρ

σ |=ρ δ1 = δ2 iff δ1 = δ2

Figure 1. Resource predicate semantics

The predicates emp and fcδ both uniquely determine a resource
σ. For emp, the resource must contain no permissions at all, while
for fcδ, it must contain exactly the permission, at quantity f , for
communication along cδ. On the other hand, a resource satisfies
p ∗ q if it can be decomposed by ⊕ into resources satisfying p and
q respectively. Finally, the predicate p ~−q represents subtraction
of resources: it is satisfied by σ if there are resources σ1 satisfying
p and σ2 satisfying q such that σ = σ1 	 σ2.1

As a simple illustration, consider the difference between the
predicates 1c! and 1c! ∗ tt. Resources satisfying the former must
have domain exactly {c!}, while resources satisfying the latter must
have domain at least {c!}. In fact, we have J1c!K ⊆ J1c! ∗ ttK.

A predicate p is:

• valid if JpKρ = Σ for all closing ρ,
• pure if, for each closing ρ, either JpKρ = Σ or JpKρ = ∅,
• intuitionistic if σ ∈ JpKρ and σ ≤ σ′ implies σ′ ∈ JpKρ [Rey02].

Valid predicates capture tautologies. For example, the predicate
ι1x! ∗ ι2x! ⇔ (ι1 + ι2)x!, which relates separating conjunction
and fraction addition, is valid. Another useful example stems from
the partiality of resource addition: 1x? ∗ 1y? ⇒ x 6= y is valid
because it is impossible to add resources resulting in a permission
quantity larger than 1. In this way, resources can be used to draw
conclusions about aliasing.

Pure predicates are primarily used to make assertions about
fraction or permission variables, without asserting anything about
resources.

Intuitionistic predicates serve as lower bounds on resources. For
example, 1c! ∗ tt is intuitionistic, while 1c! is not.

2.2 Processes
We study a variant of the π-calculus with explicit resource annota-
tions. These annotations describe the flow of resources during com-
munication and split resources for parallel composition. We align
resource transfers with standard communication, so that only re-
sources associated with the channel being sent or received can be
transferred. This is a choice of convenience, not necessity. In prin-
ciple, arbitrary resources can be exchanged during synchronization.

Before defining the syntax of processes, we illustrate the main
ideas with the following process term:

fix X.z(n).z(ιx! : ι = 1 ∧ x = z).c(n).`
X 1z?∗1c!∗tt‖1z!∗tt z(n+ 1).z(1z!).end

´
Informally, the behavior of this process is to receive some number
n along z, and then send n, n + 1, . . . along c—but this behavior
is only guaranteed if the environment of the process does not
interfere along the channel z. We will capture the noninterference
assumption through resource predicates.

1 Septraction is dual to separating implication: q ~−p ⇔ ¬(p−∗ ¬q)
[VP07].

Suppose the process begins execution while owning resources
satisfying the predicate 1z? ∗ 1c! ∗ tt. It then

• begins a recursion, binding X ,
• receives a number n on channel z,
• receives resources ιx!, with the assumption that ι = 1, x = z.

The variables ι and x are bound in the rest of the process, but
their values are completely determined by the assumption made
about them. Thus, the process is receiving x not to learn a new
channel, but to gain additional resources for a channel it already
knows.

• then, the process sends the number n on channel c.

After this step, the process owns resources that satisfy

(ι = 1 ∧ x = z ∧ ιx!) ∗ 1z? ∗ 1c! ∗ tt

and hence satisfy 1z! ∗ 1z? ∗ 1c! ∗ tt.
Next, the process breaks into two subprocesses, which are given

resources satisfying 1z? ∗ 1c! ∗ tt and 1z! ∗ tt respectively:

• The first subprocess simply behaves again like X . Notice that,
when the new version of X is invoked, it owns resources 1z? ∗
1c! ∗ tt—the same resources held when X was bound. The
predicate 1z? ∗ 1c! ∗ tt can be seen as a loop invariant for this
example.

• The second subprocess begins by sending n+ 1 along z, which
does not alter its resource ownership. Afterwards, however, the
process sends the 1z! permission along z, thereby relinquishing
ownership of z. The process is left with resources that satisfy
the predicate tt, about which nothing can be assumed.

As the example illustrates, we can use resource annotations to
calculate resource ownership at each point in the execution of a
process. Why is such calculation useful? Just before forking into
two subprocesses, the example process owns all resources associ-
ated with z. This is useful information: it captures our assumption
that the environment will not interfere with internal communica-
tion along z even if the environment knows z. In Section 6, we will
see how to deduce that the example process, in any well-behaved
environment, sends an increasing sequence of numbers on c.

We now define our process syntax, as follows:
Process syntax

π ::= c(fcδ)

| c(ιxδ : p) with p pure
P ::= end | new x.P |

P
πi.Pi | P ∨Q | fix X.P | X

| P p‖q Q with p, q intuitionistic

Prefixes π represent the two directions of basic interaction in
the π-calculus: sending and receiving. In both cases what is being
communicated is not just a channel, but also some resources asso-

3 2009/7/16

ciated with a channel. In examples, we also allow numbers to be
communicated. When sending (c(fcδ)), the resources transferred
are determined by the predicate fcδ. When receiving (c(ιxδ : p)),
the resources transferred satisfy the predicate ιxδ ∧ p; the pure
predicate p constrains ι and x.

The process layer P is largely standard. The inert process end
represents successful termination. The process new x.P allocates
a new channel and binds it to the channel variable x in P . External
choice

P
πi.Pi offers each communication πi to the environment;

only one communication takes place, after which the process be-
haves as the corresponding Pi. In contrast, internal choice P ∨ Q
allows the process to behave as either P orQ, arbitrarily. Recursive
processes are written fix X.P , which binds the process variable X
in P . Finally, the parallel composition of two processes P p‖q Q
is annotated with predicates p, q describing how resources are split
between the two subprocesses. The predicates must be intuitionistic
because they describe lower bounds on the expected resources.

Ultimately, annotations are meant to describe, rather than deter-
mine, the behavior of processes, but we have embedded annotations
directly into the syntax of processes—why? The annotations are
needed to give the semantics of open processes, where the environ-
ment of the process is unknown. Resource annotations are not nec-
essary for a closed system (e.g. a testing scenario [NH84]), where
all interacting processes are known. Thus, although resources are
explicitly represented in our operational semantics, they are a logi-
cal device and need no representation in an implementation.

2.3 Actions
At heart of our semantic model is a distinction between two kinds of
failure to perform an action: noisy and silent. Failure is connected
to resource ownership. If an action is not permitted given the owned
resources, attempting to perform it causes a noisy failure. If an
action is not possible given the owned resources, it silently fails
to be performed.

Take the process c(3).end, which attempts to send the number 3
over c. If the process owns resources emp, the attempt to send fails
noisily, resulting in a fault. If the process owns 1c!∗1c?, the attempt
to send fails silently, resulting in deadlock. The silent failure arises
because the process owns all receiving permissions for c, hence its
environment owns none. If the environment attempted to receive
along c, it would noisily fail.

Noisy and silent failure are dual in other respects as well. In the
logic of Section 4, an action that noisily fails satisfies only the triv-
ial specification tt, while silently failing actions satisfy every spec-
ification. It is important that noisy failures satisfy no interesting
specifications, because noisy failure represents the breaking of an
assumption. Noisy failure arises through owning too few resources,
and silent failure too many.

Our semantics, both denotational and operational, is based on
Brookes’s action traces [Bro02]. In action trace semantics, the
behavior of a process is given as a set of traces, each of which
is a (possibly infinite) sequence of actions. Actions play two roles:
they describe the observable steps a process takes, and they act as
resource transformers. Actions α for our calculus are:
Action syntax

α ::= C〈cδm〉 | A〈c?p〉 | B〈∆〉 | N〈c〉
∆ ∈ Pfin(Chan× Dir)

The metavariable m, for message, ranges over triples fcδ. We
view messages as resources mapping cδ to f and every other
channel-direction pair to 0. We drop set brackets for B〈∆〉, writing
B〈c!, d?, . . .〉 rather than B〈{c!, d?, . . . }〉.

The action C〈cδm〉 represents a communication of m along
channel c in direction δ. An assumption action A〈c?p〉 records

a communication that fails to satisfy the predicate p given by an
annotation in a receive prefix. Blocking actions B〈∆〉 record the
potential for communication. They arise when a process cannot
make progress until it communicates with its environment; ∆ gives
the finite set of channel-direction pairs along which the process is
offering to communicate. A new channel action N〈c〉 records the
allocation of channel c.

We view actions as resource transformers. A resource trans-
former is a function of type Σ → Σ>⊥. The constants > and ⊥
represent noisy and silent failure, respectively. Thus, an action in
a given resource context can either transform the resources, nois-
ily fail, or silently fail. We place a partial order v on Σ>⊥: for all σ,
⊥ v σ v >. The order is lifted pointwise to resource transformers.

We have the following basic resource transformers:
Basic resource transformers

add(σ0)(σ) ,(
σ ⊕ σ0 if defined
⊥ otherwise

rem(σ0)(σ) ,(
σ 	 σ0 if defined
> otherwise

per(cδ)(σ) ,(
> σ(cδ) = 0

σ σ(cδ) > 0

pos(cδ)(σ) ,(
σ σ(cδ) < 1

⊥ σ(cδ) = 1

(g;h)(σ) ,

(
h(g(σ)) g(σ) ∈ Σ

g(σ) g(σ) = > or g(σ) = ⊥

The combinator add(σ0) attempts to add σ0 to the given resource,
failing silently when this is impossible; likewise rem(σ0) removes
σ0 or fails noisily. The combinator per(cδ) checks whether it is per-
mitted to communicate in direction δ on channel c, while pos(cδ)
checks whether it is possible (i.e., whether the environment can
communicate in the opposite direction). Note: ! = ? and ? = !.
The sequential composition of two resource transformers inherits
the failure behavior of the first transformer.

Using the combinators, we define:

Actions as resource transformers L−M : Act→ Σ→ Σ>⊥

LN〈c〉M , add(1c!⊕ 1c?)

LC〈c!m〉M , per(c!); pos(c!); rem(m)

LC〈c?m〉M , per(c?); pos(c?); add(m)

LA〈c?p〉M , per(c?); pos(c?)

LB〈∅〉M , id

LB〈∆〉M ,
F

cδ∈∆ per(cδ);
d

cδ∈∆ pos(cδ) (∆ 6= ∅)

The order in which combinators are used is important. For example,
the action C〈c!m〉 fails noisily if sending on c is not permitted,
otherwise fails silently if sending on c is not possible, and only after
both these checks attempts to remove the resources m. Likewise the
blocking action on ∆ fails noisily if any cδ ∈ ∆ is not permitted,
and only then fails silently if some cδ ∈ ∆ is not possible. For
blocking actions we use the fact that resource transformers, ordered
by v, form a complete lattice.

3. Operational semantics
The operational semantics for our process language is built around
a labeled transition system (LTS) in the tradition of process cal-
culus. It breaks from tradition, however, by using resources rather
than scoping to constrain communication.

4 2009/7/16

LN〈c〉Mσ 6= >,⊥

new x.P, σ
N〈c〉−−−→ P{c/x}, LN〈c〉Mσ

πj .Pj
α−→ Q LαMσ 6= >,⊥P

πi.Pi, σ
α−→ Q, LαMσ

πj .Pj
α−→ Q LαMσ = >P
πi.Pi, σ

>−→ •
L
P ∨Q, σ τ−→ P, σ fix X.P, σ τ−→ P{fix X.P/X}, σ

σ1 ∈ JpK σ2 ∈ JqK

P p‖q Q, σ1 ⊕ σ2
τ−→ (P, σ1)|(Q, σ2)

σ /∈ Jp ∗ qK

P p‖q Q, σ
>−→ •

L
κ1

α−→ κ′1 LαM(res(κ1|κ2)) 6= >,⊥

κ1|κ2
α−→ κ′1|κ2

L
κ1

τ−→ κ′1

κ1|κ2
τ−→ κ′1|κ2

κ1
α−→ κ′1 κ2

α−→ κ′2

κ1|κ2
τ−→ κ′1|κ′2

L
κ1
>−→ •

κ1|κ2
>−→ •

L
κ1

C〈c!m〉−−−−→ κ′1 κ2
A〈c?p〉−−−−→ κ′2 m /∈ p

κ1|κ2
>−→ •

Figure 2. Process semantics: labeled transition system (L designates Left versions of symmetric rules)

Before giving the LTS, we define an auxiliary relation below,
whose role is to generate the actions corresponding to prefixes.
Send prefixes are straightforward. For receive prefixes, however,
there are several possible outcomes. First, for each message satisfy-
ing the resource predicate, a corresponding communication action
is generated, with the contents of the message substituted into the
process body. In addition, each receive prefix generates an assump-
tion action, recording its resource predicate. After an assumption
action, no further actions are observed of a process.
Process semantics: prefix steps

c(fdδ).P
C〈c!fdδ〉−−−−−→ P f = Jf K , d = JdK

c(ιxδ : p).P
C〈c?fdδ〉−−−−−→ P{f/ι, d/x} fdδ ∈ J∃ιx.ιxδ ∧ pK

c(ιxδ : p).P
A〈c?q〉−−−−→ end q = J∃ιx.ιxδ ∧ pK

The LTS in Figure 2 is defined not on processes, but on config-
urations κ:

κ ::= P, σ | κ|κ | •

Configurations track resources belonging to each process when
multiple processes are running in parallel. The configuration • rep-
resents unsuccessful termination, caused by faulting. The resources
owned by a configuration are given by the function res:

res(P, σ) = σ res(κ1|κ2) = res(κ1)⊕ res(κ2) res(•) = ∅

The LTS ensures that res is defined on any reachable configuration.
Labels are drawn from the syntax ` ::= α | > | τ . Here,

> represents a faulting outcome and τ , as usual, represents an
internal, unobservable step of a configuration. Each rule with an L
(“Left”) adjoined has an elided, symmetric counterpart. Note that
α = C〈cδm〉 if α = C〈cδm〉, and is undefined otherwise.

The rules are fairly straightforward, but a few deserve comment:

• Allocation provides an example of silent failure: every channel
c could potentially appear in the label N〈c〉, but if σ(c!) > 0 or
σ(c?) > 0 then LN〈c〉Mσ = ⊥, preventing the rule from firing.

• Likewise, the actions generated by prefixes are checked against
the resources held by the configuration, and may silently cause
the rule to fail to apply, or noisily cause a> label to appear. For
example, if σ(c!) = σ(c?) = 1, then c(m).P, σ silently fails
to take a C〈c!m〉 step, because the environment cannot offer to
receive a message on c.

• A parallel composition p‖q noisily fails if its resources cannot
be split into parts satisfying p and q respectively.

• When κ1
α−→ κ′1 then κ1|κ2

α−→ κ′1|κ2, but only if the additional
resources provided by κ2 do not rule out α.2 Note that, since
α did not fail noisily with only the resources of κ1, adding
the resources of κ2 cannot cause α to fail noisily. But it can
cause a silent failure, thereby preventing, for example, κ1 from
allocating a channel that κ2 owns.

• The final rule demonstrates the purpose of assumption actions.
If κ1 is willing to send on c and κ2 to receive, but the message
being sent breaks the assumption of κ2, the result is a noisy
failure. By making assumptions observable, we are able to
detect when they are violated.

3.1 Observation
We have given a semantics for configurations, but there are config-
urations with different transition graphs whose behavior we wish to
equate. Thus, we define an observation function OJ−K from con-
figurations to sets of traces, which extracts from the LTS the ob-
servable behavior we wish to reason about with our logic. Observa-
tional equivalence for us is much weaker than bisimilarity, but the
inclusion of blocking actions allows some of the braching structure
of the LTS to be observed. Our observables are similar to those of
the failures/divergences model over infinite traces [RB90].

Let A be the set of all communication actions, B all blocking
actions, etc. The set of all traces is defined as

Trace , (C ∪N)ω ∪ (C ∪N)∗((A ∪B)?)>

That is, a trace is either an infinite sequence of communications and
allocations, or else a finite sequence possibly followed by A, B, or
>. We write ε for the empty trace.

Before defining OJ−K, we give the intended output for a few
example configurations. First, OJend, σK = {ε} for any resource
σ: the empty trace ε represents successful termination.

Next, consider the behavior of a process that attempts to send
along c, as we vary its resources:

OJc(1c!).end, 1c! K = {B〈c!〉,C〈c!1c!〉}
OJc(1c!).end, 1c!⊕ 1c?K = {B〈〉}
OJc(1c!).end, 1c?K = {>}

When the process is given resources 1c!, two traces are possible:
one recording that the process is blocking along c!, and the other
recording that, after sending along c, the process successfully ter-
minates (an implicit ε). If the process also owns 1c?, its behavior
changes drastically. It is no longer thought of as blocking along c!,

2 Compare this side-condition to the free variable check in the π-calculus
LTS [SW01].

5 2009/7/16

because no environment could possibly receive on c. Instead it is
deadlocked, signified by B〈〉. Likewise the trace representing com-
munication has disappeared. Finally, if the process is not given any
resources for sending along c, it faults, producing a trace >.

As a final example, we show how blocking actions allow in-
ternal and external nondeterminism to be distinguished. Let σ =
1c!⊕ 1d!, and consider the following processes:

OJc(1c!).end ∨ d(1c!).end , σK =

(
B〈c!〉,C〈c!1c!〉,
B〈d!〉,C〈d!1c!〉

)
OJc(1c!).end + d(1c!).end, σK = {B〈c!, d!〉, C〈c!1c!〉, C〈d!1c!〉}

The first process internally decides whether to send on c or d,
whereas the second process offers both communications and allows
the environment to choose. Thus the first process nondeterministi-
cally blocks on either c! or d!—but not both. The communication
traces are the same for both.

Note that the sets of traces being produced are not prefix-closed.
Finite traces always end with an observation about the state of the
process—it is about to fault, it is blocked, it is about to make an
assumption, or it has successfully terminated.

The trace semantics of configurations uses the following defini-
tions, borrowed from the failures/divergences model of CSP [BR84]:

Stability, termination, acceptances

κ stable , κ
`−→ κ′ =⇒ ` ∈ C ∪A

κ term ⇔ κ = end, σ or κ = κ1|κ2, κ1, κ2 term

acc(κ) , {cδ : κ
C〈cδ−〉−−−−→} ∪ {c? : κ

A〈c?−〉−−−−−→}

A configuration is stable if it is unable to take any internal steps,
such as τ or allocation steps; we use C and A to stand for the set of
communication and assumption actions, respectively. A configura-
tion has (successfully) terminated if every process term within it is
inert. The acceptances of a configuration are the channel-direction
pairs along which it is willing to communicate.

The observation function OJ−K is defined by the inference rules
below. Because traces may be infinite, we interpret these rules
coinductively, which we designate by placing a∞ marker next to
each rule. The effect is that infinite derivations are permitted.
Observation greatest fixpoint of:

t ∈ OJκ′K
κ

α−→ κ′ α /∈ A

αt ∈ OJκK
∞

t ∈ OJκ′K
κ

τ−→ κ′

t ∈ OJκK
∞

κ
A〈c?p〉−−−−→ κ′

A〈c?p〉 ∈ OJκK
∞

κ
>−→ •

> ∈ OJκK
∞

κ stable ¬(κ term)

B〈acc(κ)〉 ∈ OJκK
∞

κ term

ε ∈ OJκK
∞

The definition of OJ−K echos the failures/divergences model [BR84]
in two important ways. The first is the requirement that a configura-
tion be stable before a blocking action is generated. The importance
of stability is to ensure that the configuration is consistently offer-
ing a specific set of communications: internal steps can alter the
communications a configuration offers its environment.

The second is the handling of divergence: a configuration may
never reach a stable state, instead following an infinite sequence of
internal computation steps κ1

τ−→ κ2
τ−→ · · · . In this case, every

trace t ∈ Trace is an observable of κ1, because we can derive
t ∈ OJκ1K by applying the rule for τ steps infinitely, progressing
from κ1 to κ2 and so on. In particular, this means that > ∈ OJκ1K,
i.e., divergence leads to noisy failure.

4. A temporal separation logic
The purpose of our temporal logic is to express and check spec-
ifications for processes. To do this, we consider the set of traces
observed of a process for given resources σ, and ask whether each
trace is permitted by the specification. What it means for an obser-
vation to be permitted is determined by our notion of refinement.

4.1 Refinement
Refinement is closely related to (internal) nondeterminism: roughly
speaking, P refines Q (written P v Q) if every behavior P
exhibits is a behavior Q might exhibit (sometimes glossed as: P
is “more deterministic” than Q). Let

P , c(k).d(k).end Q , c(k).(d(k) ∨ d(k + 1)).end

Then P v Q: an environment expecting to interact with Q will be
satisfied by interacting with P instead. In this sense, viewing Q as
a specification, P is an implementation of Q. Refinement will be
our primary tool for relating processes to specifications.

Our notion of refinement begins with actions and traces:
Action refinement smallest partial order such that:

B〈∆〉 v B〈∆′〉 if ∆′ ⊆ ∆

A〈c?p〉 v A〈c?q〉 if q ⊆ p

Trace refinement smallest partial order such that

tu v t>
tα v tβ α v β

tC〈c?m〉u v tA〈c?p〉 m /∈ p

For sets of traces T and U , we say that

T v U , ∀t ∈ T . ∃u ∈ U . t v u

Refinement on trace sets is a preorder, and if > ∈ U , then T v U
for any T . Informally, if OJκK v OJκ′K, then any sequence of
interactions with κmust be a possible sequence of interactions with
κ′, until:

• κ′ faults, in which case κ may behave arbitrarily,
• κ blocks, in which case κ′ must block on fewer directions,
• κ makes an assumption, in which case κ′ must make a stronger

assumption, or
• κ allows a communication that κ′ assumes cannot occur, in

which case κ may go on to behave arbitrarily.

The blocking case is particularly important, because it allows the
specification of liveness properties: if an environment expects an
offered communication to eventually be accepted by κ′ and κ v κ′
then the offer must likewise be accepted by κ.

4.2 Logic
We now have all the tools we need to define our logic:
Syntax of formulas

ϕ ::= p | end | C〈cδm〉ϕ | N〈c〉ϕ | A〈c?p〉 | B〈∆〉
| ϕ|ψ | X | νX.ϕ | µX.ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ⇒ ψ
| ∀x.ϕ | ∀ι.ϕ | ∃x.ϕ | ∃ι.ϕ

Specification variables X may only occur in positive positions.
Message expressions m ::= fcδ denote messages as follows:
JfcδKρ , Jf Kρ JcKρ δ. There is potential ambiguity between opera-
tors∧,∨, etc. as used in formulas and as used in resource predicates

6 2009/7/16

(which can appear in formulas). Fortunately, the interpretations al-
ways agree. Separating connectives bind tighter than other logical
connectives, so p ∗ q ∧ ϕ is read as (p ∗ q) ∧ ϕ.

The semantics of formulas is given by a satisfaction relation:
Semantics of formulas t |=σ

ρ ϕ

t |=σ
ρ p iff σ |=ρ p

t |=σ
ρ end iff t = ε

t |=σ
ρ C〈cδm〉ϕ iff t v αu, u |=LαMσ

ρ ϕ, α = C〈JcKρ δ JmKρ〉
t |=σ

ρ N〈c〉ϕ iff t v αu, u |=LαMσ
ρ ϕ, α = N〈JcKρ〉

t |=σ
ρ A〈c?p〉 iff t v α, LαMσ 6= >,⊥, α = A〈JcKρ? JpKρ〉

t |=σ
ρ B〈∆〉 iff t v α, LαMσ 6= >,⊥, α = B〈J∆Kρ〉

t |=σ
ρ ϕ|ψ iff t v u, with σ ` u ∈ u1|u2, σ = σ1 ⊕ σ2,

u1 |=σ1
ρ ϕ, u2 |=σ2

ρ ψ

t |=σ
ρ ϕ ∨ ψ iff t |=σ

ρ ϕ or t |=σ
ρ ψ

t |=σ
ρ ϕ ∧ ψ iff t |=σ

ρ ϕ and t |=σ
ρ ψ

t |=σ
ρ ϕ⇒ ψ iff for all u v t, u |=σ

ρ ϕ implies u |=σ
ρ ψ

t |=σ
ρ ∀x.ϕ iff t |=σ

ρ[x 7→c] ϕ for all c

t |=σ
ρ ∀ι.ϕ iff t |=σ

ρ[ι 7→f] ϕ for all f

t |=σ
ρ ∃x.ϕ iff t |=σ

ρ[x 7→c] ϕ for some c

t |=σ
ρ ∃ι.ϕ iff t |=σ

ρ[ι 7→f] ϕ for some f

t |=σ
ρ X iff t ∈ ρ(X)(σ)

t |=σ
ρ νX.ϕ iff t ∈

“F
{B : B v JϕKρ[X 7→B]}

”
(σ)

t |=σ
ρ µX.ϕ iff t ∈

“d
{B : B w JϕKρ[X 7→B]}

”
(σ)

The satisfaction relation is parameterized by a resource σ and en-
vironment ρ. Environments map specification variablesX , channel
variables c, and permission variables ι to behaviors B, channels c,
and permission quantities f respectively. We define behaviors in the
discussion on fixpoints below.

Trace refinement is used in the semantics of several formula
constructors. Applying refinement ensures the property that satis-
faction is downward-closed under refinement: if u |=σ

ρ ϕ and t v u
then t |=σ

ρ ϕ. Downward-closure matches the intuition of a more
refined trace being “better” than a less refined one for specification
purposes. In particular, a specification that permits faulting permits
every observation: if > |=σ

ρ ϕ then t |=σ
ρ ϕ for all t.

In the definition of the modalities C〈cδm〉 and N〈c〉, the use
of action semantics LαMσ as a parameter to the satisfaction relation
requires, in particular, that LαMσ 6= >,⊥. All action modalities re-
quire the action to be both possible and permitted. For example, no
trace satisfies emp ∧ C〈c!1c!〉ϕ for any ϕ, because communication
on c is not permitted with resources emp. Likewise no trace satisfies
1c! ∗ 1c? ∧ C〈c!1c!〉ϕ, because communication on c is impossible
when all resources for c are owned.

Parallel composition of formulas is defined in terms of parallel
composition of traces, below. We overload pos so that pos(σ) =
{cδ : σ(cδ) < 1} is the set of possible communication directions.
The judgment σ ` t ∈ u|v is read: t is a possible interleaving
of u and v, given the total resources σ. The definition is largely
a translation of the operational semantics into denotational terms.
Take, for example, the rule for interleaving:

L
LαMσ ` t ∈ u|v

σ ` αt ∈ αu|v
∞

This rule mirrors the corresponding one in the operational seman-
tics: an action α from one of the two traces is consumed, but is

checked against the resources σ collectively held, to ensure that it
represents a possible allocation or interaction with the environment.
Parallel trace composition σ ` t ∈ u|v greatest fixpoint of:

σ ` ε ∈ ε|ε
∞ L

σ ` > ∈ >|v
∞ L

LαMσ ` t ∈ u|v

σ ` αt ∈ αu|v
∞

σ ` t ∈ u|v

σ ` t ∈ αu|αv
∞ L

m /∈ p

σ ` > ∈ C〈c!m〉u|A〈c?p〉
∞

L
LA〈c?p〉Mσ 6= >,⊥

σ ` A〈c?p〉 ∈ A〈c?p〉|v
∞ L

∆′ = ∆ ∩ pos(σ)

σ ` B〈∆′〉 ∈ B〈∆〉|ε
∞

{cδ : cδ ∈ ∆1, cδ ∈ ∆2} = ∅ ∆ = (∆1 ∪∆2) ∩ pos(σ)

σ ` B〈∆〉 ∈ B〈∆1〉|B〈∆2〉
∞

Operationally, a process is blocked if it can only make progress
by communicating with its environment. By placing two blocked
processes in parallel, they become part of each other’s environment.
If they are attempting to communicate in opposite directions, then
they are able to make progress without external communication.
Thus, two blocking actions in parallel produce a blocking trace only
if they do not block in any opposite directions.

When a parallel composition results in a blocking action, the
blocking action is trimmed to reflect possible communications
given the total resources owned. To understand why, consider that
parallel composition ϕ|ψ splits resources σ into σ1 and σ2, and
interleaves traces satisfying ϕ and ψ under resources σ1 and σ2

respectively. Suppose that σ1 = 1c! and σ2 = 1c?, and that ϕ per-
mits blocking along c! but ψ = end. The total resources 1c!⊕ 1c?
rule out any interaction along c by the environment of ϕ|ψ. Thus,
the attempt by ϕ to send on c cannot succeed, and the parallel
composition is deadlocked. Formally, this is reflected by taking the
intersection of the blocking set {c!} with the set pos(1c! ⊕ 1c?),
which does not include c!.

Our logic contains as a fragment first-order logic, the semantics
of which is standard except for implication. The definition of im-
plication is forced by the structure of the logic—especially the use
of refinement—and is justified as follows:

Definition 1. A formula ϕ is valid (or tautological) if, for all
t, σ, ρ, we have t |=σ

ρ ϕ.

Proposition 2. ϕ ⇒ ψ is valid iff for all t, σ, ρ, we have t |=σ
ρ ϕ

implies t |=σ
ρ ψ.

Proposition 3. The axioms of intuitionistic first-order logic are
valid, and its inference rules are sound.

Recall that tt,ff are resource predicates and hence formulas. We
define ¬ϕ , ϕ⇒ ff. Our logic is intuitionistic because ϕ ∨ ¬ϕ is
not valid for all ϕ.3

Temporal properties are expressed in the usual way for a µ-
calculus (see [BS01] for a concise introduction). The fixpoint oper-
ators µ and ν provide distinct ways to interpret recursion. Roughly
speaking, µ only allows the recursion to be unfolded a finite number
of times, whereas ν allows infinite unfolding. For example, the for-
mula µX.C〈c!n〉end ∨ ∃x.N〈x〉X allows only traces that perform
a finite number of allocations, then finally communicate, whereas
using ν would also allow traces that allocate infinitely without com-
municating.

3 Order-theoretically, refinement is a complete Heyting algebra, but not a
Boolean algebra.

7 2009/7/16

In order to define the fixpoint operators, we need the notion of a
behavior B, which is a function from resources Σ to sets of traces.
Behaviors are ordered pointwise: B1 v B2 iff B1(σ) v B2(σ) for
all σ. This ordering is a complete lattice.

We define the behavior JϕKρ(σ) , {t : t |=σ
ρ ϕ}. Envi-

ronments ρ map specification variables to behaviors. Formulas are
monotonic in the usual sense: if B1 v B2 then

JϕKρ[X 7→B1](σ) v JϕKρ[X 7→B2](σ)

It follows, by the Knaster-Tarski fixpoint theorem, that our defini-
tions of ν and µ do in fact compute the greatest and least fixpoints,
respectively. Therefore the following inference rules, which capture
induction and coinduction, are sound:

ϕ{ψ/X} ⇒ ψ

(µX.ϕ)⇒ ψ

ϕ⇒ ψ{ϕ/X}

ϕ⇒ νX.ψ

There are also valid unfolding axioms for both fixpoints:

(µX.ϕ)⇔ ϕ{µX.ϕ/X} (νX.ϕ)⇔ ϕ{νX.ϕ/X}
The satisfaction relation is lifted to closed processes as follows:

P |= ϕ , σ ∈ Σ and t ∈ OJP, σK implies t |=σ
∅ ϕ

We can characterize lifted satisfaction in terms of refinement:4

P |= ϕ iff σ ∈ Σ implies OJP, σK v JϕK∅(σ)

Our temporal logic allows assertions about both resource states
and actions, which raises an important question: how do such
assertions interact? The following formulas, which are valid in the
logic, provide the answer:
Strongest (liberal) postcondition reasoning

p ∧N〈c〉ϕ ⇒ N〈c〉(p ∗ 1c! ∗ 1c? ∧ ϕ)

p ∧ C〈c?m〉ϕ ⇒ C〈c?m〉(p ∗m ∧ ϕ)

p ∧ C〈c!m〉ϕ ⇒ C〈c!m〉(p ~−m ∧ ϕ)

For each prefix action, we can prove that the postcondition axiom
transforms an assertion about the resource state before the action
to the strongest one holding after the action—assuming that the
action can occur from the initial state. When receiving, the message
resources are added to the initial resource assertion, and when
sending, they are subtracted.

The postcondition axioms are crucial to doing separation logic-
style reasoning within our temporal logic. The final step is to
interpret processes as formulas, which we do next.

Section 6 discusses additional inference rules for the logic,
capturing an expansion law and its interference-free variant.

5. Denotational semantics
The operational semantics gives us one way to compare processes
to formulas: we can ask whether OJP, σK v JϕK∅(σ). In this sec-
tion, we give a compositional translation of processes into formu-
las, allowing us to instead ask whether the formula P ⇒ ϕ is valid.

Taking this step has several ramifications. It immediately yields
compositional proof rules, because the operators of the logic are
monotonic. For example, the soundness of the following inference
rule follows from the monotonicity of ∨:

P ⇒ ϕ Q⇒ ψ

P ∨Q⇒ ϕ ∨ ψ
Moreover, the logical interpretation of processes provides a deno-
tational semantics for them. Our formulas can be seen as heteroge-

4 In fact, because J−K is downward-closed, we can replace v by ⊆.

neous specifications [CL02], containing operators both from pro-
cess algebra and temporal logic. Finally, we have a notion of im-
plementability: ϕ is implementable if there is some process P such
that P ⇒ ϕ is valid. No process P implements ff.

Much of the syntax of processes purposefully overlaps with that
of formulas. The constructors that do not—allocation, recursion,
annotated parallel composition, and external choice—we define as
syntactic sugar for formula constructors:
Derived forms: process syntax

new x.ϕ , ∃x.N〈x〉ϕ
fix X.ϕ , νX.ϕ

ϕ p‖q ψ , (p ∗ q)⇒ (p ∧ ϕ | q ∧ ψ)P
i πi.ϕi ,

V
i pre(πi) ⇒

`W
i acts(πi, ϕi) ∨

V
i B〈πi〉

´
Allocation is simple enough: we existentially bind the allocated
channel variable, and use the N〈−〉ϕ modality to capture the allo-
cation itself. The translation of recursion is similarly thin: we sim-
ply interpret it as taking the greatest fixpoint, a choice justified by
the theorem below.

Parallel composition and external choice both have the overall
shape p ⇒ ϕ. The resource predicate in the implication acts as a
precondition on the resource state. If σ 6|=ρ p, then for every trace t
we have t |=σ

ρ (p ⇒ ϕ). In particular, the faulting trace > satisfies
the implication. Thus we can read a formula p ⇒ ϕ as “if p is
satisfied, behave as ϕ; otherwise, fault.”5

For an annotated parallel composition, the initial resources must
be separable according to the annotations. The subformulas are
placed in parallel, each assuming its annotation.

External choice is more complicated. The precondition pre(π)
for each prefix in the choice must be satisfied. Moreover, each pre-
fix contributes both communication/assumption actions acts(π, ϕ)
and blocking actions B〈π〉, because operationally, prefixes gener-
ate both communication steps and blocking observations.
Definitions for external choice

pre(c(m)) , (c! ∗ tt) ∧ (m ∗ tt)
pre(c(ιxδ:p)) , c? ∗ tt

cδ , ∃ι.ι > 0 ∧ ιcδ

acts(c(m), ϕ) , C〈c!m〉ϕ
acts(c(ιxδ:p), ϕ) , ∃ι.∃x.C〈c?(ιxδ)〉(p ∧ ϕ)

∨ A〈c?(∃ι.∃x.ιxδ ∧ p)〉

B〈c(m)〉 , B〈c!〉 ∨ (1c? ∧B〈〉)
B〈c(ιxδ:p)〉 , B〈c?〉 ∨ (1c! ∧B〈〉)

The preconditions for prefixes are straightforward. The actions they
generate, given by the acts(π, ϕ) function, are precisely those given
by the prefix stepping relation on page 5.

The blocking set for a prefix reflects the attempted communi-
cation, but is empty if the resources owned by the process prevent
its environment from communicating in the opposite direction. Be-
cause of the definition of refinement for blocking actions, the for-
mulas B〈∆1〉∧B〈∆2〉and B〈∆1∪∆2〉 are equivalent. Thus, when
blocking actions from prefixes are conjoined in an external choice,
the effect is that the choice blocks along all channel-direction pairs.

The processes-as-formulas interpretation is justified as follows.

5 This approach is related to specification statements in [COY07].

8 2009/7/16

Theorem 4 (Adequacy). If P closed then, for all σ ∈ Σ,

• OJP, σK w JP K∅(σ), and
• OJP, σK v JP K∅(σ).

The proof of this theorem is given in our forthcoming technical re-
port. Because our language is first-order (channels, not processes,
are passed as messages), elementary domain-theoretic notions suf-
fice: monotonicity, complete lattices, and the Knaster-Tarski the-
orem. To prove adequacy, we generalize the result to open terms.
Soundness (w) is proved by coinduction, because OJ−K is defined
as a greatest fixpoint. Completeness (v) is proved by induction on
P , but we use coinduction within the recursion case. The proofs are
largely straightforward. The most difficult case is parallel compo-
sition for completeness, for which we prove the following lemma:

Lemma 5. If t ∈ OJκ1|κ2K then res(κ1|κ2) ` t′ ∈ u|v for some
t′, u, v with t v t′, u ∈ OJκ1K and v ∈ OJκ2K.

The proof of this lemma requires a three-way coinduction: one for
proving res(κ1|κ2) ` t′ ∈ u|v, for u ∈ OJκ1K and for v ∈ OJκ2K.

6. Examples
We have seen a number of examples so far that illustrate the re-
source model and process semantics. We now revisit these exam-
ples from the perspective of the logic, illustrating resource-based,
process-algebraic, and temporal reasoning within the logic. We
close with an example tying together all three reasoning styles.

6.1 Resource-based reasoning
We begin with the examples from Section 3, in particular with
the process term c(1c!).end. Using the definitions of the previous
section, the term is syntactic sugar for the formula

ϕ , (c! ∗ tt ∧ 1c! ∗ tt)⇒ (C〈c!1c!〉.end ∨ B〈c(1c!)〉)
⇔ (1c! ∗ tt)⇒ (C〈c!1c!〉.end ∨ B〈c(1c!)〉)

As before, we consider the behavior of ϕ in resource contexts 1c!,
1c! ⊕ 1c? and emp, resulting in communication, deadlock, and
noisy failure respectively. To do this within the logic, we conjoin
ϕ with corresponding resource predicates. We highlight in gray the
portion of the formula being transformed. For 1c!, we reason:

1c! ∧ ϕ ⇒ 1c! ∧ (C〈c!1c!〉.end ∨ B〈c(1c!)〉)
⇒ (1c! ∧ C〈c!1c!〉.end) ∨ (1c! ∧B〈c(1c!)〉)
⇒ C〈c!1c!〉.(1c! ~−1c! ∧ end) ∨ (1c! ∧B〈c(1c!)〉)
⇒ C〈c!1c!〉.(emp ∧ end) ∨ (1c! ∧B〈c(1c!)〉)

⇒ C〈c!1c!〉.(emp ∧ end) ∨B〈c!〉
The first step follows from modus ponens: the assumption 1c! ful-
fills the precondition of ϕ (note that we retain the resource assump-
tion). We then distribute conjunction over disjunction. Next, we ap-
ply postcondition reasoning to the communication. We simplify,
using the valid formula (1c! ~−1c!) ⇔ emp (i.e., subtracting 1c!
from 1c! yields emp). Finally, we apply 1c! ∧B〈c(1c!)〉 ⇒ B〈c!〉,
which can be shown valid by propositional reasoning.

Similarly, we calculate for 1c! ∗ 1c?:

1c! ∗ 1c? ∧ ϕ ⇒ 1c! ∗ 1c? ∧ (C〈c!1c!〉.end ∨ B〈c(1c!)〉)
⇒ (1c! ∗ 1c? ∧ C〈c!1c!〉.end)

∨ (1c! ∗ 1c? ∧B〈c(1c!)〉)
⇒ ff ∨ (1c! ∗ 1c? ∧B〈c(1c!)〉)

⇒ ff ∨ B〈〉
⇒ B〈〉

Thus, in the presence of resources 1c! and 1c?, ϕ is deadlocked.
Here, we use that 1c! ∗ 1c? ∧ C〈c!1c!〉ψ ⇒ ff is valid for any
ψ, which we justified in Section 4.2. We simplify using the valid
formula (1c! ∗ 1c? ∧B〈c(1c!)〉)⇒ B〈〉.

What can we say for resources emp? Because ¬(emp∧ 1c! ∗ tt)
is valid, emp ∧ 1c! ∗ tt ⇒ (C〈c!1c!〉.end ∨B〈c(1c!)〉) is valid.
Hence emp ⇒ ϕ. Because > |=∅∅ emp, it follows that > |=∅∅ ϕ.
Thus we have deduced that, given no resources, the process faults.
Generally, when a precondition is not satisfied, the result is a fault.

We can apply similar techniques to reason about the term
c(1c!).end + d(1c!).end with resources 1c! ⊕ 1c? ⊕ 1d!. Let
p , 1c! ∗ 1c? ∗ 1d! and ψ , B〈c(1c!)〉 ∧B〈d(1c!)〉. We have:

p ∧ (c(1c!).end + d(1c!).end)

⇒ p ∧
`
C〈c!1c!〉end ∨ C〈d!1c!〉end ∨ ψ

´
⇒ (p ∧ C〈c!1c!〉end) ∨ (p ∧ C〈d!1c!〉end) ∨ (p ∧ ψ)

⇒ ff ∨ (p ∧ C〈d!1c!〉end) ∨ (p ∧ ψ)

⇒ ff ∨ C〈d!1c!〉(p~−1c! ∧ end) ∨ (p ∧ ψ)

⇒ ff ∨ C〈d!1c!〉(1c? ∗ 1d! ∧ end) ∨ (p ∧ ψ)

⇒ ff ∨ C〈d!1c!〉(1c? ∗ 1d! ∧ end) ∨ B〈d!〉
⇒ C〈d!1c!〉(1c? ∗ 1d! ∧ end) ∨ B〈d!〉

The steps are: modus ponens, distribution, impossibility, postcon-
dition reasoning, and three steps of simplification. The example
demonstrates how knowledge about resources can be used to re-
solve an external choice: because the process owns 1c?, its envi-
ronment can be assumed not to receive on c.

6.2 Process-algebraic reasoning
In process algebra, a fundamental reasoning technique is expan-
sion, which allows parallel composition to be replaced by nonde-
terministic interleaving. Our logic supports expansion as well, both
at the level of the basic observables A, B, C, and N, and of process
prefixes π. The inference rule below provides a sound expansion
law for two processes offering to communicate with each other.
The rule says that either (1) the process attempting to send commu-
nicates with the external environment, (2) the process attempting
to receive does, or (3) the two processes communicate with each
other. The rule only applies when the assumption r made by the
receiving process is satisfied by the sending one.

p⇒ c! ∗ tt ∧ fdδ ∗ tt q ⇒ c? ∗ tt r{f /ι, d/x}
p ∗ q ∧ (c(fdδ).P p‖q c(ιxδ : r).Q) ⇒0B@ c(fdδ) .

`
P p~−fdδ‖q c(ιxδ : r).Q

´
∨ c(ιxδ : r) .

`
c(fdδ).P p‖q∗ιxδ (r ∧Q)

´
∨ P p~−fdδ‖q∗fdδ (r ∧Q){f /ι, d/x}

1CA
The assumptions of the rule include the preconditions for both
directions of communication (constraints on p and q). In addition,
the rule calculates postconditions, which appear in the annotations
for the parallel compositions.

If we add an additional assumption, that the two processes
together own all of the resources for the channel of communication,
we arrive at the following interference-free expansion law:

p⇒ c! ∗ tt ∧ fdδ ∗ tt q ⇒ c? ∗ tt
p ∗ q ⇒ 1c! ∗ 1c? ∗ tt r{f /ι, d/x}

p ∗ q ∧ (c(fdδ).P p‖q c(ιxδ : r).Q) ⇒`
P p~−fdδ‖q∗fdδ (r ∧Q){f /ι, d/x}

´
This rule is derivable from the previous one using resource-based
reasoning. It reflects the central idea of this paper: owning all re-

9 2009/7/16

sources for a channel excludes interference from the environment.
To illustrate the rule, we apply it to an example from Section 2.1:

1c! ∗ 1c? ∗ tt ∧ (c(3).P 1c!∗tt‖1c?∗tt c(x).Q)

⇒ (P 1c!∗tt‖c?∗tt Q{3/x})

Because a data value rather than a channel is being communicated,
there is no resource transfer between the two processes.

Because of the compositional nature of the logic, we have the
following corollary:`

1c! ∗ 1c? ∗ tt ∧
`
c(3).P 1c!∗tt‖1c?∗tt c(x).Q

´´
p‖q R

⇒ ((P 1c!∗tt‖c?∗tt Q{3/x}) p‖q R)

for any choice of p, q, and R. In short: we have deduced that
communication between the two original processes succeeds in the
presence of an arbitrary environment.

What if R breaks the resource assumptions we have made, by
attempting to communicate along c? It will fault, which in the
logic means it will be equivalent to the formula tt. The parallel
composition of tt with any other formula is equivalent to tt, so the
entire composition will fault. Thus, for such an R, the reasoning
above collapses to a proof that tt⇒ tt.

6.3 Putting it all together: temporal reasoning
As a final example, we show that a recursive process satisfies
a temporal specification. The process counter sends successive
integers along a fixed channel c, starting from 0:

counter , new z.P0

Pi , P 1z?∗1c!∗tt‖1z!∗tt z(i).z(1z!).end
P , νX.z(i).z(ιx! : ι = 1 ∧ x = z).c(i).

(X 1z?∗1c!∗tt‖1z!∗tt z(i+ 1).z(1z!).end)

The specification sorted asserts that an infinite, ordered stream of
integers is sent along c:

sorted , νX.∃i.c(i).(X ∧ abovei)

abovei , νX.∃j ≥ i.c(j).X

In order to carry out the proof, we need a formula representing a
loop invariant. We define

ϕi , 1z! ∗ 1z? ∗ 1c! ∗ tt ∧ ∃j ≥ i.Pj

and prove in Figure 3 that ϕi ⇒ ∃j ≥ i.c(j).ϕi. It follows by
coinduction that ϕi ⇒ νX.∃j ≥ i.c(j).X , i.e., that ϕi ⇒ abovei.

When we refer to the numbered lines of the proof, we are re-
ferring to the implication ending at that line number. Lines 1-4 of
the proof are simple expansions of definitions and predicate logic
calculations. In line 5, we unroll the recursion once. In line 6, we
replace the previously highlighted subformula by Pk+1, which is
definitionally equivalent. We then use the interference-free infer-
ence rule from the previous subsection to match communications
in lines 7 and 8. Line 9 uses the fact that end is a unit for parallel
composition (when annotated with tt). In line 10, we use postcon-
dition reasoning (in a trivial way, because c(j) has no effect on
resources). Line 11 replaces a subformula by the equivalent ϕj . Fi-
nally, line 12 uses that ϕj ⇒ ϕi when j ≥ i.

Now we prove that ϕi ⇒ sorted for all i, again by coinduction:

ϕi ⇒ ∃j ≥ i . c(j).ϕj

⇒ ∃j . c(j).(ϕi ∧ abovej)

The first line of this proof is just line 11 from Figure 3. The second
line uses that ϕj ⇒ ϕi when j ≥ i, and that ϕj ⇒ abovej .

Figure 3: proof that ϕi ⇒ ∃j ≥ i.c(j).ϕi

ϕi = 1z! ∗ 1z? ∗ 1c! ∗ tt ∧ ∃j ≥ i . Pj (1)

⇒ ∃j ≥ i . 1z! ∗ 1z? ∗ 1c! ∗ tt ∧ Pj (2)

⇒ ∃j ≥ i . 1z! ∗ 1z? ∗ 1c! ∗ tt ∧
`

P 1z?∗1c!∗tt‖1z!∗tt z(j).z(1z!).end
´ (3)

⇒ ∃j ≥ i . 1z! ∗ 1z? ∗ 1c! ∗ tt ∧
`

νX.z(k).z(ιx! : ι = 1 ∧ x = z).c(k).

(X 1z?∗1c!∗tt‖1z!∗tt z(k + 1).z(1z!).end)

1z?∗1c!∗tt‖1z!∗tt z(j).z(1z!).end
´

(4)

⇒ ∃j ≥ i . 1z! ∗ 1z? ∗ 1c! ∗ tt ∧
`

z(k).z(ιx! : ι = 1 ∧ x = z).c(k).

(P 1z?∗1c!∗tt‖1z!∗tt z(k + 1).z(1z!).end)

1z?∗1c!∗tt‖1z!∗tt z(j).z(1z!).end
´

(5)

⇒ ∃j ≥ i . 1z! ∗ 1z? ∗ 1c! ∗ tt ∧
`

z(k) .z(ιx! : ι = 1 ∧ x = z).c(k).Pk+1

1z?∗1c!∗tt‖1z!∗tt z(j) .z(1z!).end
´

(6)

⇒ ∃j ≥ i . 1z! ∗ 1z? ∗ 1c! ∗ tt ∧
`

z(ιx! : ι = 1 ∧ x = z) .c(j).Pj+1

1z?∗1c!∗tt‖1z!∗tt z(1z!) .end
´

(7)

⇒ ∃j ≥ i . 1z! ∗ 1z? ∗ 1c! ∗ tt ∧`
c(j).Pj+1 1z?∗1z!∗1c!∗tt‖tt end

´ (8)

⇒ ∃j ≥ i . 1z! ∗ 1z? ∗ 1c! ∗ tt ∧ c(j).Pj+1 (9)

⇒ ∃j ≥ i . c(j). (1z! ∗ 1z? ∗ 1c! ∗ tt ∧ Pj+1) (10)

⇒ ∃j ≥ i . c(j).ϕj (11)

⇒ ∃j ≥ i . c(j).ϕi (12)

Finally, using postcondition reasoning, we have

1c! ∗ tt ∧ counter = 1c! ∗ tt ∧ new z.P0

⇒ ∃z.N〈z〉.(1z! ∗ 1z? ∗ 1c! ∗ tt ∧ P0)

⇒ ∃z.N〈z〉.ϕ0

⇒ ∃z.N〈z〉.sorted

7. Related work
Our work lies at the intersection of several different approaches to
concurrency, so there is related literature along several axes.

7.1 Separation logic
As mentioned in the introduction, Hoare and O’Hearn developed
a semantics for a variant of the π-calculus [HO08] that served as
an inspiration for this paper. Their semantics is related to separa-
tion logic in an abstract way: through ternary relations. As they
explain, any ternary relation (such as our ⊕) gives rise to a sepa-
rating conjunction (such as our ∗). In light of this, they introduce
separating conjunctions for both parallel and sequential composi-

10 2009/7/16

tion. These operators suffice to give a denotational semantics for
the π-calculus, restricted to point-to-point communication. There
is an underlying ownership model, in which channel-direction pairs
are owned by exactly one process and ownership can be transferred
during synchronization.

The paper gives an insightful model of point-to-point π-calculus,
but only hints at how the model might be used to reason about pro-
cesses in a new way, and does not show how reasoning techniques
from separation logic might apply. Aside from our technical contri-
butions, an intellectual contribution of our work is recognizing that
resource-based reasoning can be applied to the problem of inter-
ference in the π-calculus. As Hoare and O’Hearn say, “the general
hope is that models of circumscribed resources can lead to modular
and tractable methods of reasoning about concurrent processes.”
We see our paper as a step in this direction.

Pym and Tofts give a calculus, SCRP, and a logic, MBI, for
reasoning about message-passing processes and resources [PT06].
Their work is parametrized over a resource model, and is thus quite
general. Resources in their model can, in our jargon, only cause
silent failure; processes do not fault for lack of resources. SCRP
is based on synchronous CCS, and thus does not (directly) support
passing channels as messages. A significant difference from our
approach is the role of the separating conjunction ∗ in the logic.
For us, ∗ can only be used to conjoin resource predicates, which are
assertions about a fixed point in time. In MBI, ∗ conjoins arbitrary
temporal formulas, and plays a role similar to parallel composition
in our logic. It is therefore somewhat difficult to relate our model
and logic to SCRP and MBI. In particular, it is not clear whether
SCRP and MBI can be adapted to reason about channel ownership
and interference in the style of this paper.

Several papers in the separation logic literature influenced the
construction of our model and logic. Calcagno, O’Hearn, and Yang
developed an account of separation logic based on an abstract
notion of resources and local actions [COY07]. Their work clarified
the notion of faulting and gave it an order-theoretic treatment,
which we adopted in our model. We take these ideas a step further
by highlighting the importance of silent failure as well. Boyland’s
fractional permissions [Boy03], and its adaptation to separation
logic [BCOP05], are of central importance to this paper, although
our interpretation of channel ownership is new. Finally, Brookes’s
fair action traces [Bro02, Bro07], which provided the first model for
concurrent separation logic, strongly influenced our trace model.

7.2 Type systems for mobile processes
There are a substantial number of type systems for the π-calculus,
aimed at a variety of goals. Early on, it was recognized that types
permitting or denying processes from sending or receiving along a
specific channel are useful. The challenge has been to treat such
capabilities in a dynamic way, so that processes can gain (and
perhaps lose) capabilities over time. To do this, process types must
reflect at least some amount of process behavior [PS93, HVK98]. In
the extreme, types resemble temporal logic formulas [IK01, Cai07].

The type system most closely related to our logic is Terauchi
and Aiken’s capability calculus [TA08]. While the goal of their type
system is to ensure that processes behave deterministically—a very
strong kind of noninterference—the mechanisms they use to do
this resemble our permissions model to some degree. In particular,
capabilities can be transferred during synchronization. However,
channel capabilities cannot be fractionally owned.

Session types [HVK98] also embody strong noninterference as-
sumptions, by treating session channels linearly. In such a type dis-
cipline, session channels must be used exactly once in a given con-
text, which immediately excludes competition along session chan-
nels. Multiparty session types [HYC08] allow multiple processes
to coordinate usage of session channels, but still exclude competi-

tion. Our logic, in contrast, allows fine-grained control over when
competition for a channel is allowed and when it is not.

Because the purpose of a type system is usually to provide a
tractable abstraction of behavior, type systems are at a disadvantage
when compared to a logic that can express the precise behavior of
any process. A natural question is whether a type system can be
built on our notion of resources, abstracting away from full tem-
poral logic. Caires has recently explored the relationship between
logics and type systems for process calculi [Cai07], and we hope to
use his insights to answer this question.

7.3 Compositional temporal logic
Temporal logics are defined using a satisfaction relation S |= ϕ
between “structures” and formulas. The satisfaction relation is de-
fined compositionally in the syntax of formulas. Structures vary
from logic to logic, but are generally either graphs or traces. Usu-
ally we think of structures as arising from the operational seman-
tics of a programming language, so that we might write JP K |= ϕ,
where P is a program and J−K gives its semantics as a structure.
Thus, there are two syntactic structures at play: that of programs
and that of formulas.

It was recognized early on that temporal logic is not composi-
tional in the syntax of programs. In most temporal logics, know-
ing the formulas that JP1K and JP2K satisfy is not sufficient to say
anything about the formulas that JP1;P2K satisfies, for example.
This fact is not surprising, because temporal logic captures “global”
properties of programs. But compositionality is very desirable be-
cause it allows verification to be done in a modular way.

Barringer, Kuiper, and Pnueli developed an early approach to
compositional temporal reasoning by giving a temporal semantics
for each program operator [BKP84]. The temporal semantics cap-
ture the strongest temporal logic formula true of each construct
in a compositional way. Lamport uses a similar approach in his
temporal logic of actions, which is designed to support composi-
tional, refinement-based reasoning [Lam94, AL95]. In both cases,
the problem of proving JP K |= ϕ is reduced to the problem of
proving the validity of bP c ⇒ ϕ, where b−c gives the temporal
semantics of P . This is very similar to way we interpret processes
as formulas. The most significant difference is that we have inter-
nalized parallel composition into the logic, relieving us from the
burden of specifying it as a temporal formula, which in turn allows
us to use a simpler temporal logic. There has also been work from
the opposite direction, starting with a process calculus and adding
temporal operators. This approach has been carried out both oper-
ationally [CL02] and denotationally [BVK95].

An important line of work in compositional logics for concur-
rency is assume-guarantee reasoning [Jon83, AL95, Roe01]. In this
style of reasoning, specifications make guarantees about the behav-
ior of a process relative to assumptions about the behavior of its en-
vironments. In the most general case, both the assumptions and the
guarantees are arbitrary temporal formulas, making the technique
extremely expressive. Assume-guarantee reasoning has recently
been combined with separation logic [Fen09, VP07], which greatly
decreases the annotation burden. In general, assume-guarantee rea-
soning provides a much more powerful way of describing and rul-
ing out interference than the logic we have presented. The down-
side of this expressive power, however, is that assume-guarantee
specifications are more complex than the resource-based reasoning
we have proposed. For common cases of interference, we believe
resource reasoning provides a lighter-weight approach.

7.4 Logics for mobile processes
Most logics for process calculi are Hennessy-Milner logics [HM80]:
they are interpreted directly over the LTS given by an operational
semantics and characterize bisimilarity for the LTS. It is possible,

11 2009/7/16

but difficult, to give compositional proof rules for such logics when
mobility is involved [Dam03].

Caires and Cardelli’s spatial/temporal logic for the π-calculus
does not deal with a notion of resources, but it does deal with
mobility [CC01]. The logic has operators for parallel composition
and name restriction and includes a fresh name quantifier. Parallel
composition in the logic is intensional: a process satisfies ϕ|ψ
only if it is (structurally equivalent to) a parallel composition of
processes satisfying ϕ and ψ respectively. Our logic, on the other
hand, treats parallel composition extensionally, so that a process
satisfies ϕ|ψ only if its behavior refines Jϕ|ψK. The combination of
the fresh name quantifier and the hiding operator allow Cardelli and
Caires’s logic to express channel privacy and mobility. However, as
in traditional π-calculus, once a channel has been exposed to the
environment, interference is always possible, and hence must be
explicitly proscribed. Our use of resources allows interference to
be implicitly ruled out. It is not clear whether the traditional, scope-
based treatment of channels can be reconciled with the resource-
based treatment of this paper.

8. Conclusion and future work
The π-calculus provides a fundamental model of concurrency in
which the means of communication between processes can evolve
over time. In this paper, we have presented a logic for the π-
calculus that treats channels as resources and can use resource own-
ership to rule out interference between processes. To accomplish
this, we have combined ideas from separation and temporal logic
in a way that allows compositional reasoning about processes. As a
byproduct of this effort, we have also given a denotational seman-
tics for a variant of the π-calculus.

There are many questions left open by this work. What is the
appropriate proof theory for our logic? Is it possible to build a type
system based on our notion of resources? How does our technique
interact with other approaches, such as assume-guarantee reason-
ing, that deal with environmental assumptions? Can our model
be adapted to give a denotational semantics for the standard π-
calculus? We also hope to adapt our work to other process calculi,
in particular the join calculus [FG96]. More broadly, we have cho-
sen to view channels as resources, but there are many other possibil-
ities. One promising direction is to examine session types [HVK98]
from the perspective of resources.

Acknowledgments
Thanks to Alec Heller, Sam Tobin-Hochstadt, and Dimitris Var-
doulakis for feedback on drafts of this paper, and particularly to
Dan Brown for his careful reading and suggestions. Thanks also to
Riccardo Pucella and Panagiotis Manolios for helpful discussions.

References
[AL95] Martin Abadi and Leslie Lamport. Conjoining specifications.

TOPLAS, 1995.

[BCOP05] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and
Matthew Parkinson. Permission accounting in separation
logic. In POPL, 2005.

[BKP84] Howard Barringer, Ruurd Kuiper, and Amir Pnueli. Now you
may compose temporal logic specifications. In STOC, 1984.

[Boy03] John Boyland. Checking interference with fractional
permissions. In SAS, 2003.

[BR84] Stephen D. Brookes and A. W. Roscoe. An improved
failures model for communicating processes. In Seminar
on Concurrency, volume 197, 1984.

[Bro02] Stephen Brookes. Traces, pomsets, fairness and full abstrac-
tion for communicating processes. In CONCUR, pages 45
–71, 2002.

[Bro07] Stephen Brookes. A semantics for concurrent separation logic.
TCS, 375:227–270, May 2007.

[BS01] Julian Bradfield and Colin Stirling. Modal logics and mu-
calculi: an introduction. Elsevier, 2001.

[BVK95] Rudolf Berghammer and Burghard Von Karger. Formal
derivation of csp programs from temporal specifications. In
MPC, pages 180 – 196, 1995.

[Cai07] Luı́s Caires. Logical semantics of types for concurrency. In
CALCO, pages 16 – 35, 2007.

[CC01] Luı́s Caires and Luca Cardelli. A spatial logic for concurrency
(part i). In TACS, pages 1 – 37, 2001.

[CL02] Rance Cleaveland and Gerald Luttgen. A logical process
calculus. In EXPRESS, 2002.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang.
Local action and abstract separation logic. In LICS, 2007.

[Dam03] Mads Dam. Proof systems for π-calculus logics. Kluwer
Academic Publishers, 2003.

[Fen09] Xinyu Feng. Local rely-guarantee reasoning. In POPL,
page 12, 2009.

[FG96] Cedric Fournet and Georges Gonthier. The reflexive cham and
the join-calculus. In POPL, pages 372–385, 1996.

[HM80] Matthew Hennessy and Robin Milner. On observing
nondeterminism and concurrency. In ICALP, 1980.

[HO08] C. A. R. Hoare and Peter O’Hearn. Separation logic semantics
for communicating processes. ENTCS, 212:3–25, April 2008.

[HVK98] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto
Kubo. Language primitives and type discipline for structured
communication-based programming. In ESOP, 1998.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multi-
party asynchronous session types. In POPL, 2008.

[IK01] Atsushi Igarashi and Naoki Kobayashi. A generic type system
for the pi-calculus. In POPL, 2001.

[Jon83] C. B. Jones. Tentative steps toward a development method for
interfering programs. TOPLAS, 5, 1983.

[Lam94] Leslie Lamport. The temporal logic of actions. TOPLAS, 16,
1994.

[NH84] R. De Nicola and M. C. B. Hennessy. Testing equivalences
for processes. In TCS, pages 83–133, 1984.

[O’H07] Peter O’Hearn. Resources, concurrency, and local reasoning.
In TCS, volume 375, pages 271–307, May 2007.

[PS93] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile
processes. In LICS, volume 24, pages 376 – 385, 1993.

[PT06] David Pym and Chris Tofts. A calculus and logic of resources
and processes. FAC, 18:495 – 517, 2006.

[RB90] A. Roscoe and Geoff Barrett. Unbounded nondeterminism in
csp. In MFPS, pages 160 – 193, 1990.

[Rey02] J.C. Reynolds. Separation logic: a logic for shared mutable
data structures. In LICS, 2002.

[Roe01] Willem-Paul De Roever. Concurrency verification: intro-
duction to compositional and noncompositional methods.
Cambridge University Press, 2001.

[SW01] Davide Sangiorgi and David Walker. The Pi Calculus.
Cambridge University Press, 2001.

[TA08] Tachio Terauchi and Alex Aiken. A capability calculus for
concurrency and determinism. TOPLAS, 30, August 2008.

[VP07] Viktor Vafeiadis and Matthew Parkinson. A marriage of
rely/guarantee and separation logic. In CONCUR, 2007.

12 2009/7/16

