2-8-06: Strong normalization for System F

Review of the LR

 $\mathcal{C}\llbracket\tau\rrbracket\delta = \{e \mid e \mapsto^* v \land v \in \mathcal{V}\llbracket\tau\rrbracket\delta\}$ $\mathcal{V}\llbracket\mathbf{T}\rrbracket\delta = \{c\}$ $\mathcal{V}\llbracket\tau_1 \to \tau_2\rrbracket\delta = \{v \mid \forall v' \in \mathcal{V}\llbracket\tau_1\rrbracket\delta.v(v') \in \mathcal{C}\llbracket\tau_2\rrbracket\delta\}$ $\mathcal{V}\llbracket\forall\alpha.\tau\rrbracket\delta = \{v \mid \forall\sigma.\emptyset \vdash \sigma \text{ type } \land \forall R \in \text{Cand.}v[\sigma] \in \mathcal{C}\llbracket\tau\rrbracket\delta, \alpha \mapsto (\sigma, R)\}$ $\mathcal{V}\llbracket\alpha\rrbracket\delta = \delta_S(\alpha)$

Lemma [Type substitution] $C[\![\tau]\!]\delta, \alpha \mapsto (\delta_T(\sigma), \mathcal{V}[\![\sigma]\!]\delta) = C[\![\tau[\sigma/\alpha]]\!]\delta$. Equivalent to show $\mathcal{V}[\![\tau]\!]\delta, \alpha \mapsto (\delta_T(\sigma), \mathcal{V}[\![\sigma]\!]\delta) = \mathcal{V}[\![\tau[\sigma/\alpha]]\!]\delta$.

Proof: cases and induction on τ . Let $\delta' = \delta, \alpha \mapsto (\delta_T(\sigma), \mathcal{V}[\![\sigma]\!]\delta)$.

Case: $\tau = \mathbf{T}$. Trivial because $\mathbf{T}[\sigma/\alpha] = \mathbf{T}$.

Case: $\tau = \tau' \to \tau''$. (\subseteq) Suppose $v \in \mathcal{V}[\![\tau' \to \tau'']\!]\delta'$. To show: $v \in \mathcal{V}[\![\tau[\sigma/\alpha]]\!]\delta$. Note $\tau[\sigma/\alpha] = \tau'[\sigma/\alpha] \to \tau''[\sigma/\alpha]$. Suppose $v' \in \mathcal{V}[\![\tau']\![\sigma/\alpha]]\!]\delta$. Suffices to show $v(v') \in \mathcal{C}[\![\tau'']\![\sigma/\alpha]]\!]\delta$. By induction, $\mathcal{V}[\![\tau'[\sigma/\alpha]]\!]\delta = \mathcal{V}[\![\tau']\!]\delta'$, so $v' \in \mathcal{V}[\![\tau']\!]\delta'$. We can apply the definition of the logical relation to deduce: $v(v') \in \mathcal{C}[\![\tau'']\!]\delta'$. By induction, $v(v') \in \mathcal{C}[\![\tau'']\!]\delta$.

Other direction is analogous.

Case: $\tau = \alpha$. Need to show $\mathcal{V}[\![\alpha]\!]\delta' = \mathcal{V}[\![\alpha[\sigma/\alpha]]\!]\delta$. By definition, $\mathcal{V}[\![\alpha]\!]\delta' = \mathcal{V}[\![\sigma]\!]\delta$. Likewise $\mathcal{V}[\![\alpha[\sigma/\alpha]]\!]\delta = \mathcal{V}[\![\sigma]\!]\delta$.

 $Case: \ \tau = \beta \neq \alpha. \ \mathcal{V}\llbracket \beta \rrbracket \delta' = \mathcal{V}\llbracket \beta \llbracket \sigma / \alpha \rrbracket \rrbracket \delta. \ \text{But} \ \mathcal{V}\llbracket \beta \llbracket \sigma / \alpha \rrbracket \rrbracket \delta = \mathcal{V}\llbracket \beta \rrbracket \delta = \delta_S(\beta) = \mathcal{V}\llbracket \beta \rrbracket \delta'.$

DO: last case.

Strong normalization

New reduction rules.

$$\frac{e \mapsto e'}{e[\sigma] \mapsto e'[\sigma]} \quad \frac{e \mapsto e'}{(\Lambda \alpha. e)[\sigma] \mapsto e[\sigma/\alpha]} \quad \frac{e \mapsto e'}{\Lambda \alpha. e \mapsto \Lambda \alpha. e'}$$

Logical relation:

$$\begin{split} & \mathcal{C}[\![\mathbf{T}]\!]\delta = \mathrm{SN} \\ & \mathcal{C}[\![\tau' \to \tau'']\!]\delta = \{e \mid \forall e' \in \mathcal{C}[\![\tau']\!]\delta.e(e') \in \mathcal{C}[\![\tau'']\!]\delta\} \\ & \mathcal{C}[\![\forall \alpha.\tau]\!]\delta = \{e \mid \forall \sigma.\emptyset \vdash \sigma \text{ type.} \forall R \in \mathrm{Cand.} e[\sigma] \in \mathcal{C}[\![\tau]\!]\delta, \alpha \mapsto (\sigma, R)\} \\ & \mathcal{C}[\![\alpha]\!]\delta = \delta_S(\alpha) \\ & \mathrm{Cand} = \{R \mid R \text{ is a set of terms}\} \\ & \mathrm{Extension to paths:} \\ & p ::= x \mid p(e) \mid p[\sigma] \end{split}$$

Lemma [Main lemma]

1. If $e \in C[\tau] \delta$ then $e \in SN$.

2. If $p \in SN$ then $p \in C[\tau] \delta$.

Part 1:

Proof: by induction on τ .

Check **T** and $\tau' \to \tau''$ cases.

Case: $\tau = \alpha$. We know that $e \in C[\![\alpha]\!]\delta$ which means that $e \in \delta_S(\alpha)$. No good – we know nothing about $\delta_S(\alpha)$!

We need to know that $\delta_S(\alpha) \in SN$. We extend Cand:

 $Cand = \{R \mid R \text{ is a set of terms}, R \subseteq SN\}$

Case: $\tau = \forall \alpha. \tau'$. Let $\sigma = \mathbf{T}$ and $R = SN = \mathcal{C}[\![\mathbf{T}]\!]\delta$. (Note $R \in Cand$). By the definition of the logical relation, $e[\sigma] \in \mathcal{C}[\![\tau']\!]\delta, \alpha \mapsto (\sigma, R)$. By induction, $e[\sigma] \in SN$. By the subterm property of SN, $e \in SN$.

Note, we could have chosen $R = \emptyset$, which removes any future proof obligations.

Part 2:

Proof: by induction on τ .

(**T** and arrow are the same as before, but with δ 's)

Case: $\tau = \alpha$. We know $p \in SN$. Need to show $p \in \delta_S(\alpha)$. We know that $\delta_S(\alpha) \subset SN$, but this does not imply that $p \in \delta_S(\alpha)$.

Extend Cand:

 $Cand = \{R \mid R \text{ is a set of terms}, R \subseteq SN, p \in SN \implies p \in R\}$

Case: $\tau = \forall \alpha. \tau'$. Suppose σ is a type and $R \in \text{Cand.}$ To show: $p[\sigma] \in C[[\tau']]\delta, \alpha \mapsto (\sigma, R)$. Because $p \in \text{SN}$, we have $p[\sigma]$ is also strongly normalizing. By induction, $p[\sigma] \in C[[\tau']]\delta, \alpha \mapsto (\sigma, R)$.

New definition: $S ::= \cdot | S(e) | S[\sigma]$. Write S[e] for e plugged in for the hole in S.

$$\frac{e \in \mathrm{SN}}{S[(\lambda x.e')(e)] \to_{\mathrm{wh}} S[e'[e/x]]} \quad \overline{S[(\Lambda \alpha.e)[\sigma]] \to_{\mathrm{wh}} S[e[\sigma/\alpha]]}$$

Lemma [Head expansion] If $e \to_{wh} e'$ and $e' \in C[[\tau]]\delta$ then $e \in C[[\tau]]\delta$.

Proof: by induction on τ .

Case: $\tau = \mathbf{T}$. We need that SN is closed under head expansion. Suppose there were an infinite reduction sequence $(\Lambda \alpha. e)[\sigma] \rightarrow_{\mathrm{wh}} \cdots \rightarrow_{\mathrm{wh}} (\Lambda \alpha. f)[\sigma] \rightarrow_{\mathrm{wh}} f[\sigma/\alpha]$. This means that $e \rightarrow_{\mathrm{wh}} \cdots \rightarrow_{\mathrm{wh}} f$. To show: $e[\sigma/\alpha] \rightarrow^*_{\mathrm{wh}} f[\sigma/\alpha]$ (a lemma).

 $\begin{array}{l} Case: \ \tau = \tau' \to \tau''. \ \text{Suppose} \ f \in \mathcal{C}[\![\tau']\!]\delta. \ \text{To show:} \ e(f) \in \mathcal{C}[\![\tau'']\!]\delta. \ \text{By the logical relation}, \\ e'(f) \in \mathcal{C}[\![\tau'']\!]\delta. \ \text{By induction}, \ e(f) \in \mathcal{C}[\![\tau'']\!]\delta. \ \text{Mr Pedantic says:} \ e \to_{\text{wh}} e' \ \text{means} \ e = \\ S[\ldots] \ \text{and} \ e' = S[\ldots]. \ \text{So let} \ S' = S(f). \ \text{Therefore} \ e(f) = S'[\ldots] \to_{\text{wh}} e'(f) = S'[\ldots]. \end{array}$

Case: $\tau = \alpha$. To show: $e \in \delta_S(\alpha)$. We know that $e \to_{\text{wh}} e'$ and $e' \in \delta_S(\alpha)$. So, once more, we need to extend Cand.

 $\text{Cand} = \{ R \mid R \text{ is a set of terms}, R \subseteq \text{SN}, p \in \text{SN} \implies p \in R, e \to_{\text{wh}} e' \land e' \in R \implies e \in R \}$