2-13-06: Final SN proof; Parametricity

Finishing SN proof for System F

 $\mathcal{C}\llbracket\forall\alpha.\tau\rrbracket\delta = \{e \mid \forall\sigma.\emptyset \vdash \sigma \text{ type.}\forall R \in \text{Cand.} e[\sigma] \in \mathcal{C}\llbracket\tau\rrbracket\delta, \alpha \mapsto (\sigma, R)\}$ Cand = $\{R \mid R \text{ is a set of terms}, R \subseteq \text{SN}, p \in \text{SN} \implies p \in R, e \to_{\text{wh}} e' \land e' \in R \implies e \in R\}$

Lemma [Head expansion] If $e \to_{\text{wh}} e'$ and $e' \in C[\tau] \delta$ then $e \in C[\tau] \delta$.

Proof: by induction on τ .

Case: $\tau = \forall \alpha. \tau'$. Let σ . Let $R \in \text{Cand.}$ By definition of the LR we have $e'[\sigma] \in C[\![\tau']\!]\delta, \alpha \to (\sigma, R)$. We have $e[\sigma] \to_{\text{wh}} e'[\sigma]$ so we can apply induction to get our result.

Recall:

$$\frac{\forall \alpha \in \Delta.\delta_S(\alpha) \in \text{Cand}}{\delta \in \mathcal{D}\llbracket\Delta\rrbracket} \quad \frac{\forall x : \tau \in \Gamma.\gamma(x) \in \mathcal{C}\llbracket\tau\rrbracket\delta}{\gamma \in \mathcal{G}\llbracket\Gamma\rrbracket\delta}$$

Fundamental theorem If Δ ; $\Gamma \vdash e : \tau$ and $\delta \in \mathcal{D}[\![\Delta]\!]$ and $\gamma \in \mathcal{G}[\![\Gamma]\!]\delta$ then $\delta_T(\gamma(e)) \in \mathcal{C}[\![\tau]\!]\delta$.

Proof: by induction on typing judgments.

Case:

$$\frac{\Delta, \alpha; \Gamma \vdash e : \tau}{\Delta; \Gamma \vdash \Lambda \alpha. e : \forall \alpha. \tau}$$

Let σ . Let $R \in \text{Cand.}$ Let $\delta' = \delta, \alpha \mapsto (\sigma, R)$. Note $\delta' \in \mathcal{D}\llbracket\Delta, \alpha\rrbracket$ because $R \in \text{Cand.}$ (We have weakening to give that $\gamma \in \mathcal{G}\llbracket\Gamma\rrbracket\delta'$) By induction, $\delta'_T(\gamma(e)) \in \mathcal{C}\llbracket\tau\rrbracket\delta'$. We know that $\delta'_T(\gamma(e)) = \delta_T(\gamma(e))[\sigma/\alpha]$. By head expansion, we have our result.

DO: type application case.

Parametricity

 $\mathcal{C}\llbracket\tau\rrbracket\delta = \{e \mid e \mapsto^* v \land v \in \mathcal{V}\llbracket\tau\rrbracket\delta\}$ $\mathcal{V}\llbracket\forall\alpha.\tau\rrbracket\delta = \{v \mid \forall\sigma.\forall R \in \text{Cand.}v[\sigma] \in \mathcal{C}\llbracket\tau\rrbracket\delta, \alpha \mapsto (\sigma, R)\}$ Cand = $\{R \mid R \text{ is a set of closed values}\}$

Theorem $\forall \alpha. \alpha \text{ is uninhabited.}$

Proof: Suppose $\vdash v : \forall \alpha. \alpha$. Then by FTLR, $v \in \mathcal{V}[\![\forall \alpha. \alpha]\!] \emptyset$. Let $\sigma = \mathbf{T}$ and $R = \emptyset$. Then by definition of the LR, $v[\mathbf{T}] \in \mathcal{C}[\![\alpha]\!] \alpha \mapsto (\mathbf{T}, \emptyset)$. So $v[\mathbf{T}] \mapsto^* v' \in \mathcal{V}[\![\alpha]\!] \alpha \mapsto (\mathbf{T}, \emptyset) = \emptyset$. Contradiction.

Proposition Suppose $\vdash f : \forall \alpha : \alpha \to \alpha$. Then for any closed value v of type τ , we have $f[\tau](v) \downarrow v$.

Proof: By FTLR, $\forall \sigma, \forall R \in \text{Cand}, f[\sigma] \in \mathcal{C}[\![\alpha \to \alpha]\!] \alpha \mapsto (\sigma, R)$. Let $\sigma = \tau, R = \{v\}$. So $f[\tau] \downarrow v' \in \mathcal{V}[\![\alpha \to \alpha]\!] \alpha \mapsto (\tau, R)$. We need that $v \in \mathcal{V}[\![\alpha]\!] \alpha \mapsto (\tau, R) = R = \{v\}$, which is obviously true. By the LR, $v'(v) \in \mathcal{C}[\![\alpha]\!] \alpha \mapsto (\tau, R)$ so

$$v'(v) \downarrow v'' \in \mathcal{V}\llbracket \alpha \rrbracket \alpha \mapsto (\tau, R) = R = \{e\}$$

Hence v'' = v. Therefore $f[\tau](v) \mapsto^* v'(v) \mapsto^* v$.