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Abstract

We introduce the All-Termination(T ) problem: given a termination solver, T ,
and a program (a set of functions), find every set of formal arguments whose consid-
eration is sufficient to show the program terminating using T . One important and
motivating application is enhancing theorem proving systems by constructing the set
of strongest induction schemes for a program, modulo T . These schemes can be derived
from the set of termination cores, the minimal sets returned by All-Termination(T ).
We study the All-Termination(T ) problem as applied to two existing termination
analyses: general size-change (SCT ) and polynomial size-change (SCP). We ana-
lyze the intrinsic complexity of the problems and develop algorithms that we expect
to perform well in practice. We show that All-Termination(SCT ) is a PSpace-
complete problem. We also show that no output-polynomial algorithm exists for All-
Termination(SCP) (unless P = NP). Finally, we develop practical algorithms, some
based on SAT-solving, for both problems.

1 Introduction

Termination analysis has a well-established motivation. It is required for establishing to-
tal correctness of transformational systems and for proving liveness properties of reactive
systems. It is used in deductive verification to simplify mechanical reasoning and to show
that adding axioms to a logic does not render it inconsistent. Termination plays a key role
in the analysis of hybrid systems and in control theory, where questions of stability reduce
to termination analysis. It is important in planning, logic programming, and the theory of
rewrite systems, to mention a few application areas.

In this paper, we initiate the study of the All-Termination problem: given a program,
find every “reason” that the program terminates. There are many possible definitions of
what constitutes a reason for termination, but in this paper, a reason is a set of formal
arguments whose consideration is sufficient to show the program terminating. Our focus
is on developing the All-Termination framework and answering basic complexity and
algorithmic questions. Implementation considerations will have to be addressed in future
work.

Why is solving the All-Termination problem useful? Consider the use of termination
analysis in a theorem proving system such as ACL2 [14]. In order to maintain sound-
ness, ACL2 requires that function definitions are shown terminating, but the termination
proofs have another, very important, role. They give rise to induction schemes, and differ-
ent termination proofs for the same function may give rise to different induction schemes.
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Subsequent proofs involving an admitted function may require several, distinct induction
schemes [4]. Currently, only one induction scheme is introduced per function definition, so
users are forced to manually add other induction schemes (a process that requires a termi-
nation proof). A solution to the All-Termination problem enables us to automate this
process. There are other applications as well. For example, in control theory, there are
many conflicting design considerations and designers often want to explore the design space
of their control laws, under the constraint that stability is not violated. Determining what
these constraints are amounts to solving the All-Termination problem.

The All-Termination problem is a generalization of the classic termination decision
problem: a program is terminating iff there is at least one reason for termination. Therefore,
the All-Termination problem is undecidable. However, decades of work on termination
has yielded powerful, but decidable, termination analyses. For any such termination analy-
sis, T , we can solve the All-Termination(T ) problem: given a program and a termination
solver, T , find every set of formal arguments sufficient to show the program terminating us-
ing T . A formalization can be found in the next section.

We consider the complexity of the All-Termination(T ) problem and develop algo-
rithms for the case where T is size-change analysis [17] and polynomial size-change anal-
ysis [2]. We focus on the size change framework, presented in Section 3, because several
powerful termination analyses depend on it. This includes work on termination in term-
rewrite systems that combines size-change analysis with the dependency pair method and
recursive path orderings [20]. Tools based on these ideas include AProVE [12]. Another
example is work on calling context graphs and measures, which is used to prove termination
of functional programs [18], and has been implemented in ACL2s [10] and Isabelle [15].

An introduction to the size-change framework is given in Section 3. In Section 4, we
consider the general size-change problem (SCT ) and show that the complexity of All-
Termination(SCT ) is the same as the complexity of SCT : they are both PSpace-complete
problems. In Section 5, we consider polynomial size-change analysis (SCP), whose complex-
ity is O(n3), and present some interesting complexity results. First, notice that the number
of reasons for termination can be exponential in the number of formals, even if we restrict
our attention to termination cores (minimal sets of formals). So, at best we might hope for
an output-polynomial algorithm, i.e., an algorithm whose running time is polynomial in the
size of its output. Unfortunately, we show that, under standard complexity assumptions,
no output-polynomial algorithm exists for All-Termination(SCP). One of the technical
tools we make essential use of is dual-horn minimization, and we present algorithms for solv-
ing this problem in Section 6. One of the algorithms we develop is based on SAT-solving,
and thus can make use of modern, incremental SAT-solvers.

We also develop algorithms for All-Termination(SCT ) and All-Termination(SCP),
using dual-horn minimization as a back-end. We note that there is a tension between ter-
mination analysis and All-Termination analysis. Since termination analysis tends to be
expensive, the goal is to decide termination as quickly as possible, using the least amount of
analysis. For example, the calling context graph termination analysis algorithm, as imple-
mented in the ACL2s system, is hierarchical: it starts with relatively inexpensive and coarse
termination analyses and gradually works its way up to heavyweight methods, if needed. On
the other hand, we can get better All-Termination(T ) results by employing the heavy-
weight methods to extract all the reasons for termination; but this involves more work. The
algorithms we develop take this tension into account and are responsive in that they answer
the basic termination question first, without incurring any additional overhead. Only once
termination is settled do they proceed with the full All-Termination(T ) analysis. This is
something that can be done in the background or off-loaded to an unused CPU core. This
approach allows a theorem prover to use spare CPU cycles to detect new induction schemes.
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We end with conclusions and future work in Section 8, after briefly discussing related
work in Section 7.

2 All-Termination(T )

Recall that a well-order > is an order with no infinite descending chains x1 > x2 > · · · .
Traditionally, programs are proved terminating via measures, which are functions mapping
program states to some well-ordered set so that every state transition leads to a decrease
in measure. In general, a terminating program may have many distinct measures. While
each measure alone is sufficient to show that the program terminates, different measures
may correspond to different reasons that the program terminates.

Example 1. Consider the following function zip which takes a pair of lists and produces
a list of pairs:

zip [] ys = []
zip xs [] = []
zip xs ys = (hd x, hd y):(zip (tl xs) (tl ys))

If we consider a program state for this function to be a pair of actual arguments for
xs and ys, there are three natural measures: length(xs), length(ys), and length(xs)
+ length(ys), where length measures the length of a list. While there are many ways
to distinguish measures, a particularly simple property of a measure is the set of formal
arguments it depends on. A subset of the formals for which a measure exists is called a
measurable subset [4]. This turns out to be a very useful notion. First, we can construct
an induction scheme that depends only on the program and the measurable set, but not on
the measure, so the theorem prover does not have to reason about the measure. Second,
we can extract induction schemes even if our termination analysis does not construct an
explicit measure (a property of many current termination analyses). Third, we can statically
determine the instantiations required in the induction step of the induction schemes; this
makes automation possible, since finding appropriate instantiations is hard.

Boyer and Moore show how to construct such induction schemes [4]. Here, we just give
some examples for zip. The first two measures for zip are particularly interesting, because
they tell us that zip’s termination really depends on only one of its arguments. The measure
length(xs) gives rise to the measurable subset {xs}, which leads to the following induction
scheme. 

(∀ys . ϕ([], ys)) ∧
(∀xs. ϕ(xs, [])) ∧(
∀x, y, xs, ys . (∀zs . ϕ(xs, zs))

→ ϕ(x:xs, y:ys)

)


→ ∀xs, ys . ϕ(xs, ys)

The induction scheme for the measure length(ys) is similar. On the other hand, the
measure length(xs)+length(ys) gives rise to the measurable subset {xs, ys}, which leads
to the following induction scheme. (∀ys. ϕ([], ys)) ∧

(∀xs. ϕ(xs, [])) ∧
(∀x, y, xs, ys . ϕ(xs, ys)→ ϕ(x:xs, y:ys)


→ ∀xs, ys . ϕ(xs, ys)
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Notice that the above induction schemes can be applied to any ϕ, even if zip is not men-
tioned. Also notice that if we can prove ϕ using the induction scheme for {xs, ys}, then
we can prove ϕ using the induction schemes for either {xs} or {ys}; the reverse implication
does not hold. Finally, there are formulas that are provable using the induction scheme for
{xs}, but not using the induction scheme for {ys} (and vice-versa).

The above examples highlight why the notion of a minimal measurable subset, or ter-
mination core, is useful. It turns out that many functions have more than one termination
core [4], and All-Termination analysis is concerned with finding all such cores.

In the definition of All-Termination(T ), we do not specify a particular programming
language; instead, we postulate a universe of programs Prog, which we keep abstract.
What we do require is that for every program F ∈ Prog, there is a corresponding transition
system CF , called the semantic call graph of F , which terminates iff F does and whose states
are function names with actual arguments. Given universes of function names F , formal
parameter names P, and argument values V, we have:

Definition. A semantic call graph C is a pair (S,→) where

• S ⊆ F × (P ⇀ V) is the set of states, and

• → ⊆ S × S is the transition relation.

and P ⇀ V denotes partial maps from P to V, i.e. from formals to actuals.

Definition. A semantic call graph C is terminating if it contains no infinite sequence of
transitions s1→s2→· · · .

Example 2. Consider the Fibonacci function:

fib 0 = 1
fib 1 = 1
fib n = fib(n-1) + fib(n-2)

A fragment of the semantic call graph for fib might be displayed as follows:

fib(0) fib(1) fib(2)BCD@GA?? BCD@GA?? fib(3)

ECD@GF
��

ECD@GF
��

· · ·

Note that the semantic call graph CF for a program F does not contain all the infor-
mation present in F , since, for example, it is usually not possible to determine the actual
result of a function using only CF . Only the function calls made in computing results can
be determined. Nevertheless, in general CF is an infinite, uncomputable structure: even
determining whether there is a transition between two states is undecidable.

To connect semantic call graphs to measures, we have the following proposition, which
is a basic result from the theory of ordinal numbers:

Proposition 3. C = (S,→) is terminating iff there exists a well-ordered set (X,>) and a
measure µ : S → X, i.e., a map µ such that if s, t ∈ S and s→t then µ(s) > µ(t).

The arguments V (x) present in a state (f, V ) ∈ C are observations available to a measure
on C. Thus, in order to restrict the arguments a measure can observe, we just restrict the
arguments available in the states of C.

Definition. Given P ⊆ P, we say

4



(1) The restriction of a partial function V : P ⇀ V to P is the function

V �P (x) =

{
V (x) x ∈ dom(V ) ∩ P,
undefined otherwise

(2) The restriction of a state s = (f, V ) to P is s�P = (f, V �P ).

We are now in a position to formally define All-Termination(T ).

Definition.

(1) P ⊆ P is a measurable set of formal arguments for C if there exists a measure µ : C → X
such that µ(s) = h(s�P ) for some function h. Note that if C has any measurable set,
then in particular C is terminating (by Proposition 3).

(2) A termination analysis T is a predicate on programs F and sets of formal parameters
P such that if T (F, P ) then P is a measurable set for C. Let TA be the set of all
termination analyses.

(3) A termination analysis T is monotonic if, whenever T (F, P ) and P ⊆ Q, we have
T (F,Q).

(4) The function All-Termination : TA→ (Prog→ 2P) is defined as follows:

All-Termination(T )(F ) = {Q ⊇ P : P ⊆ P, T (F, P )}

Note that we do not require termination analyses to be monotonic. This underscores the
fact that giving more information to a termination analysis (by including more function
arguments) may obscure an actual, simpler reason that a function terminates. The poly-
nomial size-change analysis we consider in Section 5 is nonmonotonic in this sense. On the
other hand, if P is a measurable set for C and P ⊆ Q, then clearly Q is a measurable set
of C as well. Thus, we (safely) define All-Termination(T )(F ) to be upward-closed under
set inclusion. An important implication of this setup is that All-Termination(T )(F ) can
be represented by its minimal elements, the termination cores of F modulo T . Since this
representation may be exponentially more concise than the full set of measurable sets, and
since most applications only use the termination cores, all of the All-Termination(T )
algorithms we consider enumerate only the termination cores.

Our first complexity result for All-Termination(T ) depends only on the complexity
of T :

Theorem 4.

(1) If ∃P . T (F, P ) is PSpace-hard, so is All-Termination(T ).

(2) If Cl is a complexity class such that PSpace ⊆ Cl, and T ∈ Cl, then All-
Termination(T ) ∈ Cl, using the representation by termination cores.

Proof. For (1), note that the decision problem ∃P . T (F, P ) can be reduced to All-Termination(T )(F )
in polynomial space by executing All-Termination(T )(F ) until it either halts with no
output or produces its first output.

For (2), the algorithm is as follows.
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Algorithm 5.

All-Termination(T )(F )

for P ⊆ P do

if T (F, P ) then

if ∀Q ⊂ P . T (F,Q) = False then output P

We consider P part of the input to All-Termination(T )(F ). The for-loop and ∀Q ⊂ P
test are both implementable in PSpace using counters whose size is logarithmic in the size
of 2P , hence linear in the size of P.

While this result is of theoretical interest, the algorithm is highly impractical since
it executes T at least 2|P| times. Our strategy for constructing practical algorithms is to
instrument T so that we only need to run it once, after which we can mine the data produced
for termination cores.

There is one more general remark to be made before discussing specific analyses. Ter-
mination solvers are usually decision procedures for ∃P . T (F, P ), and many solvers do not
actually construct a measure µ on C, making it hard to determine the witness for P in the
existential. However, given C and P , we can construct a new semantic call graph whose
termination implies that P is a measurable set for C.

Definition. Given a semantic call graph C = (S,→), the restriction of C to P is C �P =
({s�P : s ∈ S}, ) where

s t ⇐⇒ ∃s′→t′ ∈ C . s = s′ �P, t = t′ �P

Proposition 6. P is a measurable set for C iff C �P is terminating.

Proposition 7. T is a termination analysis iff T (F, P ) implies CF �P is terminating.

3 The size-change framework

Even though the semantic call graph CF does not contain as much information as F itself,
it is still uncomputable. A fruitful approach to termination analysis is to consider safe
approximations of CF . This section describes the size-change framework of Lee, Jones, and
Ben-Amram [17], which provides an example of this approach. We present the framework
in the setting of semantic call graphs by defining a notion of simulation between them.

Example 8. Consider the well-known total function ack:

ack 0 n = n+1
ack m 0 = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))

Traditionally, to prove that ack terminates, a measure µ is introduced corresponding to
a lexicographic order on the arguments. The size-change framework takes an alternative
perspective, focusing on the change in size of each argument independently. We first observe
that in every recursive call to ack, either the first argument decreases, or the first argument
stays fixed while the second decreases. We display this size-change data as follows:

m
> // m

n n

G1

m
≥ // m

n
> // n

G2
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The second observation is that a hypothetical infinite recursion would have to involve an
infinite sequence of argument size changes of the form above. But we can show that this is
not possible. Clearly if size change G1 occurs infinitely often, then m decreases infinitely—
impossible under a well-order. Otherwise, since we are considering an infinite sequence of
size changes, it must be that size change G2 occurs uninterrupted as an infinite suffix of the
sequence. But then n decreases infinitely, which is again impossible. Hence, ack terminates.

The size-change framework formalizes this kind of reasoning into a decidable analysis on
programs.

For simplicity, we postulate a single well-ordering > on all values in V.1 The notion of
size-change “data” above is formalized into a structure called a size-change graph. A set of
such graphs, as edges between function names, is called an annotated call graph:

Notation.
p, q, r ∈ Lab = {>,≥} size-change label
G,H ∈ SCG = 2P×Lab×P size-change graph
G,H ∈ ACG = 2F×SCG×F annotated call graph

We write x r−→ y for (x, r, y) ∈ G and f
G−→ g for (f,G, g) ∈ G. We also sometimes write

G ∈ G for f G−→ g if the function names f and g are unimportant. Finally, we use P(G) to
denote the subset of P that appear in G.

Example 9. The annotated call graph for ack is: ackG1 77 G2gg .

The intuitive argument for the termination of ack by size-change was based on (infinite)
sequences of size changes. We formalize these sequences as follows.

Definition. A multipath π over an ACG G is a (potentially infinite) sequence of edges from
G:

π = f0
G1−−→ f1

G2−−→ f2
G3−−→ · · ·

We write Gω for the set of nonempty multipaths over G and G+ for the set of finite, nonempty
ones. We sometimes write G1, G2, . . . or 〈Gi〉 to describe a multipath when the function
names are irrelevant. Finally, we write π : f0 → fn if π = f0

G1−−→ · · · Gn−−→ fn.

The reason π = 〈Gi〉 is a multipath and not just a path is that the elements Gi of the
sequence are themselves graph structures. In particular, a multipath may contain many
threads through its size-change graphs.

Definition. A thread in a multipath π = 〈Gi〉 is a sequence of size-change edges 〈xi−1
ri−→

xi〉 such that xi−1
ri−→ xi ∈ Gi for all i > 0.

Example 10. Consider the multipath

π = ack
G1−−→ ack

G2−−→ ack
G1−−→ ack

in Gack. The only thread in π is m >−→ m
≥−→ m

>−→ m. On the other hand, the multipath
ack

G2−−→ ack
G2−−→ ack has two threads: m ≥−→ m

≥−→ m and n
>−→ n

>−→ n.

Now we can characterize a termination proof using the size-change framework in terms
of threads and multipaths.

1Multiple orders can also be handled [18].
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Definition.

(1) An infinite thread 〈xi
ri−→ xi+1〉 has infinite descent if ri = > for infinitely-many i.

(2) A multipath π has infinite descent if it has a thread with infinite descent.

(3) G is size-change terminating if every infinite multipath π ∈ Gω has a suffix with infinite
descent.

An ACG G can be seen as a finite description of the semantic call graph CG , which relates
states according to the possible size changes given in G:

Definition. The semantic call graph determined by G is CG = (F × (P ⇀ V),→), where

(f, V )→(g, U) ⇐⇒ ∃f G−→ g ∈ G .∀x r−→ y ∈ G . V (x) r U(y)

To see why size-change termination is an appropriate notion of termination, consider the
following tight relationship between the termination behavior of G and CG :

Proposition 11. G is size-change terminating iff CG is terminating.

In order to use the size-change termination of G to show the termination of F , we must
relate CG and CF . The relation we use is a form of simulation.

Definition. Given two semantic call graphs C1 = (S1,→1) and C2 = (S2,→2), a simulation
between C1 and C2 is a relation R ⊆ S1 × S2 such that if s1 R s2 then

• s1 = (f, V ) and s2 = (f, U) for some f ∈ F with U = V �dom(U).

• if s1→1s
′
1 then there exists an s′2 such that s2→2s

′
2 and s′1 R s′2.

Definition. C′ simulates C, written C v C′, if there exists a simulation R between C and
C′ such that for every state s ∈ C there is some state t ∈ C′ with s R t. We write C ≈ C′ if
C v C′ and C′ v C.

Intuitively, if C′ simulates C, then C′ admits at least as many behaviors as C. Safety with
respect to termination, as stated by the following proposition, is easy to show.

Proposition 12. If C v C′ and C′ is terminating then C is terminating.

We say G is safe for F if CF v CG . In general, determining a safe ACG G for a program F
is difficult, and is a problem that the size-change framework does not seek to address (but
see [18]). For our purposes, it is sufficient to postulate some function analyze : Prog →
ACG with the property that analyze(F ) is safe for F .

We now turn to some preliminary considerations for solving All-Termination within
the size-change framework. The framework provides an example of a termination analysis
that does not explicitly construct a measure. While it is possible to effectively construct
a measure from a size-change analysis of a program F , and thereby extract a measurable
set, the size of the measure is triply exponential [16]. Using the results from Section 2,
we can instead use size-change termination to show that CF �P is terminating for some P .
To do this, we derive from analyze(F ) an ACG whose size-change termination implies the
termination of CF �P .

Definition. Given P ⊆ P, we say

(1) The restriction of a size change graph G to P is G�P = {x r−→ y ∈ G : x, y ∈ P}.
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(2) The restriction of an ACG G to P is G �P = {f G�P−−→ g : f
G−→ g ∈ G}.

The key property of the restriction operator �P is that it commutes with C−, as stated in
(3) below.

Lemma 13. For all C and P ⊆ P we have

(1) C v C �P , and

(2) if C v C′ then C �P v C′ �P .

(3) CG �P ≈ CG�P , and

Now we can define the size-change termination analysis in a way suitable for studying
its All-Termination problem.

Definition. We define the predicate SCT as follows:

SCT(F, P ) ⇐⇒ analyze(F )�P is size-change terminating

Theorem 14. SCT is a termination analysis.

Proof. Suppose SCT(F, P ) is true. Using Lemma 13, we have Canalyze(F )�P ≈ Canalyze(F ) �P .
Recall that analyze(F ) is safe for F , which means CF v Canalyze(F ). By Lemma 13, it
follows that CF � P v Canalyze(F ) � P . Hence CF � P v Canalyze(F )�P . But by assumption
analyze(F ) � P is size-change terminating, so Canalyze(F )�P is terminating (Proposition 11)
and therefore CF �P is terminating (Proposition 12). By Proposition 7, we’re done.

4 General size-change analysis

Deciding size-change termination for an ACG G is a PSpace-complete problem, but the
standard algorithm used in practice needs exponential space in the worst case [17]. In this
section, we review the standard algorithm and develop an instrumented version to compute
All-Termination(SCT ).

Suppose G is an ACG. If f0
G1−−→ · · · Gn−−→ fn is a multipath in G+, we know that according

to G, a call to f0 may result in a call to fn. But what can we say about the size of the
arguments to fn in terms of the arguments to f0? What we want is a way to compose
size-change graphs along a multipath. The following definitions serve this purpose.

Definition. We define composition of size-change labels and graphs as follows:

p · q =

{
≥ if p = ≥ and q = ≥
> otherwise.

G ·H = {x pq−→ z : x
p−→ y ∈ G, y q−→ z ∈ H}

Definition. The evaluation of a multipath 〈G1, . . . , Gn〉 ∈ G+ is

JG1, . . . , GnK = G1 · · · · ·Gn

Note that composition is associative, so evaluation is well-defined. The evaluation of a
multipath π is useful in part because it gives a compact characterization of the threads in
π:
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Proposition 15. x r−→ y ∈ JπK iff there exists a thread 〈x r0−→ z1
r1−→ · · · rn−1−−−→ zn

rn−→ y〉 in
π, with r = r1 · · · · · rn.

Given an ACG G, we can construct its closure under composition:

Definition. The closure of G under · is the least set satisfying

cl(G) = G ∪ {f G·H−−−→ h : f
G−→ g, g

H−→ h ∈ cl(G)}

The closure cl(G) has several useful properties:

Proposition 16.

(1) cl(G) = {f JπK−−→ g : π : f → g ∈ G+}.

(2) if G is finite and each G ∈ G is finite then cl(G) is finite.

(3) Ccl(G) is the transitive closure of CG .

We assume that analyze(F ) is finitary, which in particular means that we can compute
cl(analyze(F )) as a least fixpoint. Our interest in the closure is that certain of its edges
capture the size-change behavior of infinite multipaths in G:

Definition. A size-change graph G is idempotent if G ·G = G.

Theorem 17 (Lee et al. [17]). G is size-change terminating iff for every f
G−→ g ∈ cl(G)

such that G is idempotent, there is an edge x >−→ x ∈ G.

To give a sense for why consideration of the idempotent elements is sufficient to show size-
change termination, we briefly sketch the proof for the right-to-left direction. Suppose
π ∈ Gω is an infinite multipath. It is possible to show, using Ramsey’s theorem, that for
some f G−→ f ∈ G with G idempotent, π has an infinite suffix π1, π2, . . . with each πi : f → f

and JπiK = G. Clearly if G has an edge x >−→ x then π1, π2, . . . has infinite descent.

Example 18. Consider the following function perm, which permutes its two arguments,
decreasing one of them, until one of them is zero.

perm 0 y = y
perm x 0 = x
perm x y = perm (y - 1) x

How can we use the theorem above to show that perm terminates? First, we need to
construct Gperm. Since there is only one recursive call in perm, Gperm has only one node and
one edge:

perm Ghh
The size-change graph G for perm’s single recursive call, along with its powers are:

x ≥

$$JJJJJ x

y >

::ttttt y

G

x
> // x

y > // y

G2

x >

$$JJJJJ x

y >

::ttttt y

G3

x
> // x

y > // y

G4 = G2

Note that G2 is idempotent. Consequently, the only size-change graphs in cl(Gperm) are G,
G2, and G3. Since G2 has an edge x >−→ x, and G2 is the only idempotent graph in cl(Gperm),
Gperm is size-change terminating.
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The standard algorithm for deciding size-change termination is based on Theorem 17:
enumerate cl(analyze(F )), and check the strict self-edge condition on the idempotent ele-
ments. To adapt this algorithm for all-termination, we will record some additional informa-
tion as size-change graphs are composed, and build a constraint system from this information
after the algorithm completes. The minimal solutions to these constraints will be exactly
the termination cores of F .

To apply Theorem 17 to the All-Termination(SCT ) problem, we need to consider
multipaths in (G � P )+ for P ⊆ P. What we want is to be able to reason about these
multipaths in terms of the multipaths of G+, so that we can characterize the size-change
termination of G �P in terms of G. We first observe that every multipath in (G �P )+ is the
restriction of a multipath in G+, as follows.

Definition. Given a multipath π = f0
G1−−→ · · · Gn−−→ fn in G+, the restriction of π to P ⊆ P

is π �P = f0
G1�P−−−→ · · · Gn�P−−−→ fn, which is a multipath in (G �P )+.

Proposition 19. If π ∈ (G �P )+ then there exists a π′ ∈ G+ such that π = π′ �P .

Note that this correspondence is not one-to-one: there may be many multipaths π in G+

with the same restriction π �P .
Given a particular π ∈ G+, there is also a connection between the threads of π and the

threads of π �P :

Proposition 20. Let π ∈ G+ and P ⊆ P. The threads of π � P are exactly the threads
〈x0

r1−→ · · · rn−→ xn〉 of π such that each xi is in P .

Notice that as size-change graphs are composed, some information about the possible
threads within them is lost. For example, if x ≥−→ z ∈ G ·H, we know that there is some y
for which x

≥−→ y ∈ G and y
≥−→ z ∈ H, but given only the composed graph G ·H it is not

possible to determine which choices of y would suffice. More generally, given a multipath
π ∈ G+, we can determine all of its threads, but given only JπK, the most we can say is that
x

r−→ y ∈ JπK implies the existence of some thread in π from x to y, by Proposition 15. What
Proposition 20 tells us is that, if we want to reason about the threads of π �P (and hence
the edges in Jπ �P K) in terms of JπK, we need to keep track of which variables contribute
to each edge x r−→ y ∈ JπK. To track this information, we introduce annotated size-change
graphs.

Notation.

G,H ∈ ASCG = 2P×Lab×P×2P annotated size-change graphs

Intuitively, if an edge x r−→
Q

y is in an ASCG G, then we know that there is some thread

relating x to y with size-change r, but that thread might go through all the parameters in
Q.

If G is a size-change graph in G, and x
r−→ y ∈ G, the only parameters needed to show

that there is a thread from x to y are x and y themselves. Thus we have a simple way of
producing initial ASCGs from size-change graphs:

Definition. The annotated size-change graph corresponding to G is bGc = {x r−−−→
{x,y}

y :

x
r−→ y ∈ G}.

Just as with size-change graphs, we have a notion of composition and evaluation for anno-
tated size-change graphs.

11



Definition. Annotated composition and evaluation are defined as follows:

G�H = {x pq−−−→
P∪Q

z : x
p−→
P
y ∈ G, y q−→

Q
z ∈ H}

bG1, . . . , Gnc = bG1c � · · · � bGnc

We also need the annotated closure acl(G) of an ACG G, which has similar properties to
the closure cl(G). Note, however, that acl(G) is likely to be much larger than cl(G).

Definition. The annotated closure of G under � is the least set satisfying

acl(G) = {f bGc−−→ g : f
G−→ g ∈ G} ∪

{f G�H−−−→ h : f
G−→ g, g

H−→ h ∈ acl(G)}

Proposition 21.

(1) acl(G) = {f bπc−−→ g : π : f → g ∈ G+}.

(2) if G is finite and each G ∈ G is finite then acl(G) is finite.

Example 22. Returning to the perm example, we ask: is {x} a measurable set for perm?
No: a function taking only the x parameter for perm cannot possibly be a measure. To
see why, consider that perm 1 1 calls perm 0 1. Thus, a measure µ for perm using only x
would have to have the property that µ(1) > µ(1) which is clearly impossible. A similar
argument shows that {y} is not a measurable set. We can now reanalyze the perm function
in using annotated size-change graphs, to see how they are used to discover that {x} and
{y} are not measurable sets. We begin with the same graph G we had before, but with
annotated edges.

x ≥
{x,y}

!!CC
CC

CC
C x

y >
{x,y}

=={{{{{{{
y

G

x
>

{x,y}
// x

y >

{x,y}
// y

G�G

As before, G � G is idempotent. The annotations on the edges of G � G, however, tell us
that to justify a decrease from, e.g., x to x in G�G, we must consider the formal argument
y as well.

The annotated evaluation of a multipath π ∈ G+ gives us the desired information about
the variables used in threads for π, as stated in the following lemma.

Lemma 23. If π ∈ G+ then:

(1) If 〈x1
r1−→ x2

r2−→ · · · rn−1−−−→ xn〉 is a thread in π then x1
r1···rn−1−−−−−−−→
{x1,...,xn}

xn ∈ bπc.

(2) If x r−→
Q

y ∈ bπc then there exists a thread 〈x r0−→ z1
r1−→ · · · rn−1−−−→ zn

rn−→ y〉 in π such

that {x, z1, . . . , zn, y} = Q and r = r1 · · · rn.

Proof. Straightforward induction on π.

The outcome of all this work is the next result, which shows that we can now reason
about the multipaths of (G �P )+ in terms of G+.
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Proposition 24. Let π ∈ G+. Then x
r−→ y ∈ Jπ �P K iff there exists a Q ⊆ P such that

x
r−→
Q
y ∈ bπc.

Proof. Follows from Propositions 15 and 20, and Lemma 23.

Before we can prove the main result for All-Termination(SCT ), we need two more lem-
mas. The first is a straightforward consequence of viewing (annotated) evaluation and
restriction as homomorphisms from multipaths to (annotated) size-change graphs.

Lemma 25. If π ∈ G+ then JπKn = JπnK, bπcn = bπnc, and (π �P )n = πn �P .

To motivate the second lemma, suppose π ∈ G+. Even if JπK is idempotent, bπc might
not be. The next lemma is important because it shows that some power of bπc must be
idempotent.

Lemma 26. If · is an associative binary operator and the set {an : n ∈ N} is finite, then
there exists some n ∈ N such that an is idempotent.

The next result shows that we have completely characterized size-change termination for
any G �P in terms of the annotated closure acl(G).

Theorem 27. G �P is size-change terminating iff for every f G−→ g ∈ acl(G) such that G is
idempotent, there is an edge x >−→

Q
x ∈ G with Q ⊆ P .

Proof. We prove the right-to-left direction (soundness); the other direction is similar. Let
π′ ∈ (G � P )+ such that Jπ′K is idempotent. By Proposition 19, there is some π ∈ G+

such that π � P = π′. By Lemma 26, there is some n such that bπcn is idempotent. By
Lemma 25, bπcn = bπnc, so bπnc is idempotent. By assumption, there is thus an edge
x

>−→
Q

x ∈ bπnc with Q ⊆ P . Using Proposition 24, we have that x >−→ x ∈ J(πn)�P K. But

(πn) �P = (π �P )n = (π′)n. Applying Lemma 25, it follows that x >−→ x ∈ Jπ′Kn. But Jπ′K
is idempotent, so x

>−→ x ∈ Jπ′K. Appealing to Proposition 16 and Theorem 17, we have
shown that G �P is size-change terminating.

Corollary 28. Let F ∈ Prog and I = {G ∈ acl(analyze(F )) : G idempotent}. Then
All-Termination(SCT )(F ) is the set

{P ⊆ P : ∀G ∈ I . ∃x >−→
Q
x ∈ G . Q ⊆ P}

We can use Corollary 28 as the basis for an algorithm as follows. First, compute acl(analyze(F ))
as a least fixpoint, and extract the set of idempotent ASCGs as I. Then, for each G ∈ I,
construct the constraint

∨
x

>−→
Q
x∈G

∧
y∈Q y. The collection (conjunction) of these constraints

is a constraint system ΦF whose solutions are the elements of All-Termination(SCT ).
Recall that a formula in conjunctive normal form (CNF) is the conjunction of a set of

clauses, each of which is a disjunction of literals. A literal is just a possibly negated variable.
A clause is dual-horn if it contains at most one negated variable. By introducing variables,
the constraint system ΦF above can be expressed as a conjunction of dual-horn clauses. This
is a useful observation because there is an output-sensitive algorithm for enumerating the
minimal solutions to dual-horn formulas, which we discuss in Section 6. Output-sensitivity
means that the running time of the algorithm is bounded by the number of outputs it
produces. In theory, the constraint system ΦF may have an exponential number of minimal
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solutions, but the applications we have in mind tend to have only a relatively small number
of minimal solutions, so an output-sensitive algorithm provides a “pay-as-you-go” solution
to the enumeration problem.

The algorithm described above has another appealing property. It can be made re-
sponsive, by which we mean it can answer the basic termination problem as quickly as the
standard size-change algorithm. If the problem cannot be shown to terminate, there is no
need to continue; otherwise, it proceeds to solve the All-Termination(T ) problem. We
note that for the theorem proving application, this can be done using spare CPU cycles
(e.g., by using an underutilized CPU core), because the user is free to continue as soon
as termination has been established, and any new induction schemes found can be qui-
etly recorded by the theorem prover. Responsiveness is obtained by controlling the least
fixpoint computation of acl(analyze(F )) so that we only generate the size change graphs
needed to compute cl(analyze(F )). We note that this process differs from the basic size
change algorithm only in that we need to record the size change graph annotations required
for the annotated closure. Once termination is established, the fixpoint computation for the
annotated closure is allowed to proceed to completion.

5 Polynomial size-change analysis

Ben-Amram and Lee observed that the PSpace algorithm for size-change termination (pre-
sented in the previous section) can easily lead to exponential running times for reasonable
programs [2]. Consequently, they developed a PTime approximation to the size-change
termination problem. In this section, we review the algorithm, derive a termination anal-
ysis SCP , and study its All-Termination problem. The algorithm we present for All-
Termination(SCP), like the algorithm in the previous section, reduces the problem to
enumerating the minimal satisfying assignments of a dual Horn formula. We close the
section with a hardness result for the problem.

5.1 The PTime size-change algorithm

The PTime size-change condition is based on the idea of loop anchors, formalized as follows.

Definition. G ∈ G is an anchor (for G) if every π ∈ Gω in which G appears infinitely often
has a suffix with infinite descent.

Let SCC(G) denote the set of nontrivial, strongly-connected components of G; each element
of SCC(G) is another annotated call graph. The basic idea of the PTime algorithm is to
locate the loops through an ACG G by computing SCC(G), find and remove anchors for the
loops, and recur:

Algorithm 29 (Ben-Amram and Lee [2]).

AncTerm(G)

for H ∈ SCC(G) do

A := FindAnchors(H)

if A = ∅ then return False

if AncTerm(H \ A) = False then return False

return True

Note that after removing anchors in one iteration, new anchors may be found in the next.
The key element, of course, is the implementation of FindAnchors.
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Theorem 30 (Ben-Amram and Lee [2]). If FindAnchors(H) returns a set of anchors ofH,
then AncTerm is sound approximation of size-change termination. If FindAnchors(H)
returns all of the anchors in H, then AncTerm is a decision procedure for size-change
termination.

To develop a PTime algorithm, Ben-Amram and Lee found two conditions on a size-
change graph G ∈ G, either of which is sufficient to show G to be an anchor for G, but
neither of which is necessary. The basis for these two conditions is the notion of a thread
preserver. Writing src(G) for the set {x : ∃r, y . x r−→ y ∈ G}, we define:

Definition. A set P ⊆ P is a thread preserver for G if for any G ∈ P and x ∈ src(G) ∩ P
there is some edge x r−→ y ∈ G with y ∈ P . We write TP(G) for the set of thread preservers
for G.

The usefulness of thread preservers is illustrated by the following:

Proposition 31. If P ∈ TP(G) and 〈Gi〉 ∈ Gω is a multipath with src(G0) ∩ P 6= ∅, then
there is a thread in 〈Gi〉 staying within P .

This proposition is particularly relevant when applied to infinite multipaths, since we can
then apply it to find infinite suffixes of the multipath in which some value never increases.
We cannot use thread preservers alone to find an infinite decrease, however, since a thread
resulting from a thread preserver might be labeled with only ≥ edges. The purpose of the
two anchor conditions below is to ensure that an infinite decrease occurs.

The first approach to proving that G is an anchor is to ensure that threads passing
through G under a thread preserver P must always go through a strict edge (one labeled
by >) within G. This can be accomplished as follows.

Definition.

(1) A size-change graph G has strict fan-in if whenever two edges x
p−→ z and y

q−→ z with
x 6= y are in G, then p = q =>.

(2) An ACG G has strict fan-in if each G ∈ G has strict fan-in.

(3) A size-change graph G ∈ G is a type-1 anchor for G with respect to P ∈ TP(G) if G �P
has strict fan-in and there is some strict edge in G.

The second approach is to simply rule out edges x ≥−→ y ∈ G such that there is a thread
taking y back to x without passing through a strict edge. These edges x ≥−→ y represent the
first step of a possible infinite thread that loops through x without ever decreasing.

Definition.

(1) The no-descent set for G is

ND(G) =

{
x
≥−→ y ∈ G ∈ G : ∃π ∈ G+ .

y
≥−→ x ∈ JπK ,

y
>−→ x /∈ JπK

}

(2) We define G BG = (G \G) ∪ {G \ND(G)}.

(3) A size-change graph G ∈ G is a type-2 anchor for G if there exists a P ∈ TP(G B G)
with P ∩ src(G) 6= ∅.
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It is also useful to consider anchors for the transposition of an annotated call graph.

Definition.

(1) The transposition of a size-change graph G is Gt = {y r−→ x : x
r−→ y ∈ G}.

(2) The transposition of an ACG G is Gt = {g Gt

−−→ f : f
G−→ g ∈ G}.

Proposition 32. G is an anchor for G iff Gt is an anchor for Gt.

Despite the fact that the anchors for G and Gt are in one-to-one correspondence, it is possible
for Gt to be, e.g., a type-1 anchor for Gt even though G is not a type-1 anchor for G. Hence,
we look for anchors in both G and Gt.

Ben-Amram and Lee show that deciding whether G ∈ G is a type-1 anchor is an NP-
complete problem. The reason for this high complexity is that finding a thread preserver
P ∈ TP(G) that has strict fan-in is NP-hard. Note, however, that thread preservers are
closed under union; hence, there is a unique maximum thread preserver.

Definition. The maximum thread preserver for G is MTP(G) =
⋃

TP(G). Note that
MTP(G) ∈ TP(G).

Checking whether G ∈ G is a type-1 anchor with respect to MTP(G) can be done in linear
time, and checking whether G ∈ G is a type-2 anchor can be done in quadratic time. These
observations lead to the following anchor-finding procedure, which takes overall quadratic
time.

FindAnchorsSCP(G) =
{G ∈ G : G is a type-1 anchor for G wrt MTP(G)}

∪ {G ∈ G : G is a type-2 anchor for G}
∪ {G ∈ G : Gt is a type-1 anchor for Gt wrt MTP(Gt)}
∪ {G ∈ G : Gt is a type-2 anchor for Gt}

We write AncTermSCP for Algorithm 29 instantiated with FindAnchorsSCP.

5.2 The termination analysis SCP

In order to state the All-Termination(SCP) problem, we first need to define SCP as a
termination analysis in the sense of Section 2—that is, we need to say what it means for
PTime size-change to be restricted to the consideration of some set of formal arguments
P . Doing this in an appropriate way turns out to be somewhat delicate. We begin with a
candidate definition based on restricted ACGs (c.f. Section 3), and show why the candidate
fails to be a suitable definition. We then define SCP and develop an algorithm for All-
Termination(SCP).

A natural candidate for defining SCP is the predicate T :

T (F, P ) ⇐⇒ AncTermSCP(analyze(F )�P )

We first observe, by Theorem 30, that T (F, P ) implies SCT(F, P ) (defined in Section 3).
Hence, by Theorem 14, T is a termination analysis. Another interesting observation is that
T is nonmonotonic. This is because of the restriction that type-1 anchors use only the
maximum thread preserver: MTP(G) may fail to have strict fan-in even though for some
thread-preserver P , G �P does have strict fan-in. Nonmonotonicity leads to problems with
the definition of T :

Theorem 33. Deciding ∃P . T (F, P ) is NP-hard.
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τ ::= 〈α1τ1, . . . , αnτn〉 anchor tree
α ::= T1(G) type-1 anchor

| T2(G) type-2 anchor
| α ∧ α′ anchor conjunction
| αt anchor transposition
| > true

G |= 〈α1τ1, . . . , αnτn〉 iff
SCC(G) = {G1, . . . , Gn},
∀Gi . Gi |= αi, Gi − anchors(αi) |= τi

G |= T1(G) iff

∃P .

{
G ∈ G, P ∈ TP(G),
G �P strict fan-in, ∃x >→ y ∈ G�P

G |= T2(G) iff

∃P .

{
G ∈ G,
MTP(G �P BG�P ) ∩ src(G�P ) 6= ∅

G |= α1 ∧ α2 iff G |= α1, G |= α2

G |= αt iff Gt |= α

G |= > always

SCC(G) = {G1, . . . , Gn}
∀Gi . Gi `P αi, (Gi \ anchors(αi)) `P τi

G `P 〈α1τ1, . . . , αnτn〉
(Tree)

G ∈ G G �MTP(G) strict fan-in
P ∈ TP(G) ∃x >→ y ∈ G�P

G `P T1(G)
(Ty1)

G ∈ G P ∩ src(G) 6= ∅ P ∈ TP(G BG)

G `P T2(G)
(Ty2)

G `P α1 G `P α2

G `P α1 ∧ α2

(Conj)
Gt `P α
G `P αt

(Trans)

G `P >
(True)

G `Q α Q ⊆ P
G `P α

(Weaken)

Figure 1: Syntax, semantics, and proof system for anchor trees
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We take this result as evidence that T does not appropriately capture the restriction of
polynomial size-change to a set of formal arguments P . This determination is not a formal
one: the choice of predicate is in many ways a design issue. In any case, the predicate SCP
that we define below has the property that ∃P . SCP(F, P ) is no harder to decide than
polynomial size-change for analyze(F ).

The basis for the SCP predicate is the idea of an anchor tree, which can be viewed
as a certificate produced by AncTermSCP(G). An anchor tree is simply a record of the
anchors found for each strongly-connected component of G, and in each ensuing recursive
call to AncTermSCP. The syntax of anchor trees τ and anchor formulas α is given in
Figure 1.

Definition. The anchors of an anchor formula α are given by

anchors(>) = ∅
anchors(T1(G)) = {G}
anchors(T2(G)) = {G}

anchors(α1 ∧ α2) = anchors(α1) ∪ anchors(α2)

anchors(αt) = anchors(α)

Example 34. The anchor tree

•T1(G1)

��~~~
T2(G3)∧(T1(G4))

t

��@
@@

•
T2(G2) ��

•

•

written
〈

T1(G1) 〈T2(G2) 〈〉〉 ,T2(G3) ∧ (T1(G4))t 〈〉
〉

, records the following hypothetical tran-
script from AncTermSCP on an ACG G.

• G has two nontrivial strongly-connected components.

• In the first component, G1 is a type-1 anchor. After removing G1 from the first compo-
nent, the rest of the component remains strongly-connected, and G2 becomes a type-2
anchor. After removing G2, no more nontrivial strongly-connected subcomponents
remain.

• In the second component, G3 is a type-2 anchor and G4
t is a type-1 anchor for the

component’s transposition. After removing G3 and G4 from the second component,
no more nontrivial strongly-connected subcomponents remain.

An anchor tree τ can be viewed as an assertion about an ACG G. We introduce a
satisfaction relation |= between ASCGs and anchor formulas, and between ASCGs and
anchor trees, in Figure 1. Note that the conditions for G |= T2(G) are looser than that G
is a type-2 anchor for G; in fact, the conditions only require that G be a type-2 anchor for
some restriction G �P . We need this generalization in order to prove Lemma 44 below.

Theorem 35.

(1) If G |= α then each G ∈ anchors(α) is an anchor for G.

(2) If G |= τ then G is size-change terminating.

18



Proof. We just sketch the one interesting case in this proof: justifying that G |= T2(G)
implies that G is an anchor for G. Notice that, by definition, G |= T2(G) implies that G�P
is a (type-2) anchor for G �P , for some P ⊆ P. To see that G is therefore an anchor for G, let
π ∈ Gω be an infinite multipath passing through G infinitely often. Then π �P is an infinite
multipath in (G �P )ω passing through G�P infinitely often (Proposition 19). Since G�P is
an anchor for G �P , there is some suffix of π �P that has infinite descent. By Proposition 20
(generalized to infinite multipaths), there is some suffix of π with infinite descent.

The |= relation establishes a semantics for anchor trees. We present the SCP predicate via
a proof system ` for anchor trees, given in Figure 1. The proof system is a generalization of
the polynomial size-change algorithm in two ways. First, and most importantly, derivations
are annotated with a subset P ⊆ P, recording the formal arguments required to justify
the derivation. These annotations are written as a subscript of the turnstile: G `P τ
is the conclusion of a proof that G satisfies the anchor tree τ , as long as the variables
in P are considered. Crucially, there is an inference rule Weaken, using which we can
conclude G `Q τ whenever G `P τ and P ⊆ Q; the soundness of this rule provides the main
justification for our All-Termination(SCP) algorithm.

The second generalization the proof system provides is more subtle. In AncTerm
(Algorithm 29), all of the anchors returned by FindAnchors are removed before AncTerm
recurs. Removing anchors creates additional opportunities for finding thread-preservers:
TP(G \ {G}) ⊇ TP(G). Superficially, having additional thread-preservers seems to make
it easier to find anchors. However, a consequence is that MTP(G \ {G}) ⊇ MTP(G), and
in particular, MTP(G) may have strict fan-in even though MTP(G \ {G}) does not. This
point again underscores that polynomial size-change is a nonmonotonic analysis: by giving
it “better” information (a larger collection of thread preservers), it may produce “worse”
results (by failing to prove termination). The outcome of these considerations is that the
choice to remove all of the anchors found by FindAnchors is a significant one, and is only
one possible strategy. For the proof system `, it is simpler and more natural to leave the
anchor-removal strategy unspecified.

Whatever strategy for anchor removal is actually used, the outcome will be a particular
anchor tree τ for which G `P τ is provable. Note that the annotation here is P; we can
apply Weaken to every leaf of a derivation tree to lift the leaf’s annotation to P. We take
the perspective that we are instrumenting an existing PTime analysis so that it produces
an anchor tree as a certificate. Let InstrSCP be an instrumented polynomial size-change
algorithm: a function that takes an ACG G and, in polynomial time, either produces an
anchor tree τ such that G `P τ , or the symbol ⊥, denoting failure. AncTermSCP can be
instrumented this way without altering its complexity.

An analysis like polynomial size-change may produce anchor trees that are redundant,
in the sense that they state that a given size-change is an anchor in multiple ways. While
this information is redundant from the perspective of termination analysis alone, it is useful
for All-Termination. For example, let α = T1(G) ∧ T2(G), so that α asserts that G is
both a type-1 and a type-2 anchor for some ACG G. Given some P 6= Q, it might be the
case that for G �P , G�P is only type-1 anchor, and for G �Q, G�Q is only a type-2 anchor.
We will use the certificate produced by an analysis to decide where to look for anchors in
restricted ACGs like G�P , so a certificate with “redundant” anchors like α will help uncover
more measurable sets of arguments. We use the subsumption relation ≤, defined below, to
formalize these ideas: if τ ≤ τ ′, then τ and τ ′ both state that the same set of size-change
graphs are anchors, but τ ′ states that they are anchors in more ways than τ does.

Definition.
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(1) The subsumption relation ≤ on anchor formulas is defined by:

α ≤ α

> ≤ T1(G) for all G

> ≤ T2(G) for all G

α1 ∧ α2 ≤ α′1 ∧ α′2 if α1 ≤ α′1, α2 ≤ α′2
αt ≤ (α′)

t
if α ≤ α′

(2) The subsumption relation ≤ on anchor trees is defined by:

〈αiτi〉 ≤ 〈α′iτ ′i〉 if

∀i . αi ≤ α′i, τi ≤ τ ′i , anchors(αi) = anchors(α′i)

We can now define SCP .

Definition. The SCP predicate is defined as

SCP(F, P ) ⇐⇒ ∃τ, τ ′ .


τ ≤ τ ′
InstrSCP(analyze(F )) = τ ′

analyze(F ) `P τ

In summary: the SCP termination analysis, intuitively, has two parts. Given F and P ,
the first part of SCP analysis is running an instrumented polynomial size-change analysis,
InstrSCP, which produces a certificate τ ′ if it succeeds. Note that InstrSCP is not given
P as input. The second part of SCP is looking for a smaller certificate τ ≤ τ ′ sufficient to
prove F terminating using only the arguments in P . In the next subsection, we show how
to find the termination cores for a program using SCP , in time exponential in the number
of cores produced (or desired). We also show that this is the best result we can hope for.

We write α�P for α with each size change graph G replaced by G�P .

Theorem 36. If G `P τ then G �P |= τ �P .

Proof. See Appendix A.

5.3 An algorithm for All-Termination(SCP)

To describe our All-Termination(SCP) algorithm, we need a bit of notation from propo-
sitional logic. If ϕ is a propositional formula and A is a set of variables (truth assignment),
we say A |= ϕ iff A satisfies ϕ. We write > for the formula satisfied by every variable
assignment, ϕ for the negation of ϕ, and ϕ ⇒ ψ for ϕ ∨ ψ. Our algorithm depends on a
function Φ from ACGs and anchor trees to propositional formulas, given in Figure 5.3 and
described below.

Algorithm 37.

All-Termination(SCP)(F )

G := analyze(F )

if InstrSCP(G) = τ then return min{A ∩ P : A |= Φ(G, τ) }
else return ∅

Theorem 38. If InstrSCP(analyze(F )) = τ then

{P : SCP(F, P )} = {A ∩ P : A |= Φ(G, τ)}
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Anchor tree constraints

Φ(G, 〈αiτi〉) =
∧
i Φ(G, αiτi)

Anchor branch constraints

Φ(G, ατ) = Φ(G, α)

∧ Φ(G − anchors(α), τ)

∧
∧
G∈anchors(α)

∨
κ∈K(G)∩K(α) κ

Anchor formula constraints

Φ(G,T1(G)) = ΘG,1(G)

∧ κG,1 ⇒
(∨

x
>→y∈G xyG,1

)
∧

∧
x

>→y∈G(xyG,1 ⇒ xG,1)

∧
∧
x

>→y∈G(xyG,1 ⇒ yG,1)

∧
∧
x∈P(G)(xG,1 ⇒ x)

Φ(G,T2(G)) = ΘG,2(G BG)

∧ κG,2 ⇒
(∨

x∈src(G) xG,2

)
∧

∧
x∈P(G)(xG,2 ⇒ x)

Φ(G, α ∧ α′) = Φ(G, α) ∧ Φ(G, α′)
Φ(G, αt) = Φ(Gt, α)

Φ(G,>) = >
Thread preserver constraints

ΘH,i(G) =
∧
G∈G ΘH,i(G)

ΘH,i(G) =
∧
x∈src(G)

(
xH,i ⇒

(∨
x

r→y∈G yH,i

))
Control variables

K(>) = ∅
K(T1(G)) = {κG,1}
K(T2(G)) = {κG,2}

K(αt) = K(α)

K(α1 ∧ α2) = K(α1) ∪K(α2)

K(G) = {κG,1, κG,2, κGt,1, κGt,2}

Figure 2: Dual-horn constraints for All-Termination(SCP)
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The basic idea of the algorithm is as follows. If InstrSCP(G) = τ , then we know that
∃P . G `P τ . Consider, for example, an anchor T1(G) in τ . It must be that G `P T1(G) for
some P , and the derivation of G `P T1(G) must have as a leaf an application of Ty1. This
means that G �MTP(G) has strict fan-in. Hence, if we can find any thread preserver Q such
that ∃x >−→ y ∈ G�Q, then we can replace the leaf of the derivation with a new application
of Ty1, this time annotated with Q. A similar argument can be made for type-2 anchors.
In either case, the constraints we must check of an annotation Q to replace the derivation
leaf’s annotation are that (1) Q ∈ TP(G) for some G and (2) Q contains a variable or two
variables from a finite collection of choices. It turns out that these constraints can easily be
expressed as propositional formulas ϕ such that Q |= ϕ iff Q is a valid leaf annotation.

The Weaken rule allows us to choose any annotation we like at the leaves of a derivation,
as long as the annotation of the entire derivation is the union of all the leaf annotations.
For example, if we have leaves G `P α and G `P α′, but we know that G `Q α and G `Q′ α′,
we can transform a derivation as follows:

G `P α G `P α′

G `P α ∧ α′
=⇒

G`Qα
G`Q∪Q′α

G`Q′α
′

G`Q∪Q′α
′

G `Q∪Q′ α ∧ α′

Tying these two ideas together—that we can replace leaf annotations under certain
propositional constraints, and that we can combine leaf annotations using Weaken—we
get the basis for the definition of Φ(G, τ). What we want to do is build a single constraint
system that will include the constraints at each leaf, but so that the constraints for one
leaf do not interfere with the constraints for another. For example, if we require x to be
in an annotation P at one leaf, then x needs to be in the annotation for the conclusion
of the derivation—but we do not want to require x to be in the annotation for all of the
other leaves, since that may severely limit our choice of annotations for those leaves. To
prevent interference, the variables in formula generated by Φ(G,T1(G)) and Φ(G,T2(G))
are marked with subscripts G, 1 and G, 2 to distinguish them from variables for any other
SCG/anchor-type pair (we identify the leaves of a derivation by SCG and anchor-type). To
ensure that any solution to the system is a union of solutions to the leaf constraints, we
include for each variable xG,i the constraint xG,i ⇒ x.

Constraints characterizing thread-preservers are given by ΘH,i. The subscript H, i is
used to mark the variables in ΘH,i as belonging to the appropriate leaf constraints.

Finally, we use control variables κG,i to deal with subsumption. We want any solution
to Φ(G, τ) to include all of the anchors in τ , but as explained earlier, we do not need to
include every way that a given anchor is included in an anchor tree. The control variables
are used to turn leaf constraints on or off. At each branch of an anchor tree, we require
that the control variable for at least one of the appearances of an anchor is included in the
solution.

The entire constraint system has a particularly useful form.

Proposition 39. For all G and P , Φ(G, P ) is a dual-horn formula.

As with All-Termination(SCT ), this means that we can use an algorithm that enu-
merates the minimal satisfying assignments of dual-horn formulae as a back-end for All-
Termination(SCP). We present algorithms for dual-horn minimization in Section 6.

Having shown that All-Termination(SCP) is reducible to dual-horn minimization, we
now show that the converse holds as well. Since (under standard complexity assumptions)
there is no output-polynomial algorithm for enumerating all the minimal assignments of a
dual-horn formula [11], this implies that there is also no output-polynomial algorithm for
All-Termination(SCP).
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Theorem 40. For every satisfiable dual-horn formula ϕ, there exists an ACG G and anchor
tree τ such that

{A : A |= ϕ} = All-Termination(SCP)

assuming that InstrSCP uses the aggressive anchor removal strategy of polynomial size-
change analysis.

Proof. We cannot give the full proof here, as it is fairly intricate. Instead, we sketch the
main idea. A dual-horn formula ϕ can be partitioned into two sets of clauses: those with
no negated variables (positive clauses), and those with one negated variable (implication
clauses). Roughly speaking, we introduce one size-change graph for each implication clause,
and two for each positive clause, in such a way that, for each graph or graph pair, the
requirements for a type-2 anchor are satisfied with annotation P iff P is a satisfying assign-
ment for the corresponding clause. Suppose the variables appearing in ϕ are x1, . . . , x4. We
show the size-change graphs for two example clauses below.

x1
++VVVVV

&&MMMMMM x1

x2 //
++VVVVV x2

33hhhhh

&&MMMMMM //
++VVVVV x2

x3 //
33hhhhh x3

88qqqqqq

++VVVVV //
33hhhhh x3

x4

33hhhhh

88qqqqqq
x4

x1 // x1

x2

33hhhhh
++VVVVV x2

x3 // x3

x4 // x4

(x2 ∨ x3) (x2 ∨ x1 ∨ x3)

In these examples, all edges are labeled by >. Since for any derivation G `P T2(G), we have
P ∩ src(G), if either of the two size-change graphs for (x2 ∨ x3) is used as a type-2 anchor,
then x2 or x3 must be in the corresponding annotation. Likewise, for (x2 ∨ x1 ∨ x3), the
requirement that annotations for type-2 anchors be thread-preservers means that if x2 is in
the annotation, either x1 or x3 must be as well.

Note that the examples above make use of only the type-2 anchor conditions. The chal-
lenge in constructing an adequate anchor tree for ϕ is in ruling out the other possibilities—
type-1 anchors as well as the transposition of either anchor type. If we do not rule out
these other possibilities, the full equality stated by the theorem might fail to hold, and in
particular, All-Termination(SCP) might find spurious minimal assignments. To give a
sense for how to rule out anchor conditions, consider for instance that type-1 anchors require
the MTP to have strict fan-in. Thus, we need only arrange that the MTP of the ACG we
construct does not. Ruling out all of the undesirable anchor conditions, while retaining the
use of type-2 anchors as in the examples above, is more difficult.

6 Dual-horn minimization

In this section, we present two algorithms for enumerating the minimal satisfying assign-
ments (hereafter: solutions) of a dual-horn formula.

It is well-known that dual-horn satisfiability can be decided in linear time. Let DHSat
denote this decision procedure. In Figure 3, we give a procedure FindMin which takes a
set of variables X and a (satisfiable) dual horn formula ϕ and returns an element of

min{A ⊆ X : A |= ϕ}

Hence, FindMin locates a solution minimal with respect to X . This property is important
because the formulas produced by the All-Termination front-ends make use of variables
that do not correspond to formal arguments in the original programs. The complexity of
FindMin is O(n2), where n is the size of the input (X and ϕ). An immediate corollary is
that we can find an element of All-Termination(SCP) in no more time than it takes to
run polynomial size-change analysis, whose complexity is O(n3).
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FindMin(X , ϕ)

F := ∅
for x ∈ X do

if DHSat(ϕ ∧ x ∧
V

y∈F y) then F := F ∪ {x}
return X \ F

FindNextMin(X , ϕ, {P1, . . . , Pm})
for (x1, . . . , xm) ∈ P1 × · · · × Pm do

ψ := ϕ ∧ x1 ∧ · · · ∧ xm

if dhSat(ψ) then return FindMin(X , ψ)

return ⊥
FindNextMinSAT(X , ϕ, {P1, . . . , Pm})

A := Sat(ϕ ∧
V

Pi

W
x∈Pi

x)

if A 6= ∅ then return FindMin(X , ϕ ∧
V

x∈X\A x)

else return ⊥

Figure 3: Dual-horn minimization: standalone and SAT-based

If we want to find additional minimal solutions, we can do so, but each one comes
at increasing asymptotic cost. The procedure FindNextMin in Figure 3 takes a set of
variables X , a dual-horn formula ϕ, and a set of minimal solutions P1, . . . , Pm to ϕ, and
returns a minimal solution to ϕ different from any Pi. It is based on the observation that
if P is a minimal solution of ϕ, and Q is a solution to ϕ such that P 6⊆ Q (so there exists
an x ∈ P such that x /∈ Q), then there is some minimal solution R ⊆ Q that is different
from P . We check the existence of such a Q with DHSat, then find a minimal R ⊆ Q with
FindMin. The complexity of FindNextMin is O(nm+1). Hence, generating additional
minimal assignments becomes progressively more expensive, but we can obtain any constant
number of minimal assignments in polynomial time. An approximation algorithm for vertex
cover can be used to potentially reduce the number of case we currently consider in the loop
of FindNextMin [3].

Finally, we introduce FindNextMinSAT, which uses a SAT solver to check for the
existence of additional minimal elements. This has the advantage that we can exploit
the recent advances in SAT-solving technology, but the disadvantage is that SAT solving
is an NP-complete problem. Note that the queries given to the SAT routine through
consecutive calls to FindNextMinSAT grow monotonically, each one including the last
one as a subformula. Hence, an incremental SAT-solver should be used, which we expect
will lead to significant performance benefits.

7 Related work

The termination problem dates back to Turing, who called it the “Printing Problem” [22],
and there has been steady interest in termination ever since. Here we can only briefly touch
upon the work most directly related to ours.

The strong relationship between termination and both recursion and induction was devel-
oped in the context of automated theorem proving by Boyer and Moore [4]. They observed
that termination can be used to justify function definitions and induction schemes, and de-
veloped methods for doing so mechanically. This was one of the major insights that led to
the success of the Boyer-Moore family of theorem provers, which includes ACL2 [14]. Also,
the idea of All-Termination can be traced back to Boyer and Moore [4]. However, the
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approach they used to find measurable subsets just iterates over their termination analysis
in the naive way, hence it has exponential complexity and has essentially nothing in common
with the work presented here.

Termination analysis is currently an active area of research. There is much interest in
termination in the context of term-rewrite systems and logic programs [1, 12, 20, 5]. There
is also interest in proving termination of programs written in imperative languages, such
as C. This work tends to focus on semi-algebraic functions, whose termination behavior is
governed by integer arithmetic. Most of it has been even more narrowly defined than that,
dealing only with systems whose behavior is linear [19, 21], although there are extensions
to programs with polynomial behavior [9]. Also, abstraction-refinement has been applied to
termination analysis [7], and these methods have been applied to find termination bugs in
device drivers [8].

Termination analysis has also been applied to functional programming languages. For
example, CCG (calling context graph) analysis [18] has been implemented in ACL2s [10]; it
was applied to the ACL2 regression suite, which has over 10,000 function definitions, and
automatically detected termination over 98% of the time. The idea here is to transform
a program into what might be called termination skeletons that terminate iff the original
program does. These skeletons are produced by simplifying the input program in various
ways using a combination of static analysis and theorem proving. Even though they are
equi-terminating, skeletons tend to be very different from and simpler than the program that
gave rise to them, e.g., they may have different control-flow. The skeletons are statically
annotated with various measures and analyzed with various termination analyses, including
the size change method. A version of this analysis that also produces certificates has been
implemented for Isabelle [15].

Recently, the problem of conditional termination was been studied [6]. Whereas we
are interested in how we can add behaviors to programs while maintaining termination,
they are interested in how to remove behaviors to ensure termination. This leads to the
obvious question: what about All-Conditional-Termination(T )? Similarly, the non-
termination problem [13] gives rise to the All-Non-Termination(T ) problem.

8 Conclusions and Future Work

We introduced the All-Termination(T ) problem and analyzed the complexity when T
ranges over the general size-change (SCT ) and polynomial size-change (SCP) analyses.
We showed that All-Termination(SCT ) is a PSpace-complete problem, and that no
output-polynomial algorithm exists for All-Termination(SCP). We also introduced sev-
eral algorithms for solving SCT and SCP . The algorithms have the property that they
impose no overhead on solving the basic termination problem; they can be used to generate
a subset of all possible reasons (up to a user provided bound); and some of them exploit the
power of modern SAT-solving technology.

We identify several promising directions for future work. On the theoretical side, this
includes analyzing the All-Termination(T ) problem for the many other termination
analyses that have been developed. Also worth considering the are All-Conditional-
Termination(T ) and All-Non-Termination(T ) problems. Another idea is to com-
bine All-Termination(T ) and All-Non-Termination(T ) analyses to solve the All-
Termination problem by under and over approximating. Here it may help to use several
different (non)termination solvers. One can also consider reasons that are more expressive
than sets of formals, e.g., reasons might be formulas over various logics. Also, induction
schemes often depend on the combination of functions appearing in a theorem, which leads
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to the question of whether using All-Termination(T )-inspired analyses will enable us to
automatically generate more powerful induction schemes. On the engineering side, the ob-
vious challenge is to build and evaluate useful tools, e.g., by incorporating these ideas into
theorem proving systems.

A Proof of Theorem 36

To prove that SCP is a valid termination analysis, the most important step is proving the
soundness of ` with respect to |=. We need several easy lemmas, stated here without proof.
We write α�P for α with each size change graph G replaced by G�P .

Lemma 41. If Q ⊆ P then TP(G �Q) = TP(G) ∩ 2Q.

Proof. Let P ∈ TP(G)∩ 2Q. Suppose f
G�Q−→ g ∈ G �Q and x ∈ src(G)∩P . Then x ∈ src(G)

and f
G→ g ∈ G. But P ∈ TP(G), so there exists some x r→ y ∈ G such that y ∈ P . Since

P ⊆ Q, it follows that x r→ y ∈ G�Q. Hence P ∈ TP(G �Q).
The argument in the other direction is similar.

Lemma 42. If G has strict fan-in then G �P has strict fan-in.

Proof. Trivial: if H ∈ G �P then H = G �P for some G ∈ G. Since G has strict fan-in and
H ⊆ G, it follows that H has strict fan-in as well.

Lemma 43. ND(G) ⊇ ND(G �P ).

Proof. Immediate consequence of Proposition 20.

Lemma 44. If G �P |= α�P then G |= α.

Proof. Easy induction on the structure of α, using the fact that if Q ⊆ P , then (G � P ) �
Q = G �Q.

The next lemma is the heart of the soundness argument: it shows the soundness of `
for anchor formulas. The soundness theorem following it follows easily by induction on
derivations.

Lemma 45. If G `P α then G �P |= α�P .

Proof. Induction on derivations. We give the three interesting cases.

Case Ty1: By assumption, G ∈ G, MTP(G) has strict fan-in, P ∈ TP(G), and ∃x >→
y ∈ G � P . By Lemma 42, it follows that G � P has strict fan-in. By Lemma 41 we have
P ∈ TP(G �P ).

Case Ty2: By assumption, G ∈ G, P ∩ G 6= ∅ and P ∈ TP(G B G). By Lemma 41,
P ∈ TP((G BG)�P ). But we have

(G BG)�P = (G −G+ (G−ND(G)))�P
= G �P −G�P + (G−ND(G))�P
= G �P −G�P + (G�P −ND(G))

Hence if H ∈ G �P −G�P + (G�P −ND(G)) then P ∈ TP(H).
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Now suppose H ∈ G � P B G � P and x ∈ src(H) ∩ P . By definition, H ∈ G � P − G �
P + (G � P − ND(G � P )). If H ∈ G � P − G � P , then P ∈ TP(H) as concluded above.
Otherwise, H = G�P −ND(G �P ). By Lemma 43, ND(G �P ) ⊆ ND(G). Hence

G�P −ND(G �P ) ⊇ G�P −ND(G)

Since P ∈ TP(G�P −ND(G)) as above, we have P ∈ TP(G�P −ND(G �P )).
Therefore, P ∈ TP(G � P B G � P ), which together with the initial assumptions shows

that G �P |= T2(G�P ).

Case Weaken: By assumption, G `Q α for some Q ⊆ P . By induction, G �Q |= α �Q.
But G �Q = (G �P ) �Q, so it follows that (G �P ) �Q |= (α �P ) �Q. Using Lemma 44, we
conclude that G �P |= α�P .

Theorem (36). If G `P τ then G �P |= τ �P .

Proof. Trivial induction on derivations, using Lemma 45.

B Proof of Theorem 38

We define a “renaming” function ρ which adds subscripts to variables in a variable assign-
ment A, as follows:

ρH,i(A) = {xH,i : x ∈ A}

We also define vars(ϕ) to be the set of variables occurring in ϕ.

Lemma 46. ρH,i(A) |= ΘH,i(G) iff A ∈ TP(G).

Proof. Straightforward unrolling of definitions.

Lemma 47. ρH,i(A) |= ΘH,i(G) iff A ∈ TP(G).

Proof. Immediate corollary of Lemma 46

Lemma 48. A |= ϕ iff A ∩ vars(ϕ) |= ϕ.

Proof. Simple unrolling of the definitions.

Lemma 49.

vars(Φ(G, α)) ⊆


P ∪K(α)

∪ {xG,1 : x ∈ P, κG1 ∈ K(α)}
∪ {xyG,1 : x, y ∈ P, κG,1 ∈ K(α)}
∪ {xG,2 : x ∈ P, κG,2 ∈ K(α)}

Proof. Easy induction on the structure of α.

Corollary 50. κG,i ∈ vars(Φ(G, α)) iff κG,i ∈ K(α).

Corollary 51. If K(α1) ∩K(α2) = ∅ then for any G,

vars(Φ(G, α1)) ∩ vars(Φ(G, α2)) ⊆ P

Lemma 52. If A1 |= Φ(G, α1) and A2 |= Φ(G, α2) with K(α1)∩K(α2) = ∅, then A1∪A2 |=
Φ(G, α1) and A1 ∪A2 |= Φ(G, α2).
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Proof. By Corollary 51, vars(Φ(G, α1)) ∩ vars(Φ(G, α2)) ⊆ P. But variables from P appear
only in the positive phase in Φ(G, α1) and Φ(G, α2). Let C ∈ Φ(G, α1) be a clause. Then
there is some λ ∈ C such that A1 |= λ. If λ appears in the positive phase, then A1∪A2 |= λ.
Otherwise, λ = x for some variable x /∈ vars(Φ(G, α2)). Hence here too A1 ∪ A2 |= λ. It
follows that A1 ∪A2 |= C for all C ∈ Φ(G, α1), and therefore that A1 ∪A2 |= Φ(G, α1). The
argument that A1 ∪A2 |= Φ(G, α2) is symmetric.

Lemma 53. If 〈α1τ1, . . . , αnτn〉 is well-formed,
Ai |= Φ(G, αi),
Bi |= Φ(G − anchors(αi), τi),
A =

⋃
1≤i≤nAi ∪Bi

then, for all 1 ≤ i ≤ n,

A |= Φ(G, αi) and A |= Φ(G − anchors(αi), τi)

Proof. Since 〈α1τ1, . . . , αnτn〉 is well-formed, we have by Corollary 51 that

vars(Φ(G, αi)) ∩ vars(Φ(G − anchors(αi), τi)) ⊆ P

for all 1 ≤ i ≤ n. By an argument similar to that of Lemma 52, it follows that

Ai ∪Bi |= Φ(G, αi) and Ai ∪Bi |= Φ(G − anchors(αi), τi)

for all 1 ≤ i ≤ n. Now let 1 ≤ i < j ≤ n and

φi = Φ(G, αi) ∪ Φ(G − anchors(αi), τi),
φj = Φ(G, αj) ∪ Φ(G − anchors(αj), τj)

By the well-formedness of 〈α1τ1, . . . , αnτn〉, we have by Corollary 51 that vars(φi) ∩
vars(φj) ⊆ P. Running again the argument from Lemma 52, we have A |= Φ(G, αi) and
A |= Φ(G − anchors(αi), τi).

Lemma 54. If G ` α, α is well-formed, α′ ≤ α, and P ⊆ P(G), then

G `P α′ ⇐⇒ ∃A .


A |= Φ(G, α),
A ⊆ vars(Φ(G, α)) ∪ P(G),
A ∩ P = P,

A ∩K(α) = K(α′)

Proof. We first prove the left-to-right direction, by induction on the derivation of G `P α′.
Case True: Trivial.

Case Ty1: By assumption, α′ = T1(G) for some G ∈ G, with P ∈ TP(G) and ∃x >→ y ∈
G � P . By Lemma 47, ρG,1(P ) |= ΘG,1(G). Let A = ρG,1(P ) ∪ P ∪ {κG,1, xyG,1}. Then
A |= Φ(G, α′), and A ∩ P = P . But since α′ ≤ α and α′ = T1(G), we have α = α′. Hence
A |= Φ(G, α). Note that K(α′) = K(α) = {κG,1}, so A∩K(α) = K(α′) as required. Finally,
observe that A ⊆ vars(Φ(G, α)) ∪ P(G).

Case Ty2: Similar to Ty1.

Case Conj: By assumption, α′ = α′1∧α′2 for some α′1, α′2 such that G `P α′1 and G `P α′2.
Since α′ ≤ α, it follows that α = α1 ∧ α2 for some α1, α2 such that α′1 ≤ α1 and α′2 ≤ α2.
By induction, there exist A1, A2 such that Ai |= Φ(G, αi), Ai ∩ P = P , Ai ∩ K(αi) =
K(α′i), and Ai ⊆ vars(Φ(G, αi)) ∪ P(G). for i ∈ {1, 2}. Since α1 ∧ α2 is well-formed,
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anchors(α1) ∩ anchors(α2) = ∅. Using Lemma 52, it follows that A1 ∪ A2 |= Φ(G, α1 ∧ α2),
and clearly (A1 ∪ A2) ∩ P = (A1 ∩ P) ∪ (A2 ∩ P) = P . Using Lemma 50, we can observe
that Ai ∩ (K(α1) ∪K(α2)) = Ai ∩K(αi) for i ∈ {1, 2}. Therefore,

(A1 ∪A2) ∩K(α1 ∧ α2)
= (A1 ∪A2) ∩ (K(α1) ∪K(α2))
= (A1 ∩ (K(α1) ∪K(α2))) ∪ (A2 ∩ (K(α1) ∪K(α2)))
= (A1 ∩K(α1)) ∪ (A2 ∩K(α2))
= K(α′1) ∪K(α′2)
= K(α′1 ∧ α′2)

Finally, notice that

A1 ∪A2 ⊆ vars(Φ(G, α1)) ∪ vars(Φ(G, α1)) ∪ P(G)
= vars(Φ(G, α1 ∧ α2)) ∪ P(G)

Case Trans: Immediate by induction.

Case Weaken: By assumption, G `Q α′ for some Q ⊆ P . By induction, there exists an A
such that A |= Φ(G, α), A ⊆ vars(Φ(G, α))∪P(G), A∩P = Q, and A∩K(α) = K(α′). Recall
that P ⊆ P(G). Hence A∪P ⊆ vars(Φ(G, α))∪P(G). Since the variables in P \Q are in P,
they only appear positively in Φ(G, α). Hence, A ∪ P |= Φ(G, α). Finally, (A ∪ P ) ∩ P = P
and (A ∪ P ) ∩K(α) = A ∩K(α) = K(α′).

For the right-to-left direction, we prove by induction on the structure of α′.

Case: > Trivial.

Case: T1(G) Since T1(G) ≤ α, it must be that α = T1(G). By assumption, G `
T1(G), so in particular G ∈ G and G � MTP(G) has strict fan-in. Also by assumption,
A |= Φ(G,T1(G)) and κG,1 ∈ K(T1(G)) ⊆ A. Hence A |= ΘG,1(G). Let Q ⊆ P such
that ρG,1(Q) = A ∩ vars(ΘG,1(G)). Note that we have Q ⊆ A and hence Q ⊆ P . By
Lemma 48, ρG,1(Q) |= ΘG,1(G). By Lemma 47, Q ∈ TP(G). Since κG,1 ∈ A, we have that
A |=

∨
x

>→y∈G xyG,1. Let xyG,1 ∈ A such that x >→ y ∈ G. Since A |= xyG,1 ⇒ xG1 and
A |= xyG,1 ⇒ yG1 , it follows that xG,1 and yG,1 are in A; hence x and y are in Q. We may
thus apply Ty1 to show G `Q T1(G). Since Q ⊆ P , we can then apply Weaken to show
G `P T1(G).

Case: T2(G) Similar to T1(G).

Case: α′1 ∧ α′2 It must be that α = α1 ∧ α2 such that α′1 ≤ α1 and α′2 ≤ α2. By
assumption, A |= Φ(G, α1 ∧ α2), so A |= Φ(G, α1) and A |= Φ(G, α2). Let A1 = A ∩
vars(Φ(G, α1)) and A2 = A ∩ vars(Φ(G, α2)). By Lemma 48, A1 |= Φ(G, α1) and A2 |=
Φ(G, α2). We have that A∩K(α1 ∧α2) = K(α′1 ∧α′2). Hence (A∩K(α1))∪ (A∩K(α2)) =
K(α′1) ∪K(α′2). Since K(α′1) ⊆ K(α1) and K(α′2) ⊆ K(α2), it follows that A ∩K(α1) =
K(α′1) and A ∩K(α2) = K(α′2). But K(α1) ⊆ vars(Φ(G, α1)), so A1 ∩K(α1) = K(α′1) and
likewise for A2. Thus we can apply induction twice, using A1 with α1, α′1 and A2 with α2,
α′2, to conclude that G `P α′1 and G `P α′2. Applying Conj, we have G `P α′1 ∧ α′2.

Case: (α′)t Immediate by induction.
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Lemma 55. If J ⊆ K(α) then α�J ≤ α and K(α�J) = J .

Lemma 56. If α′ ≤ α then anchors(α′) = anchors(α) iff for all G ∈ anchors(α), K(G) ∩
K(α′) ∩K(α) 6= ∅.

Lemma 57. If G ` τ , τ is well-formed, and P ⊆ P, then

∃τ ′ ≤ τ . G `P τ ′ ⇐⇒ ∃A .


A |= Φ(G, τ),
A ⊆ vars(Φ(G, τ)) ∪ P(G),
A ∩ P = P

Proof. By induction on the structure of τ .
Let τ = 〈α1τ1, . . . , αnτn〉. Since we assume that G ` τ , we have in particular that

SCC(G) = {G1, . . . , Gn}, and for each Gi, Gi ` αi and Gi − anchors(αi) ` τi.
We first prove the right-to-left direction. Suppose A |= Φ(G, τ) and A ∩ P = P . Fix an

i such that 1 ≤ i ≤ n. By assumption, A |= Φ(G, αiτi). Hence,

(1) ∀G ∈ anchors(αi) . A |=
∨
κ∈K(G)∩K(αi)

κ

(2) A |= Φ(G, αi)

(3) A |= Φ(G − anchors(αi), τi)

Let J = A ∩ K(αi). By Lemma 55, αi � J ≤ αi and K(αi � J) = J . Using (1), for all
G ∈ anchors(αi), we have A ∩K(G) ∩K(αi) 6= ∅. But

A ∩K(G) ∩K(αi) = J ∩K(G) ∩K(αi)
= K(αi �J) ∩K(G) ∩K(αi)

Hence, by Lemma 56, we have anchors(αi � J) = anchors(αi). Using (2) and Lemma 54,
Gi `P αi �J . Using (3), by induction, there exists a τ ′i ≤ τi such that Gi−anchors(αi) `P τ ′i .
Thus,

〈(α1 �J)τ ′1, . . . , (αn �J)τ ′n〉 ≤ 〈α1τ1, . . . , αnτn〉
and

G `P 〈(α1 �J)τ ′1, . . . , (αn �J)τ ′n〉
For the left-to-right direction, suppose τ ′ ≤ τ such that G `P τ ′. This means in particular

that τ ′ = 〈α′1τ ′1, . . . , α′nτ ′n〉 with α′i ≤ αi, τ ′i ≤ τi, and anchors(α′i) = anchors(αi) for all
1 ≤ i ≤ n. Fix an i with 1 ≤ i ≤ n. By Lemma 56, for all G ∈ anchors(αi), we have
K(G) ∩ K(αi) ∩ K(α′i) 6= ∅. By Lemma 54, there is some Ai such that Ai |= Φ(Gi, αi),
Ai ∩ P = P , and Ai ∩K(αi) = K(α′i). Hence,

Ai |=
∧
G∈anchors(α)

∨
κ∈K(G)∩K(α) κ

We also have, by induction, that there is some Bi with Bi |= Φ(Gi − anchors(αi), τi) and
Bi ∩ P = P . Let A =

⋃
1≤i≤nAi ∪ Bi. Finally, using Lemma 53, we conclude A |= Φ(G, τ)

and A ∩ P = P .

Theorem (38). If InstrSCP(analyze(F )) = τ then

{P : SCP(F, P )} = {A ∩ P : A |= Φ(G, τ)}

Proof. Using Lemmas 48 and 57, we have

{P : G `P τ ′, τ ′ ≤ τ} = {A ∩ P : A |= Φ(G, τ)}

under the assumption G ` τ . The result follows trivially.
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