
MFPS 2011

A resource analysis of the π-calculus

Aaron Turon Mitchell Wand

College of Computer and Information Science
Northeastern University

Boston MA, USA

Abstract

We give a new treatment of the π-calculus based on the semantic theory of separation logic,
continuing a research program begun by Hoare and O’Hearn. Using a novel resource model that
distinguishes between public and private ownership, we refactor the operational semantics so that
sending, receiving, and allocating are commands that influence owned resources. These ideas lead
naturally to two denotational models: one for safety and one for liveness. Both models are fully
abstract for the corresponding observables, but more importantly both are very simple. The close
connections with the model theory of separation logic (in particular, with Brookes’s action trace
model) give rise to a logic of processes and resources.

Keywords: separation logic, pi-calculus, ownership, resources, scope extrusion, full abstraction

Names play a leading role in the π-calculus [12]: they are both the means
of communication, and the data communicated. This paper presents a study
of the π-calculus based on a new mechanism for name management, which is
in turn rooted in separation logic. The main benefit of this study is a very
simple—but fully abstract—denotational semantics for the π-calculus.

Traditionally, the use of names in the π-calculus is governed by lexical,
but dynamically-expandable, scope. In the composite process P ∣new x.Q for
example, the channel x is by virtue of scope initially private to Q. The
prefix new x is not an imperative allocation. It is a binder that remains
fixed as Q evolves—a constant reminder that x is private—until Q sends x
in a message. At that point, the binder is lifted to cover both P and Q,
dynamically “extruding” the scope of x. The π-calculus relies on α-renaming
and side conditions about freshness to ensure that its privacy narrative is
borne out.

In contrast, work on separation logic has led to models of dynamically-
structured concurrency based on resources and ownership, rather than names

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Turon and Wand

and scoping [3,5]. From this perspective, programs consist of imperative com-
mands that use certain resources (their “footprint”) while leaving any ad-
ditional resources unchanged. Concurrent processes must divide resources
amongst themselves, with each process using only those resources it owns.
Ownership makes it possible to constrain concurrent interference, and thereby
to reason compositionally about process behavior.

In this paper, we reanalyze the π-calculus in terms of resources and own-
ership, establishing a clear connection with models of separation logic. The
analysis hinges on the use of resources to specify not just that a process can
do something, but that other processes cannot. 1 Concretely, channels are
resources that can be owned either publicly or privately. Public ownership
asserts only that a channel can be used by the owning process. Private owner-
ship asserts moreover that a channel cannot be used by other processes. And
the prefix new x becomes an imperative action, allocating an initially private
channel.

Armed with this simple resource model, we give a new operational se-
mantics for the π-calculus (§1). The semantics is factored into two layers.
The first layer generates the basic labeled transitions, without regard to their
global plausibility. The second layer then uniformly interprets those labels as
resource transformers, filtering out implausible steps. The two-layer setup is
reminiscent of Brookes’s semantics for concurrent separation logic [3,2], and
allows us to blend message passing and imperative interpretations of actions.

More importantly, the resource model also enables a very simple denota-
tional treatment of the π-calculus. We give two denotational interpretations,
both trace-theoretic. The first (§2) captures safety properties only, while the
second (§3) is also sensitive to divergence and some branching behavior, along
the lines of the failures/divergences model with infinite traces [18]. We prove
that each model is fully abstract with respect to appropriate observables.

The semantic foundation reconciles the model theory of separation logic
with the π-calculus; what about the proof theory? We sketch an integration
of separation logic with refinement calculus for processes (§4). Refinement is
justified by the denotational semantics, so the calculus is sound for contextual
approximation. Resource reasoning allows us to derive an interference-free
expansion law that uses privacy assertions to rule out interference on a channel.

To provide an accurate model of the π-calculus, public/private resources
must be conservative in a certain sense: once a resource has been made public,
it is impossible to make it private again. Work in separation logic has shown
the usefulness of more “aggressive” resource models that capture not just what
can and cannot be done, but assert that certain things may not be done. We
sketch a few such aggressive resource models (§5.1), including an interpretation

1 Such a reading of resources has already appeared in e.g. deny-guarantee reasoning [6].

2



Turon and Wand

of fractional permissions [1] and of session types [10].

Hoare and O’Hearn initiated a study of a π-calculus-like language in terms
of separation logic semantics [9]. That study provided the impetus for our
work, which goes farther by (1) handling the full calculus, (2) handling live-
ness, (3) proving full abstraction and (4) building a logic on the semantics.
There have also been several fully abstract models of the π-calculus [20,8,7]
based on functor categories for modeling scope. Our models complement these
by providing an elementary account of behavior, structured around resources
and abstract separation logic. A full discussion of related work is in §5.2.

1 A resource-driven operational semantics

There are many variants of the π-calculus; here’s ours:

P ∶∶= ∑πi.Pi ∣ P ⊕Q ∣ new x.P ∣ P ∣Q ∣ rec X.P ∣ X

π ∶∶= ee′ ∣ e(x) e ∶∶= x ∣ c

We distinguish between external choice (+) and internal choice (⊕), which
simplifies the liveness semantics (§3) but is not essential. We also distinguish
between channels (c, d) and channel variables (x, y, z) and include a simple
grammar of channel expressions (e) ranging over both. A closed process has
no unbound channel or process variables. Closed processes may, however, refer
to channel constants and thereby communicate with their environment.

We write 0 for an empty summation, which is an inert process.

1.1 Generating actions

The operational semantics of closed processes is given in two layers, via two
labelled transition systems. In both systems, the labels are (syntactic) actions,
given by the following grammar:

α ∶∶= c!d ∣ c?d ∣ νc ∣ τ ∣ ☇ (Action)

Actions record the concrete channels involved in sending, receiving, and al-
locating, respectively. The action τ , as usual, represents an internal (unob-
servable) step on the part of the process. The action ☇ represents a fault,
caused by using an unowned channel (§1.2). Communication actions are dual:

c!d = c?d and c?d = c!d, while νc, τ , and ☇ are undefined.

The first transition system generates all conceivable actions associated with
a process, without considering whether those actions are globally plausible:

3



Turon and Wand

Operational semantics: action generation P
αÐ→ Q

⋯+ cd.P +⋯ c!dÐ→ P

⋯+ c(x).P +⋯ c?dÐ→ P{d/x}

P1 ⊕ P2
τÐ→ Pi

new x.P
νcÐ→ P{c/x}

rec X.P
τÐ→ P{rec X.P /X}

P
αÐ→ P ′

P ∣Q αÐ→ P ′∣Q
Q

αÐ→ Q′

P ∣Q αÐ→ P ∣Q′

P
αÐ→ P ′ Q

αÐ→ Q′

P ∣Q τÐ→ P ′∣Q′

According to this semantics, we will have transitions like

new x.new y.xy.0
νcÐ→ new y.cy.0

νcÐ→ cc.0
c!cÐ→ 0

where c is allocated twice, and used to communicate with an environment that
cannot know it. To filter out such executions, we use resources.

1.2 Resources and action semantics

The execution above is intuitively impossible because, after the first νc action,
the process already owns the channel c. Similarly, for the process new x.xx.0
the trace

new x.xx.0
νcÐ→ cc.0

c!cÐ→ 0

is impossible because the channel c, having just been allocated, is unknown to
the environment—so no parallel process could possibly be on the other side
of the communication, receiving along c.

Formally, resources are elements σ of the domain Σ ≜ Chan ⇀ {pub,pri},
where pub and pri are distinct atoms. If a process is executing with resources
σ, it owns the channels dom(σ), and σ(c) tells, for each c, whether that
ownership is exclusive. Therefore, if c ∈ dom(σ), the action νc is impossible.
Likewise, if σ(c) = pri, the action c!c is impossible.

The resources owned at a particular point in time determine not only
what is possible, but also what is permissible. For example, the process cd.0
immediately attempts a communication along the channel c. If this channel is
not allocated (i.e., not owned, i.e., not in dom(σ)) then the process is faulty :
it is attempting to use a dangling pointer.

We interpret actions α as resource transformers of type Σ → Σ⊺

�
. 2 Since

all nondeterminism is resolved during the generation of actions, these trans-
formers are deterministic. A result of ⊺ or � represents that an action is not
permissible or not possible, respectively.

2 The notation Σ⊺
�

denotes the set {Σ,⊺,�} and implies an ordering � ≤ σ ≤ ⊺ for all σ ∈ Σ.
The order structure follows abstract separation logic [5], and is related to locality (§2).

4



Turon and Wand

Given the semantics LαM ∶ Σ→ Σ⊺

�
of actions (defined below), we can define

a transition system that executes actions according to the currently-owned
resources:

Operational semantics: resource sensitivity P,σ
αÐ→ P ′, σ′

P
αÐ→ P ′ LαMσ = σ′

P,σ
α
_ P ′, σ′

P
αÐ→ P ′ LαMσ = ⊺

P,σ
☇

_ 0, σ

Successful actions proceed normally, updating the owned resources—note that
if LαMσ = σ′ then in particular LαMσ ≠ ⊺,�. Impermissible actions noisily fail,
generating the faulting label ☇. Impossible actions silently fail to occur.

The semantics of actions is as follows:

Action semantics LαM ∶ Σ→ Σ⊺

�

Lc!dMσ ≜

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺ {c, d} /⊆ dom(σ)
σ[d pub] σ(c) = pub

� otherwise

Lc?dMσ ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⊺ c ∉ dom(σ)
σ[d pub] σ(c) = pub,

σ(d) ≠ pri

� otherwise

LνcMσ ≜
⎧⎪⎪⎨⎪⎪⎩

σ[c pri] c ∉ dom(σ)
� otherwise

LτMσ ≜ σ L☇Mσ ≜ ⊺

Allocation is always permitted, but is not possible if the channel is already al-
located. Allocated channels are initially private. Sending a channel publicizes
it, but the communication is only possible if performed over an already public
channel, and only permitted over an allocated channel. A locally-unknown
channel received from the environment is known to the environment, and
hence public; a locally-known channel received from the environment cannot
possibly have been private.

Examples

Consider the process new x.0. We have

new x.0
νcÐ→ 0

for every channel c. It follows that

new x.0, ∅ νc
_ 0, [c↦ pri]

for every channel c, while executing with more resources

new x.0, [c↦ pri] νd
_ 0, [c↦ pri] ⊎ [d↦ pri]

5



Turon and Wand

results in constrained allocation: the ⊎ here denotes disjoint union, meaning
that c ≠ d. The fact that c was already allocated pruned one trace (preventing
it from taking an impossible step), but introduced no new traces. Similarly,

new x.xx.0
νcÐ→ cc.0

c!cÐ→ 0

but, taking resources into account, we have

new x.xx.0, ∅ νc
_ cc.0, [c↦ pri]

at which point the process is stuck: the action c!c is prevented from occurring,
because Lc!cM[c↦ pri] = �. This deadlock is exactly what we expect to see when
a process attempts to communicate along a private channel. Finally, we have

new x.(xx.0∣x(y).yx.0) νcÐ→ cc.0∣c(y).yc.0 τÐ→ 0∣cc.0 c!dÐ→ 0∣0

which, with resources, yields

new x.(xx.0∣x(y).yx.0), ∅ νc
_ cc.0∣c(y).yc.0, [c↦ pri] τ

_ 0∣cc.0, [c↦ pri]

Here we see that internal communication along a private channel is both
possible and permitted: such internal steps appear as τ actions to the resource-
sensitive stepping relation, and hence always pass through. On the other hand,
the internal communication also leaves the ownership of c unchanged. Because
it remains private, the final communication cc is stuck, as it should be.

1.3 Process safety

With the simple public/private resource model, faulting occurs only when
using an unallocated channel. Our semantic framework can accommodate
deallocation, but doing so complicates the full abstraction result, and we wish
to focus on the standard π-calculus. Avoiding deallocation allows us to easily
characterize “safe” processes: we say σ ⊢ P✓ iff P is closed and all channel
constants in P are in dom(σ), and have:

Lemma 1.1 If σ ⊢ P✓ then P,σ
☇

/→, and if furthermore P,σ
αÐ→ P ′, σ′ then

σ′ ⊢ P ′✓.

2 Denotational semantics: safety traces

Resources provide an intriguing refactoring of the operational semantics for π-
calculus, but their real payoff comes in the elementary denotational model they
support. We begin with a simple trace model capturing only (some) safety

6



Turon and Wand

properties, which allows us to focus on the role of resources. Afterwards we
incorporate liveness (§3) and its interaction with resources.

For the safety model, we have traces t, trace sets T and behaviors B:

Trace ≜ Action∗ Beh ≜ Σ→ TraceSet

TraceSet ≜ {T ∶ ∅ ⊂ T ⊆ Trace, T prefix-closed}

Processes will denote behaviors: sets of action traces determined by the
initially-available resources. Not every action is observable. We follow stan-
dard treatments of π-calculus [19,8] in considering τ steps unobservable, and
eliding νc steps until just before the allocated channel c is sent over a public
channel (a “bound send”). Our denotational semantics shows that the op-
erators of the π-calculus are congruent for these observables, and the cited
works prove that similar observables are fully abstract for yet coarser notions
of observation. The observables of an action α are a (possibly empty) trace,
depending on the available resources:

Action observables ∣α∣σ ∶ Trace

∣τ ∣σ ≜ ε

∣νc∣σ ≜ ε

∣☇∣σ ≜ ☇

∣c?d∣σ ≜ c?d
∣c!d∣σ ≜

⎧⎪⎪⎨⎪⎪⎩

νd ⋅ c!d σ(d) = pri

c!d otherwise

We write t⋅u or tu for trace concatenation, and ε for the empty trace. Although
νc is not immediately observable, taking a νc step affects the resources owned
by the process, so exposing c later will cause the νc step to visibly reemerge.

The safety behavior of a process can be read determined operationally:

Safety observation OJP K ∶ Beh

ε ∈ OJP Kσ
P,σ

α
_ P ′, σ′ t ∈ OJP ′Kσ′

∣α∣σt ∈ OJP Kσ

The goal of the denotational semantics is to calculate the same traces compo-
sitionally over process structure.

TraceSet is a complete lattice under the subset order, and behaviors
inherit this order structure pointwise: we write B ⊑ B′ if B(σ) ⊆ B′(σ) for all
σ and have (B⊔B′)(σ) = B(σ)∪B′(σ). The semantic operators are monotonic
(in fact, continuous), so we are justified in defining rec as a fixpoint. For the
safety semantics, which is based on finite observation, it is the least fixpoint.

The safety trace model is insensitive to branching behavior of processes [21],
so internal and external choice are indistinguishable. We interpret both forms
of choice using ⊔, merging behaviors from all the alternatives. For empty
summations, ⊔ yields the smallest behavior: λσ.{ε}.

The denotation function is parameterized by an environment ρ, here taking

7



Turon and Wand

channel variables x to channels c, and process variables X to behaviors B. It
uses two additional operators, ▷ and ∥, which we will define shortly.

Denotational semantics (safety) JP K ∶ Env→ Beh

Jee′.P Kρ ≜ ρe!ρe′ ▷ JP Kρ

Je(x).P Kρ ≜ ⊔c ρe?c ▷ JP Kρ[x↦c]

Jnew x.P Kρ ≜ ⊔c νc ▷ JP Kρ[x↦c]

Jrec X.P Kρ ≜ µB. JP Kρ[X↦B]

J∑πi.PiKρ ≜ ⊔i Jπi.PiK
ρ

JP ⊕QKρ ≜ JP Kρ ⊔ JQKρ

JP ∣QKρ ≜ JP Kρ ∥ JQKρ

JXKρ ≜ ρ(X)

The interpretation of prefixed processes resembles the operational seman-
tics: each clause of the denotational semantics generates all locally-reasonable
actions, without immediately checking global plausibility. We use ⊔ to join the
behaviors arising from each action—once more reflecting nondeterminism—
and we update the environment as necessary.

The operator α▷ B prefixes an action α to a behavior B in a resource-
sensitive way, playing a role akin to the second layer of the operational se-
mantics:
Semantic prefixing α▷B ∶ Beh

(α▷B)(σ) ≜ {αt ∶ LαMσ = σ′, t ∈ B(σ′)} ∪ {☇ ∶ LαMσ = ⊺} ∪ {ε}

To maintain prefix-closure, we include ε as a possible trace. A quick example:

Jnew x.xx.0K∅ = ⊔
c
νc▷Jxx.0Kx↦c = ⊔

c
νc▷c!c▷J0Kx↦c = ⊔

c
νc▷c!c▷λσ.{ε}

This expansion of the definition resembles the traces we see from the first
layer of the operational semantics, without taking resources into account. The
denotation, recall, is a behavior : to extract its set of traces, we must apply it
to some particular resource σ. If we use the empty resource, we see that

(⊔
c
νc▷ c!c▷ λσ.{ε}) (∅) = {ε} ∪⋃

c
{νc ⋅ t ∶ t ∈ (c!c▷ λσ.{ε}) [c↦ pri]}

= {ε} ∪⋃
c
{νc ⋅ t ∶ t ∈ {ε}}

in other words, we have Jnew x.xx.0K∅ (∅) = {ε} ∪ ⋃c{νc}. Just as in the
operational semantics, the fact that Lc!cM[c ↦ pri] = � prevents the c!c step
from being recorded. Here, the prefix closure (in particular, the inclusion of ε
in every application of ▷) ensures that we see the trace up to the point that
we attempt an impossible action.

Finally, we have parallel composition—the most interesting semantic op-

8



Turon and Wand

erator. Here we must ask a crucial question for the denotational semantics: if
σ is the resource belonging to P ∣Q, what resources do we provide to P and Q?
The question does not come up in the operational semantics, which maintains
a single, global resource state, but a compositional semantics must answer it.

Consider the process new x.(xc ∣ x(z)). When the process reaches the
parallel composition, x will still be private. The privacy of x means that the
subprocesses can only communicate with each other (yielding τ), not with the
external environment of the process. But the subprocesses are communicating
with environments external to themselves—namely, each other. That is, x is
private to xc ∣ x(z), which cannot communicate along it externally, but it is
public to the subprocesses xc and x(z), which can.

Formally, we capture this narrative as follows:

Semantic parallel composition B1 ∥ B2 ∶ Beh

(B1 ∥ B2)(σ) ≜ ⋃ti∈Bi(σ̂)(t1 ∥ t2)(σ) where σ̂(c) ≜
⎧⎪⎪⎨⎪⎪⎩

pub c ∈ dom(σ)
undefined otherwise

The resource σ given to a parallel composition of behaviors is fed in public-
lifted form (σ̂) to the composed behaviors, yielding two sets of traces. For each
pair of traces t1 and t2 from these sets, we calculate all interleavings t1∥t2:

Trace interleavings t ∥ u ∶ Beh

t ∥ u ≜ λσ.{ε} if t = ε = u

⊔ α▷ (t′ ∥ u) if t = αt′

⊔ α▷ (t ∥ u′) if u = αu′

⊔ t′ ∥ u′ if t = αt′, u = αu′

Interleaving at first glance appears standard, but note the use of semantic
prefixing ▷: the interleavings are not simply another set of traces, they are
given as a behavior that must be evaluated. We evaluate with the original
resources σ. The effect is that each interleaving is checked with respect to the
resources held by the combined process. This additional check is the key to
making the “declare everything public” approach work, allowing us to take
into account channels that are private from the point of view of the combined
process, but public between the subprocesses.

An example helps illuminate the definitions: take the process dc ∣ d(z)
with resources σ = [c↦ pub][d↦ pri]. It is easy to calculate that

q
dc

y∅(σ̂) = {ε, d!c}
Jd(z)K∅(σ̂) = {ε} ∪ {d?e ∶ e ∈ Chan}
d!c ∥ d?c = (d!c▷ d?c▷ λσ.{ε}) ⊔ (d?c▷ d!c▷ λσ.{ε}) ⊔ (λσ.{ε})

9



Turon and Wand

The interleaving d!c ∥ d?c includes the case that d!c and d?c are two sides of
the same communication (yielding λσ.{ε}) and the two possible orderings if
they are not. From the point of view of σ̂, which has lost the information that
d is private to the combined process, this is the most we can say. However,
the interleaving is built using the prefixing operation ▷, so when we evaluate
it with respect to the original σ, some traces will be silently dropped:

(d!c ∥ d?c)(σ)
= (d!c▷ d?c▷ λσ.{ε})(σ) ∪ (d?c▷ d!c▷ λσ.{ε})(σ) ∪ (λσ.{ε})(σ)
= {ε} ∪ {ε} ∪ {ε}

In particular, for any B we have (d!c▷B)(σ) = (d?c▷B)(σ) = {ε} because
σ(d) = pri. We are left only with traces that could arise from internal com-
munication, as expected. That is, Jnew x.(xc∣x(y))K∅ [c ↦ pub] = {ε}. More
generally, we can show Jnew x.(xc∣x(y))K∅ σ = J0K∅ σ whenever c ∈ dom(σ).

Because L☇Mσ = ⊺, we have ☇ ▷ B = λσ.{☇, ε} for any B. Thus, when a ☇
action is interleaved, the interleaving is terminated with that action.

In summary, we calculate the traces of P ∣Q by calculating the traces of P
and Q under conservatively public-lifted resources, then evaluating the inter-
leavings with complete information about what resources P ∣Q actually owns.

Example calculations

Before proving full abstraction, we briefly examine a few of the expected
laws. For example, why does Jnew x.0K = J0K? Expanding the former, we get

⊔c νc▷λσ.{ε}. When applied to a particular σ, this behavior yields the simple
set {ε}, because ∣νc∣σ = ε. This simple example sheds light on the importance
of action observation ∣ − ∣: it is crucial for ignoring when, or in some cases
whether, channels are allocated.

A more complex example is the following:

Jnew x.new y.P Kρ = ⊔
c
νc▷ Jnew y.P Kρ[x↦c]

= ⊔
c
νc▷⊔

d

νd▷ JP Kρ[x↦c,y↦d]

= ⊔
c,d

νc▷ νd▷ JP Kρ[x↦c,y↦d]

= ⊔
c,d

νd▷ νc▷ JP Kρ[x↦c,y↦d]

= ⊔
d

νd▷⊔
c
νc▷ JP Kρ[x↦c,y↦d]

= ⊔
d

νd▷ Jnew x.P Kρ[y↦d] = Jnew y.new x.P Kρ

The key step is swapping νc and νd, which relies on the lemma νc▷ νd▷
10



Turon and Wand

B = νd▷ νc▷B. The validity of this lemma, again, relies on observability:
∣νc∣σ = ∣νd∣σ = ε for all σ.

2.1 Congruence for the basic operators

We prove full abstraction by proving a congruence result for each operator in
the language. For the operators other than parallel composition, we show:

Lemma 2.1 (Core congruences) All of the following equivalences on closed
processes hold:

(i) OJ0K = J0K∅

(ii) OJcd.P K = c!d▷OJP K
(iii) OJc(x).P K = ⊔d c?d▷OJP{d/x}K
(iv) OJnew x.P K = ⊔c νc▷OJP{c/x}K
(v) OJ∑iPiK = ⊔iOJPiK
(vi) OJP ⊕QK = OJP K⊔OJQK

These equivalences are straightforward to show; we prove each by show-
ing containment in both directions. For illustration, we give the proof that
OJc(x).P K ⊆ ⊔d c?d▷OJP{d/x}K:

Proof. Let σ ∈ Σ and t ∈ OJc(x).P Kσ. We analyze cases on the derivation of
t ∈ OJc(x).P Kσ:

Case:
ε ∈ OJc(x).P Kσ

Let d be a channel. Then t = ε ∈ c?d▷OJP{d/x}K by definition of ▷. The
result follows by monotonicity of ⊔.

Case:
c(x).P, σ αÐ→ P ′, σ′ t′ ∈ OJP ′Kσ′

∣α∣σt′ ∈ OJc(x).P Kσ

Reasoning by inversion, we see that there are two subcases:

Subcase: ∃d. α = c?d, Lc?dMσ = σ′, P ′ = P{d/x}

Then t = αt′ ∈ ⊔d c?d▷OJP{d/x}K trivially by the definition of ▷.

Subcase: α = ☇, c ∉ dom(σ), P ′ = 0

Then t = αt′ = ☇ because OJ0Kσ′ = {ε}. That ☇ ∈ ⊔d c?d▷OJP{d/x}K again
follows easily by the definition of ▷. ◻

11



Turon and Wand

2.2 Congruence for parallel composition

The justification of our treatment of parallel composition goes back to the
intuitions from the beginning of the paper: concurrent process must divide
resources amongst themselves, with each process using only those resources it
owns. We say σ separates into σ1 and σ2 if the following conditions hold:

Parallel separation (σ1 ∥ σ2) ⊆ Σ

σ ∈ (σ1 ∥ σ2) ≜

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dom(σ) = dom(σ1) ∪ dom(σ2)

σ1(c) = pri Ô⇒ σ(c) = pri, c ∉ dom(σ2)

σ2(c) = pri Ô⇒ σ(c) = pri, c ∉ dom(σ1)

We understand this definition as saying: if σ1 and σ2 are resources sepa-
rately held by P and Q respectively, then σ is possibly the resource held by
P ∣Q. The subresources σi do not uniquely determine a combination σ because
resources public to the subprocess may, or may not, be private to the com-
bined process. 3 Separation crisply captures the desired meaning of public and
private ownership: if one subprocess owns a resource privately (σ1(c) = pri),
then the other subprocess does not own the resource at all (c ∉ dom(σ2)), but
both processes may own a resource publicly.

To show that that OJP1∣P2K = OJP1K∥OJP2K, we must show that our strat-
egy of interleaving traces from publicly-lifted resources agrees with the global
operational semantics. A key idea is that σ ∈ σ1 ∥ σ2 constitutes an invariant
relationship between the resources owned by subprocesses (in the denotational
semantics) and those owned by the composite process (in the operational se-
mantics). The invariant holds initially because σ ∈ σ̂ ∥ σ̂.

The unobservability of νc steps complicates matters somewhat: it means
there is an additional perspective on resources—call it σden—owned by a com-
posite process. Generally, σden underestimates the true resources σ of the
operational semantics. Consider the denotational interleaving of two traces t1
and t2 from subprocesses P1 and P2 respectively. If P1 allocates a channel, that
allocation does not appear immediately in t1, and hence does not appear im-
mediately in the resources σden of the interleaving, while it would immediately
appear in σ, operationally. During denotational interleaving, the same chan-
nel can even be owned privately in both σ1 and σ2. The key observation here
is that either both subprocesses eventually reveal a given private channel—in
which case the denotational interleaving is filtered out—or at least one sub-
process does not—in which case its choice of channel is irrelevant. Altogether,

3 This means that Σ with ∥ does not form a separation algebra [5]; see §5.1.

12



Turon and Wand

the four resources—σop, σden, σ1, and σ2—can always be related:

I(σop, σden, σ1, σ2) ≜ σop ∈ σ1 ∥ σ2, σden = σop ∖ {c ∶ σ1(c) = pri ∨ σ2(c) = pri}

provided that, within the proof, we apply appropriate channel renamings to
avoid conflicts.

Validating parallel composition requires another important lemma, locality
from abstract separation logic [5]. 4

Lemma 2.2 (Locality) If σ ∈ σ1 ∥ σ2 then

● if LαMσ = ⊺ then LαMσ1 = ⊺, and

● if LαMσ = σ′ then LαMσ1 = ⊺ or LαMσ1 = σ′1 for some σ′1 with σ′ ∈ σ′1 ∥ σ2.

The lemma characterizes the transformations an action can make given
some composite resources σ in terms of its behavior on subresources σ1. Pro-
viding additional resources can never introduce new faults, and if the action
does not fault given just σ1 resources, then the changes it makes to σ must
only change the σ1 portion (framing).

Locality was introduced to characterize the frame rule of separation logic [5],
but we use it here to characterize interleaving steps in parallel composition.
We have a related lemma for internal communication steps:

Lemma 2.3 (Communication) If σ ∈ σ1 ∥ σ2, LαMσ1 = σ′1 and LαMσ2 = σ′2
then σ ∈ σ′1 ∥ σ′2.

We prove each direction of congruence separately:

Lemma 2.4 If I(σop, σden, σ1, σ2), σi ⊢ Pi✓ and t ∈ OJP1∣P2Kσop then
t ∈ (t1 ∥ t2)(σden) for some ti ∈ OJPiKσi.

Lemma 2.5 If I(σop, σden, σ1, σ2), σi ⊢ Pi✓, ti ∈ OJPiKσi, and
t ∈ (t1 ∥ t2)(σden) then t ∈ OJP1∣P2Kσop.

The first of these two lemmas is easier to prove, because we are given
a trace t derived from the operational semantics of the composite processes.
This means that the subprocesses are guaranteed not to independently allocate
the same channel. The second lemma requires more care, using the insights
mentioned above about renaming unexposed channels.

The assumptions σi ⊢ Pi✓ are needed to ensure that the processes we are
working with do not fault. The reason that faulting is problematic is seen in

4 For simplicity we avoid the order-theoretic definition here, which requires lifting some of
our constructions to 2Σ in a way that is not otherwise useful.

13



Turon and Wand

the following example:

new x.cx.0 ∣ c(y).cy.dy.0), [c↦ pub]
νd
_ cd.0 ∣ c(y).cy.dy.0, [c↦ pub, d↦ pri]
τ
_ 0 ∣ cd.dc.0, [c↦ pub, d↦ pri]
c!d
_ 0 ∣ dc.0, [c↦ pub, d↦ pub]
d!c
_ 0 ∣ 0, [c↦ pub, d↦ pub]

The uncomfortable aspect of this derivation is that the channel d occurred in
the process initially, even though it was not owned. As a result, the process
was able to allocate d, in a sense falsely capturing the constant d that initially
appeared. In cases where the process allocates a different channel than d, it
will fault when it attempts to communicate along the constant channel d. But
in this “lucky” case, the operational semantics allows communication along
the constant channel.

The denotational semantics, however, always generates a fault. It com-
putes the traces compositionally, meaning that a channel d allocated by one
subprocess is not immediately available for use by a parallel subprocess.

Our full abstraction result applies only to nonfaulty processes, which, for-
tunately, is a trivial syntactic check. However, this does limit its applicability
to languages that include features like deallocation, which makes checking for
safety more difficult.

2.3 Full abstraction

To complete the proof of full abstraction, we must deal with recursion. We
begin with the usual unwinding lemma, proved in the standard syntactic way:

Lemma 2.6 (Unwinding) We have OJrec X.P K = ⊔nOJrecnX.P K, where
rec0X.P ≜ rec X.X and recn+1X.P ≜ P{recnX.P /X}.

We also have the standard substitution lemmas:

Lemma 2.7 (Substitution) We have JP [Q/X]Kρ = JP Kρ[X↦Q]

and

JP [c/x]Kρ = JP Kρ[x↦c].

Combined these lemmas with the previous congruence results, it is straightfor-
ward to show the following theorem relating the observed operational traces
to those calculated denotationally:

Theorem 2.8 (Congruence) If P is closed, σ ⊢ P✓ then OJP Kσ = JP K∅ σ.

To prove this theorem, we must generalize it to deal with open terms. We
do this by introducing a syntactic environment η as a finite map taking chan-
nel variables to channels and process variables to closed processes. Given a

14



Turon and Wand

syntactic environment η the corresponding semantic environment η̂ is given
by:

(η̂)(x) ≜ η(x) (η̂)(X) ≜ OJη(X)K
We write ηP for the application of η as a syntactic substitution on P . The
needed induction hypothesis for congruence is then

if σ ⊢ ηP✓ then OJηP Kσ = JP Kη̂ σ.

Define P =Den Q iff JP Kρ σ = JQKρ σ for all σ such that σ ⊢ P✓ and σ ⊢ Q✓.
Likewise, let P =Op Q iff OJC[P ]Kσ = OJC[Q]Kσ for all contexts C with
σ ⊢ C[P ]✓ and σ ⊢ C[Q]✓. Full abstraction follows by compositionality:

Theorem 2.9 (Full abstraction) P =Den Q iff P =Op Q.

3 Denotational semantics: adding liveness

To round out our study of π-calculus, we must account for liveness proper-
ties. Liveness in process algebra appears under diverse guises, differing in
sensitivity to branching behavior and divergence [21]. Each account of live-
ness corresponds to some choice of basic observable: given a process P and a
context C, what behavior of C[P ] matters?

The standard observable for the π-calculus is barbed bisimilarity [13],
which sits quite far on the branching side of the linear-branching time spec-
trum [21]. Here, we choose a treatment more in the spirit of linear time: an
adaptation of acceptance traces [8]. This choice is partly a matter of taste, but
it also allows us to stick with a purely trace-theoretic semantics, which keeps
the domain theory to a minimum. We do not see any immediate obstacles to
applying our resource-based handling of names to a branching-time semantics.
Branching sensitivity and resource-sensitivity seem largely orthogonal, though
of course branches may be pruned when deemed impossible given the owned
resources.

3.1 Liveness observables

We say that a process diverges if it can perform an infinite sequence of un-
observable (i.e., internal) steps without any intervening interactions with its
environment—which is to say, the process can livelock. On the other hand, a
process that can make no further unobservable steps is blocked (waiting for
interaction from its environment) or deadlocked.

The basic observables in our liveness model are:

● A finite sequence of interactions, after which the process diverges or faults;

● A finite sequence of interactions, after which the process is blocked, along
with which channels it is blocked on (none for deadlock); and

15



Turon and Wand

● An infinite sequence of interactions.

Notice that we have conflated divergence and faulting: we view both as er-
roneous behavior. In particular, we view any processes that are capable of
immediately diverging or faulting as equivalent, regardless of their other po-
tential behavior. This perspective is reasonable—meaning that it yields a
congruence—because such behavior is effectively uncontrollable. For exam-
ple, if P can immediately diverge, so can P ∣Q for any Q.

Formally, we add a new action δ∆ which records that a process is blocked
attempting communication along the finite set of directions ∆:

α ∶∶= ⋯ ∣ δ∆ ∆ ⊆fin Dir ≜ {c! ∶ c ∈ Chan} ∪ {c? ∶ c ∈ Chan}

We then define

LTrace ≜ NTAction∗;{☇, δ∆} ∪ NTActionω LBeh ≜ Σ→ 2LTrace

where NTAction (for “non-terminating action”) refers to all actions except
for ☇ or blocking actions δ∆. Thus finite liveness traces must end with either
a δ∆ action or a ☇ action, whereas neither of these actions can appear in an
infinite trace.

Each liveness trace encompasses a complete behavior of the process: either
the process continues interacting indefinitely, yielding an infinite trace, or
diverges, faults or gets stuck after a finite sequence of interactions. Therefore,
sets of liveness traces are not prefixed-closed.

As with the safety traces, we can observe liveness traces from the opera-
tional semantics. However, we do so using the greatest fixpoint of the following
rules:

Liveness observation LOJP K ∶ LBeh

P,σ
α
_ P ′, σ′

α ≠ ☇ t ∈ LOJP ′Kσ′

∣α∣σt ∈ LOJP Kσ
gfp

P,σ
☇

_
☇ ∈ LOJP Kσ

gfp
P,σ blocked ∆

δ∆ ∈ LOJP Kσ
gfp

where P,σ blocked ∆ means that P,σ can only take communication steps,
and ∆ contains precisely the directions of available communication. Since
the owned resources influence which communications are possible, they also
influence the directions on which a process is blocked:

δ{c!} ∈ LOJcc.0K[c↦ pub] δ∅ ∈ LOJcc.0K[c↦ pri]

The action δ∅ reflects a completely deadlocked process, and is for example the
sole trace of the inert process 0.

Defining the observations via a greatest fixpoint allows for infinite traces
to be observed, but also means that if a process diverges after a trace t, its

16



Turon and Wand

behavior will contain all traces tu, in particular t☇. For example, suppose

P,σ
τ
_ P,σ. If t is any liveness trace whatsoever, we can use the first infer-

ence rule to show, coinductively, that t ∈ LOJP Kσ. We merely assume that
t ∈ LOJP Kσ, and derive that ∣τ ∣σt = t ∈ LOJP Kσ. Thus, divergence is “catas-
trophic” (as in failures/divergences [4]).

An important step toward making these observables coherent is the notion
of refinement. In general, saying that P refines Q (or P “implements” Q) is
to say that every behavior of P is a possible behavior of Q. In other words, P
is a more deterministic version of Q. We define a refinement order on traces:

t ⊑ t tδ∆ ⊑ tδ∆′ if ∆′ ⊆ ∆ tu ⊑ t☇

which we lift to sets of traces as: T ⊑ U iff ∀t ∈ T. ∃u ∈ U. t ⊑ u. This notion
of refinement, which closely follows that of acceptance traces [8], says that
an implementation must allow at least the external choices that its specifi-
cation does. It also treats faulting as the most permissive specification: if
Q faults, then any P will refine Q. Moreover, any two immediately-faulting
processes are equivalent. Since faulting and divergence are treated identically,
the same holds for divergent processes. Thus, the simple refinement order-
ing on traces has an effect quite similar to the closure conditions imposed in
failures/divergences semantics.

The ordering on trace sets inherits the complete lattice structure of 2LTrace,
as does the pointwise order on LBeh. We again exploit this fact when inter-
preting recursion.

3.2 Liveness semantics

To complete the semantic story, we need to interpret blocking actions. We
define

Lδ∆Mσ ≜
⎧⎪⎪⎨⎪⎪⎩

⊺ ∃c. (c! ∈ ∆ ∨ c? ∈ ∆) ∧ c ∉ dom(σ)
σ otherwise

∣δ∆∣σ ≜ δ∆′ where ∆′ = ∆ ↾ {c ∶ σ(c) = pub}

which shows the interaction between resources and blocking: blocking on a
private resource is possible, but unobservable (cf. projection on δ in [2]). For
example, we have

Lδ{c!}M[c↦ pub] = [c↦ pub] ∣δ{c!}∣[c↦pub] = δ{c!}
Lδ{c!}M[c↦ pri] = [c↦ pri] ∣δ{c!}∣[c↦pri] = δ∅

The denotational semantics for liveness, LJ−K, is largely the same as that

17



Turon and Wand

for safety, except for the following clauses:

LJrec X.P Kρ ≜ νB.LJP Kρ[X↦B]

L
q
∑πi.Pi

yρ ≜ (⊔LJπi.PiKρ) ⊔ (δ{dir(ρπi)} ▷ λσ.∅)

Recursion is given by a greatest fixpoint, as expected. A summation of prefixed
actions now generates a corresponding blocking set, recording the external
choice (where dir extracts the direction of a prefix). The blocking action is
“executed” using the prefixing operator ▷ so that the actual observed action
corresponds to the available resources, as in the example above.

Finally, we use the following definition of interleaving:

t ∥ u ≜gfp α▷ (t′ ∥ u) if t = αt′, α not blocking

⊔ α▷ (t ∥ u′) if u = αu′, α not blocking

⊔ δ∆∪∆′ if t = δ∆, u = δ∆′ , ∆ ⋔∆′

⊔ t′ ∥ u′ if t = αt′, u = αu′

Liveness interleaving is given by a greatest fixpoint. An infinite sequence
of internal communications (operationally, an infinite sequence of τ moves)
therefore yields all possible traces, including faulting ones, as it should. An
interleaved trace is blocked only when both underlying traces are, and only
when they do not block in opposite directions (∆ is ∆ with directions reversed,
and ⋔ denotes empty intersection). If two processes are blocked in opposite
directions, then their parallel composition is in fact not blocked, since they
are willing to communicate with each other (cf stability [4]).

3.3 Full abstraction

The proof of full abstraction is structured similarly to the proof for the safety
semantics. Congruence proofs must take into account blocking actions, which
is straightforward in all cases except for parallel composition. There, we re-
quire a lemma:

Lemma 3.1 (Blocking congruence) Suppose I(σop, σden, σ1, σ2). Then

● If δ∆i
∈ LOJPiKσi and ∆1 ⋔∆2 then ∣δ∆1∪∆2 ∣σden ∈ LOJP1∣P2Kσop.

● If δ∆ ∈ LOJP1∣P2Kσop then δ∆i
∈ LOJPiKσi for some ∆1, ∆2 with ∆1 ⋔ ∆2

and ∣δ∆1∪∆2 ∣σden = δ∆.

Defining =LDen and =LOp analogously to the safety semantics, we again
have full abstraction:

Theorem 3.2 (Full abstraction) P =LDen Q iff P =LOp Q.

18



Turon and Wand

4 Logic

We now sketch a logic for reasoning about the safety semantics of processes.
The logic proves refinement between open processes—denotationally, trace
containment; operationally, contextual approximation. The refinements are
qualified by assertions about owned resources, which is what makes the logic
interesting. The basic judgment of the logic is Γ ⊢ p ▸ P ⊑ Q, which says the
traces of P are traces of Q, as long as the initial resources and environment,
respectively, satisfy assertions p and Γ (defined below).

Resource assertions p are as follows:

p ∶∶= true ∣ false ∣ p ∧ q ∣ p ∨ q ∣ p ∗ q ∣ x pub ∣ x pri ∣ x = y ∣ x ≠ y

and we let x known ≜ x pub∨x pri. Satisfaction of assertions depends on both
the environment and resources, as in these illustrative cases:

ρ, σ ⊧ x pub ≜ σ(ρ(x)) = pub

ρ, σ ⊧ p1 ∗ p2 ≜ ∃σ1, σ2.σ = σ1 ⊎ σ2 and ρ, σi ⊧ pi

Resource assertions like x pub are intuitionistic [17]; without deallocation there
is no reason to use the classical reading, which can assert nonownership. We
are using the standard interpretation of separation logic’s ∗ as disjoint sepa-
ration to enable sequential reasoning about resource transformers in our logic.
Action interpretations LαM are local with respect to ∗, just as they were for ∥.

Environment assertions Γ constrain process variables:

Γ ∶∶= ∅ ∣ Γ, (p ▸X ⊑ P )

ρ ⊧ (p ▸X ⊑ P ) ≜ ∀σ. (ρ, σ ⊧ p) Ô⇒ ρ(X)(σ) ⊆ JP Kρ σ

The definition of entailment is thus:

Γ ⊧ p ▸ P ⊑ Q ≜ ∀ρ, σ. (ρ ⊧ Γ ∧ ρ, σ ⊧ p) Ô⇒ JP Kρ σ ⊆ JQKρ σ

By qualifying refinements by resource assertions we can incorporate Hoare
logic-like reasoning. Take, for example, the rule

Γ ⊢ p ∗ (x pub ∧ y pub) ▸ P ⊑ Q
Γ ⊢ p ∗ (x pub ∧ y known) ▸ xy.P ⊑ xy.Q

for sending over a public channel. It is a kind of congruence rule, but we shift
resource assumptions for the subprocesses, corresponding to the Hoare triple

{p ∗ (x pub ∧ y known)} xy {p ∗ (x pub ∧ y pub)}
19



Turon and Wand

The syntactic structure of prefixes (rather than sequential composition) pre-
vents a clean formulation of the logic using Hoare triples. This is why the
frame p is included, rather than added via a separate frame rule; we are using
“large” rather than “small” axioms [15]. A better treatment is possible if we
semantically interpret prefixing as sequential composition, which requires a
variables-as-resources model [16].

For sending over a private channel, we have an axiom: xy.P refines any
process when x is private, because xy.P is stuck. The corresponding Hoare
triple is {x pri ∧ y known} xy {false}.

Here is a fragment of the logic, focusing on resource-sensitive rules:

A selection of logical rules for safety behavior Γ ⊢ p ▸ P ⊑ Q

Γ ⊢ p ∗ (x pub ∧ y pub) ▸ P ⊑ Q
Γ ⊢ p ∗ (x pub ∧ y known) ▸ xy.P ⊑ xy.Q Γ ⊢ x pri ∧ y known ▸ xy.P ⊑ Q
Γ ⊢ (p ∗ x pub) ∧ y pub ▸ P ⊑ Q y ∉ fv(p,Γ)

Γ ⊢ p ∗ x pub ▸ x(y).P ⊑ x(y).Q Γ ⊢ x pri ▸ x(y).P ⊑ Q
Γ ⊢ p ∗ x pri ▸ P ⊑ Q x ∉ fv(p,Γ)

Γ ⊢ p ▸ new x.P ⊑ new x.Q

Γ ⊢ p̂ ▸ Pi ⊑ Qi

Γ ⊢ p ▸ P1∣P2 ⊑ Q1∣Q2

p ▸X ⊑ P ∈ Γ

Γ ⊢ p ▸X ⊑ P
Γ, p ▸X ⊑ Q ⊢ p ▸ P ⊑ Q

Γ ⊢ p ▸ rec X.P ⊑ Q
p ⊧ p′ Γ ⊢ p′ ▸ P ⊑ Q

Γ ⊢ p ▸ P ⊑ Q

The congruence rule for parallel composition performs public-lifting p̂ on re-
source assertions (by replacing pri by pub in the assertion).

Fixpoint induction is resource-qualified as well. We reason about the body
P of a recursive definition rec X.P using a hypothetical bound on X as the
induction hypothesis. That hypothesis, however, is only applicable under the
same resource assumptions p that were present when it was introduced—
making p the loop invariant.

In addition to these resource-sensitive rules, we have the usual laws of
process algebra, including the expansion law. Combining those laws with the
ones we have shown, we can derive an interference-free expansion law, as in
this simplified version: Γ ⊢ x pri ∧ y known ▸ xy.P ∣x(z).Q ≡ P ∣Q{y/z}.

5 Discussion

5.1 Future work: richer resources

Our resource model captures exactly the guarantees provided by the π-calculus:
until a channel is exposed, it is unavailable to the environment; afterwards, all
bets are off. This property is reflected in the fact that Σ is not a separation
algebra, since c pub ∥ c pub can result in c pub or c pri. No amount of public

20



Turon and Wand

ownership adds up definitively to private ownership.

Rather than using resources to model the guarantees of a language, we
can instead use them to enforce guarantees we intend of programs, putting
ownership “in the eye of the asserter” [14]. We can then recover privacy just
as Boyland showed [1] how to recover write permissions from read permissions:
via a fractional model of ownership, ΣFrac ≜ Chan→ [0,1]. Unlike traditional
fractional permissions, owning a proper fraction of a channel does not limit
what can be done with the channel—instead, it means that the environment
is also allowed to communicate on the channel. The fractional model yields a
separation algebra, using (bounded) summation for resource addition. An easy
extension is distinguishing send and receive permissions, so that interference
can be ruled out in a direction-specific way.

One can also imagine encoding a session-type discipline [10] as a kind of
resource: ΣSess ≜ Chan⇀ Session where

s ∈ Session ∶∶= `.s⊕ `.s ∣ `.s & `.s ∣ !.s ∣ ?.s ∣ end

Separation of session resources corresponds to matching up dual sessions, and
actions work by consuming the appropriate part of the session. Ultimately,
such resource models could yield rely-guarantee reasoning for the π-calculus,
borrowing ideas from deny-guarantee [6]. A challenge for using these models
is managing the ownership protocol in a logic: how are resources consistently
attached to channels, and how are resources split when reasoning about paral-
lel composition? We are far from a complete story, but believe our semantics
and logic can serve as a foundation for work in this direction.

5.2 Related work

Hoare and O’Hearn’s work [9] introduced the idea of connecting the model
theory of separation logic with the π-calculus, and provided the impetus for
the work presented here. Their work stopped short of the full π-calculus,
modelling only point-to-point communication and only safety properties. Our
liveness semantics, full abstraction results, and refinement calculus fill out the
rest of the story, and they all rely on our new resource model. In addition,
our semantics has clearer connections to both Brookes’s action trace model [2]
and abstract separation logic [5].

Previous fully abstract models of the π-calculus are based on functor cat-
egories [20,8,7], faithfully capturing the traditional role of scope for privacy
in the π-calculus. Those models exploit general, abstract accounts of recur-
sion, nondeterminism, names and scoping in a category-theoretic setting. We
have similarly sought connections with a general framework, but have chosen
resources, separation and locality as our foundation.

An immediate question is: why do we get away with so much less mathe-

21



Turon and Wand

matical scaffolding? This question is particularly pertinent in the comparison
with Hennessy’s work [8], which uses a very similar notion of observation.
Hennessy’s full abstraction result is proved by extracting, from his functor-
categorical semantics, a set of acceptance traces, and showing that this ex-
traction is injective and order preserving. The force of this “internal full ab-
straction” is that the functor-categorical meaning of processes is completely
determined by the corresponding acceptance traces. But note, these traces are
not given directly via a compositional semantics: they are extracted only after
the compositional, functor-categorical semantics has been applied. What we
have shown, in a sense, is that something like acceptance traces for a process
can be calculated directly, and compositionally, from process syntax.

Beyond providing a new perspective on the π-calculus, we believe the
resource-oriented approach will yield new reasoning techniques, as argued
above. We have also emphasized concreteness, giving an elementary model
theory based on sets of traces.

Finally, it is worth noting that substructural type systems have been used
to derive strong properties (like confluence) in the π-calculus [11], just as we
derived interference-free expansion. Here, we have used a resource theory to
explain the π-calculus as it is, rather than to enforce additional discipline. But
the ideas of §5.1 take us very much into the territory of discipline enforcement.
More work is needed to see what that territory looks like for the resource-based
approach.

Acknowledgements

We are grateful to Paul Stansifer and Tony Garnock-Jones for feedback on
drafts of this paper, and to the anonymous reviewers who provided guidance
on presentation. The first author has been generously supported by a grant
from Microsoft Research (Cambridge).

References

[1] Boyland, J., Checking Interference with Fractional Permissions, in: SAS, 2003.

[2] Brookes, S., Traces, Pomsets, Fairness and Full Abstraction for Communicating Processes, in:
CONCUR, 2002, pp. 45 –71.

[3] Brookes, S., A semantics for concurrent separation logic, TCS 375 (2007), pp. 227–270.

[4] Brookes, S. D. and A. W. Roscoe, An Improved Failures Model for Communicating Processes,
in: Seminar on Concurrency, 1984.

[5] Calcagno, C., P. W. O’Hearn and H. Yang, Local Action and Abstract Separation Logic, in:
LICS, 2007.

[6] Dodds, M., X. Feng, M. Parkinson and V. Vafeiadis, Deny-guarantee reasoning, in: ESOP, 736
(2009), pp. 363–377.

[7] Fiore, M., E. Moggi and D. Sangiorgi, A fully-abstract model for the pi-calculus, in: LICS,
December (1996).

22



Turon and Wand

[8] Hennessy, M., A fully abstract denotational semantics for the pi-calculus, TCS 278 (2002),
pp. 53–89.

[9] Hoare, T. and P. O’Hearn, Separation Logic Semantics for Communicating Processes,
Electronic Notes in Theoretical Computer Science (ENTCS) (2008).

[10] Honda, K., V. T. Vasconcelos and M. Kubo, Language Primitives and Type Discipline for
Structured Communication-Based Programming, in: ESOP, 1998, pp. 122–138.

[11] Kobayashi, N., B. Pierce and D. Turner, Linearity and the pi-calculus, ACM Transactions on
Programming Languages and Systems (TOPLAS) 21 (1999), pp. 914–947.

[12] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, parts I and II, Information
and computation 100 (1992).

[13] Milner, R. and D. Sangiorgi, Barbed bisimulation, in: Automata, Languages and Programming,
Lecture Notes in Computer Science 623, 1992 pp. 685–695.

[14] O’Hearn, P., Resources, concurrency, and local reasoning, TCS 375 (2007), pp. 271–307.

[15] O’Hearn, P., J. Reynolds and H. Yang, Local Reasoning about Programs that Alter Data
Structures, in: Computer Science Logic, 2001.

[16] Parkinson, M., R. Bornat and C. Calcagno, Variables as Resource in Hoare Logics, in: LICS
(2006).

[17] Reynolds, J., Separation logic: a logic for shared mutable data structures, in: LICS, 2002.

[18] Roscoe, A. W. and G. Barrett, Unbounded Non-determinism in CSP, in: MFPS, 1989.

[19] Sangiorgi, D. and D. Walker, “The pi-calculus: a Theory of Mobile Processes,” Cambridge
University Press, 2001.

[20] Stark, I., A fully abstract domain model for the pi-calculus, in: LICS (1996), pp. 36–42.

[21] Van Glabbeek, R., The linear time-branching time spectrum, CONCUR’90 Theories of
Concurrency: Unification and Extension (1990), pp. 278–297.

23


	A resource-driven operational semantics
	Generating actions
	Resources and action semantics
	Process safety

	Denotational semantics: safety traces
	Congruence for the basic operators
	Congruence for parallel composition
	Full abstraction

	Denotational semantics: adding liveness
	Liveness observables
	Liveness semantics
	Full abstraction

	Logic
	Discussion
	Future work: richer resources
	Related work

	References

