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Abstract

Exceptions are invaluable for structured error handling in high-level lan-
guages, but they are at odds with linear types. More generally, control effects
may delete or duplicate portions of the stack, which, if we are not careful, can
invalidate all substructural usage guarantees for values on the stack. We have
developed a type-and-effect system that tracks control effects and ensures that
values on the stack are never wrongly duplicated or dropped. We present the
system first with abstract control effects and prove its soundness. We then
give examples of three instantiations with particular control effects, including
exceptions and delimited continuations, and show that they meet the soundness
criteria for specific control effects.

1 Substructural Types and Control

Consider, for example, a language like Scala (Odersky and Zenger 2005) with mutable
references and arithmetic. Here is a method that takes two integers and divides each
by the other, returning a pair of references to their quotients:

def divRef (z 1: Int, z 2: Int) = (new Ref(z 1 / z 2), new Ref(z 2 / z 1))

Suppose that references in this language are linear, meaning that they cannot be
duplicated, and must be explicitly deallocated rather than implicitly dropped. In such
a language, divRef has a memory leak. Most uses of divRef are harmless, but consider
the expression divRef (0, 5). The method will raise a division-by-zero exception, but
(assuming one reasonable evaluation order) only after it has allocated a reference to
hold the result of the first division. Because the method raises an exception but does

∗This is the extended version of a paper of the same title submitted to OOPSLA 2011.
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1 SUBSTRUCTURAL TYPES AND CONTROL

not return the successfully allocated reference, there is no way for recovery code that
catches the exception to free the reference.

In short, exceptions and linear types refuse to get along, because linear types make
promises that exceptions do not let them keep.

With affine rather than linear types, however, divRef is not a problem, because
such a type system does not require that references be freed explicitly. In a language
with affine types, implicitly dropping a value is just fine—presumably there is a
garbage collector—and only duplication is forbidden. Consider, however, adding
delimited continuation operators such as shift and reset to a language with affine
types. Assuming a method unref that dereferences and deallocates a reference, we
might attempt to define a method squareRef that takes a reference to an integer, frees
it, and returns its contents, squared:

def twiceTo(x : Int) =
shift { (k : Int ⇒ Int) ⇒ k(k(x )) }

def squareRef (r : Ref[Int]) =
reset { twiceTo(1) × r .unref () }

Method twiceTo uses shift to capture its continuation up to the nearest enclosing reset,
and it then applies the captured continuation k twice to the parameter x . Method
squareRef provides the context for twiceTo to capture, which is to free r and multiply
by its contents:

[ ] × r .unref () .

Since twiceTo uses its continuation twice, the second use of the continuation will
access a dangling pointer that the first use freed.

Typically, an affine type system works by imposing two syntactic requirements: a
variable of affine type, such as r , cannot appear twice in its scope (up to branching),
and a function that closes over an affine variable must itself have an affine type. The
squareRef example violates neither dictum. In the presence of delimited continuations,
we need to add a third rule: that a captured continuation that contains an affine
value must not duplicated. A simple approximation of this rule is to give all captured
continuations an affine (or in a linear system, linear) type. Such a rule would permit
some limited uses of delimited continuations, such as coroutines, but we will show
that this simple rule is overly restrictive.

Our solution. The memory leak and dangling pointer in the above examples can
be fixed by small changes to the code. For divRef , it suffices to ensure that both
divisions happen before both allocations:

def divRef (z 1: Int, z 2: Int) = {
val z 12 = z 1 / z 2
val z 21 = z 2 / z 1
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(new Ref(z 12), new Ref(z 21))
}

For squareRef , we need the dereferencing to happen once, outside the reset delimiter:

def squareRef (r : Ref[Int]) = {
val z = r .unref ()
reset { twiceTo(1) × z }

}

Unfortunately, the conservative approximation suggested above, that all contin-
uations be treated linearly, would still disallow these repaired examples. We have
designed a type-and-effect system (Lucassen and Gifford 1988) that permits these
two repaired versions of the methods while forbidding the original, erroneous versions.
The key idea is to assign to each expression a control effect that reflects whether it may
duplicate or drop its continuation, and to prohibit using an expression in a context
that cannot be treated as the control effect allows. In this paper, we

• exhibit a generic type system for substructural types and control defined in
terms of an unspecified, abstract control effect (§4);

• give soundness criteria for the abstract control effect and prove type safety for
the generic system, relying on the soundness of the abstract control effect (§5);
and

• demonstrate three concrete instantiations of control effects and prove that they
meet the soundness criteria (§6).

The generic type-and-effect system in §4 is defined as an extension to λURAL

(Ahmed et al. 2005), a substructural λ calculus, which we review in §3, after discussing
related work in §2.

2 Related Work and Comparison

This work is not the first to relate substructural types to control operators and control
effects. Thielecke (2003) shows how to use a type-and-effect system to reason about
how expressions treat their continuations. In particular, he gives a continuation-
passing style transform where continuations that will be used linearly are given a
linear type. Thielecke notes that many useful applications of continuations treat them
linearly. However, his goals are different than ours. He uses substructural types in his
object language to reason about how continuations will be used in a non-substructural
source language, whereas we want to reason about continuations in order to safely
use substructural types. Thielecke has linear types only in the object language of his
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translation, whereas we are interested in linear (and other substructural) types in the
source language.

Other recent work relates substructural logics and control. Kiselyov and Shan
(2007) use a substructural logic to allow the “dynamic” control operator shift0 to
modify answer types in a typed setting. Unlike this work, their terms are structures
in substructural logic, not their types. Mazurak and Zdancewic’s Lolliproc (2010)
relates double negation elimination in classical linear logic to delimited control.

We draw significantly on other work on control operators, effect systems, and
substructural types as well.

Control operators. The literature contains a large vocabulary of control operators,
extending back to Iswim’s J operator (Landin 1965), Reynolds’s escape (1972), and
Scheme’s call/cc (Clinger 1985). However, for integration in a language with sub-
structural types, control operators with delimited extent, originating with Felleisen’s
F (1988), are most appropriate, because without some way to mask out control
effects, any use of control pollutes the entire program and severely limits the utility
of substructural types.

As examples of control features to add to our calculus, we consider the delimited
continuation operators shift and reset (Danvy and Filinski 1989) and structured
exception handling (Goodenough 1975). Both shift/reset and structured exceptions
have been combined with type-and-effect systems to make them more amenable to
static reasoning.

Type-and-effect systems for control. Java (Gosling et al. 1996) has checked
exceptions, an effect system for tracking the exceptions that a method may raise.
Our version of exception effects is similar to Java’s, except that we offer effect
polymorphism, which makes higher-order programming with checked exceptions more
convenient. Our type system for exceptions appears in §6.3.

Because Danvy and Filinski’s shift (1989) captures a delimited continuation up
to the nearest reset delimiter, typing shift and reset requires some nonlocal means
of communicating types between delimiters and control operators. They realize
this communication with a type-and-effect system, which allows shift to capture
and compose continuations of varying types. Asai and Kameyama (2007) extend
Danvy and Filinski’s (monomorphic) type system with polymorphism, which includes
polymorphism of answer types. We give two substructural type systems with shift
and reset. Section 6.1 presents a simpler version that severely limits the answer types
of continuations that may be captured. Then, in §6.2, we combine the simpler system
with a polymorphic version of Danvy and Filinski’s, similar to Asai and Kameyama’s,
to allow answer-type modification and polymorphism in a substructural setting.

Substructural type systems. Researchers have proposed a plethora of substruc-
tural type systems. These range from minimalistic models (Wadler 1992; Bierman
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1993; Barber 1996; Morrisett et al. 2005) based on Girard’s linear logic (1987), to
real programming languages, which are often oriented toward specific problems such
as safety in low-level languages (Grossman et al. 2002), typestate and protocol check-
ing (Aldrich et al. 2009), or security (Swamy et al. 2010).

We translate our substructural type-and-effect system into Ahmed et al.’s λURAL

(2005), which is a polymorphic λ calculus that supports a variety of substructural
typing disciplines. We provide a primer on λURAL in §3.

Motivation. The software engineering case for structured exception handling is
widely acknowledged and understood, but shift and reset (Danvy and Filinski 1989),
the other control operators discussed in this paper, are more obscure. The essen-
tial idea is simple: whereas raising an exception discards the context up to some
delimiter—the exception handler—shift captures and reifies the context up to its
delimiter, reset, which allows reinstating the context later. These control operators
may be used to implement exceptions, by capturing continuations but never reinvok-
ing them, but they may also express other control structures, such as coroutines and
cooperative multithreading, and they may be used to abstract non-determinism and
search in an elegant way.

Our goal is to safely integrate control operators with substructural types. A
substructural type system regulates the order and number of uses of data by statically
ensuring that some values be used at most once, at least once, or exactly once (Walker
2005). Like shift and reset, substructural types are a general facility that can express
a variety of specific language features, mostly for the purpose of managing stateful
resources, such as typestate, region-based memory management, and session types.

The direct impetus for this work is the design of the programming language Alms
(Tov and Pucella 2011), which provides both exceptions and affine types, a variety
of substructural type that can prohibit reusing particular values. As demonstrated
in §1, the combination of affine types and exceptions is not a problem. However, as
we observe in that previous work, “we anticipate that safely combining linearity with
exceptions requires a type-and-effect system to track when raising an exception would
implicitly discard linear values.” Our desire to add linear types to Alms motivates
this development of a general theory of substructural types and control effects.

3 Syntax and Semantics of λURAL

In this paper, we add control effects to Ahmed et al.’s λURAL (2005), a substructural
λ calculus. Our presentation of λURAL is heavily based on theirs, with a few small
changes.

The syntax of λURAL appears in Figure 1. Those non-terminals that appear in blue
are different from their counterparts in the calculus with control effects (§4), which
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v ::= values
| x variable
| λx.e abstraction
| Λ.e type abstraction
| inl v sum construction, left
| inr v sum construction, right
| [v1, v2] sum elimination
| 〈v1, v2〉 pair construction
| uncurry v pair elimination
| 〈〉 the nil value
| ignore v nil elimination
| ` location (run-time only)

e ::= expressions
| v values
| e1 e2 application
| e type application
| newq e reference allocation
| free e reference deallocation
| read e reference read
| swap e1 e2 reference read and write

Figure 1: λURAL syntax (i): expression level
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3 SYNTAX AND SEMANTICS OF λURAL

τ ::= types
| α type variable
| ξτ qualified pretype

q ::= constant qualifiers
| U unlimited
| R relevant
| A affine
| L linear

ξ ::= qualifiers
| α qualifier variable
| q qualifier constant

τ ::= pretypes
| α pretype variable
| 1 multiplicative unit
| τ1 ⊗ τ2 multiplicative conjunction
| τ1 ⊕ τ2 additive disjunction
| τ1 ( τ2 function
| ref τ reference
| ∀α:κ.τ universal quantification

ι ::= type-level terms
| ξ qualifier
| τ pretype
| τ type

κ ::= kinds
| QUAL qualifiers
| ? pretypes
| ? types

Figure 2: λURAL syntax (ii): type and kind level
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3 SYNTAX AND SEMANTICS OF λURAL

will appear in red.1

The expression level. Values include abstractions, type abstractions, and intro-
duction and elimination forms for sums, products, and the unit value. At run time,
values also include location names. (This differs from Ahmed et al.’s presentation of
λURAL by including sums—additive disjunctions, to be precise.) Expressions include
values, application, type application, and operations on mutable references. Following
Ahmed et al., we elide the formal parameter in type abstractions and the actual
parameter in type applications.

The type level. Expressions in λURAL are classified by types (τ), but the language
at the type level is much richer. Four constant qualifiers (q) distinguish four substruc-
tural properties that may be enforced for values:

L as in linear, for values that may be neither duplicated nor
implicitly dropped;

A as in affine, for values that may be dropped (weakening) but
not duplicated;

R as in relevant, for values that may be duplicated (contraction)
but not dropped; and

U as in unlimited, for ordinary values that allow both dropping
and duplication.

L

A R

U

�
�

@
@

@
@

�
�

The four constant qualifiers form a lattice, whereby it is always safe to treat a value
as if it has a higher qualifier than its own.

Qualifiers (ξ) include both qualifier constants and type variables, allowing for
qualifier polymorphism. Pretypes (τ ) specify the representation of a value, and its
introduction and elimination rules. Pretypes include type variables, function types,
universal quantification, the unit type, and additive disjunction. Types (τ) classify
expressions. A type is either a pretype decorated with its qualifier (ξτ ) or a type
variable. We use non-terminal ι to refer to the three kinds of type-level terms as a
group.

The kind level. Types in λURAL are classified by three kinds (κ): QUAL for
qualifiers, ? for pretypes, and ? for types. Type variables may have any of these
three kinds, which is why universal quantification (∀α:κ.τ) specifies the kind of α.

1This is the color version of this paper; a black-and-white version, which is more suitable for
printing, is available online at www.ccs.neu.edu/∼tov/pubs/substructural-control.
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3 SYNTAX AND SEMANTICS OF λURAL 3.1 Operational Semantics

3.1 Operational Semantics

The operational semantics of λURAL is completely standard and appears in Figure 3.
Reduction is call-by-value and evaluates operators before operands, which is impor-
tant when we consider the sequencing of effects in §4.

3.2 Static Semantics

Type judgments for λURAL use two kinds of contexts:

∆ ::= kind contexts
| • empty
| ∆, α:κ kind of type variable

Γ ::= type contexts
| • empty
| Γ, x:τ type of variable

Figure 4 contains the kinding judgment (∆ ` ι : κ), which assigns kinds to
type-level terms. This judgment enforces the type/pretype structure, whereby type
constructors such as ⊕ form a pretype from types (rule K-Sum), and decorating a
pretype with a qualifier forms a type (rule K-Type).

In Figure 5, three judgments relate qualifiers to each other, to types, and to type
contexts. Qualifier subsumption (∆ ` ξ1 � ξ2) defines the qualifier order, with top L
and bottom U. The next judgment bounds a type by a qualifier; judgment ∆ ` τ � ξ
means that values of type τ may safely be used according to the structural rules
implied by ξ. Finally, bounding a type context by a qualifier (∆ ` Γ � ξ) means that
every type in context Γ is bounded by qualifier ξ.

Figure 6 gives rules for splitting a type context into two (∆ ` Γ  Γ1�Γ2), which
is necessary for distributing typing assumptions to multiple subterms of a term. Any
variable may be distributed to one side or the other. Rule S-Contract implements
the contraction structural rule, whereby variables whose type is unlimited or relevant
may be duplicated to both contexts.

Finally, Figure 7 gives the judgment for assigning types to expressions (∆; Γ ` e :
τ). Several points are worthy of note:

• The weakening rule, T-Weak, allows discarding portions of the context that
are upper-bounded by A, which means that all the values dropped are either
affine or unlimited.

• The rules for application and reference swapping, T-App, T-SwapStrong,
and T-SwapWeak, split the context to distribute assumptions to subterms.

• Rule T-Abs selects a qualifier ξ for a function type based on bounding the
context, Γ. This means that the qualifier of a function type must upper bound
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3.2 Static Semantics 3 SYNTAX AND SEMANTICS OF λURAL

s ::= {} | {` q7→ v} | s1 ] s2 (stores)

E ::= [] | E e2 | v1E | E | newqE | free E | read E (evaluation contexts)

| swap E e | swap v E

(s, e) 7−→ (s, e′) (reduction)

(s, )(λx.e1) v2 7−→ (s, ){v2/x}e2

(s, )(Λ.e) 7−→ (s, )e

(s, )ignore 〈〉 v 7−→ (s, )v

(s, )uncurry v 〈v1, v2〉 7−→ (s, )v v1 v2

(s, )[v1, v2] (inl v) 7−→ (s, )v v1

(s, )[v1, v2] (inr v) 7−→ (s, )v v2

(s, )newq v 7−→ (s ] {` q7→ v}, )`

(s ] {` q7→ v}, )free ` 7−→ (s, )v

(s ] {` q7→ v}, )read ` 7−→ (s ] {` q7→ v}, )v

(s ] {` q7→ v1}, )swap ` v2 7−→ (s ] {` q7→ v2}, )〈`, v1〉
(s, )e

(s, )E[e]

7−→
7−→

(s′, )e′

(s′, )E[e′]

Figure 3: λURAL operational semantics

∆ ` ι : κ (kinding type-level terms)

K-Var
α:κ ∈ ∆

∆ ` α : κ

K-Qual

∆ ` q : QUAL

K-Arr
∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 ( τ2 : ?

K-All
∆, α:κ ` τ : ?

∆ ` ∀α:κ.τ : ?

K-Unit

∆ ` 1 : ?

K-Sum
∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 ⊕ τ2 : ?

K-Prod
∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 ⊗ τ2 : ?

K-Ref
∆ ` τ : ?

∆ ` ref τ : ?

K-Type
∆ ` τ : ? ∆ ` ξ : QUAL

∆ ` ξτ : ?

Figure 4: λURAL statics (i): kinding
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3 SYNTAX AND SEMANTICS OF λURAL 3.2 Static Semantics

∆ ` ξ1 � ξ2 (qualifier subsumption)

QSub-Bot
∆ ` ξ : QUAL

∆ ` U � ξ

QSub-Top
∆ ` ξ : QUAL

∆ ` ξ � L

QSub-Refl
∆ ` ξ : QUAL

∆ ` ξ � ξ

∆ ` τ � ξ (qualifier bound for types)

B-Var
∆ ` α : ?

∆ ` α � L

B-Type
∆ ` τ : ? ∆ ` ξ′ � ξ

∆ ` ξ′τ � ξ

∆ ` Γ � ξ (qualifier bound for type contexts)

B-Nil
∆ ` ξ : QUAL

∆ ` • � ξ

B-Cons
∆ ` Γ � ξ ∆ ` τ � ξ

∆ ` Γ, x:τ � ξ

Figure 5: λURAL statics (ii): qualifiers

∆ ` Γ  Γ1 � Γ2 (type context splitting)

S-Nil

∆ ` • •� •

S-ConsL
∆ ` Γ  Γ1 � Γ2 ∆ ` τ : ?

∆ ` Γ, x:τ  (Γ1, x:τ)� Γ2

S-ConsR
∆ ` Γ  Γ1 � Γ2 ∆ ` τ : ?

∆ ` Γ, x:τ  Γ1 � (Γ2, x:τ)

S-Contract
∆ ` Γ  Γ1 � Γ2 ∆ ` τ � R

∆ ` Γ, x:τ  (Γ1, x:τ)� (Γ2, x:τ)

Figure 6: λURAL statics (iii): context splitting
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∆; Γ ` e : τ (typing expressions)

T-Weak
∆ ` Γ  Γ1 � Γ2 ∆ ` Γ2 � A ∆; Γ1 ` e : τ

∆; Γ ` e : τ

T-Var
∆ ` τ : ?

∆; •, x:τ ` x : τ

T-Abs
∆ ` Γ � ξ ∆; Γ, x:τ1 ` e : τ2

∆; Γ ` λx.e : ξ(τ1 ( τ2)

T-TAbs
∆ ` Γ � ξ ∆, α:κ; Γ ` e : τ

∆; Γ ` Λ.e : ξ∀α:κ.τ

T-Unit
∆ ` ξ : QUAL

∆; • ` 〈〉 : ξ1

T-Inl
∆ ` τ1 � ξ ∆ ` τ2 : ?

∆; Γ ` v1 : τ1

∆; Γ ` inl v1 : ξ(τ1 ⊕ τ2)

T-Inr
∆ ` τ2 � ξ ∆ ` τ1 : ?

∆; Γ ` v2 : τ2

∆; Γ ` inr v2 : ξ(τ1 ⊕ τ2)

T-App
∆ ` Γ  Γ1 � Γ2

∆; Γ1 ` e1 : ξ(τ1 ( τ2) ∆; Γ2 ` e2 : τ1

∆; Γ ` e1 e2 : τ2

T-TApp
∆; Γ ` e : ξ∀α:κ.τ ∆ ` ι : κ

∆; Γ ` e : {ι/α}τ

T-Prod
∆ ` Γ  Γ1 � Γ2

∆; Γ1 ` v1 : τ1 ∆ ` τ1 � ξ
∆; Γ2 ` v2 : τ2 ∆ ` τ2 � ξ

∆; Γ ` 〈v1, v2〉 : ξ(τ1 ⊗ τ2)

T-SumE
∆ ` ξ′ : QUAL

∆; Γ ` v1 : ξ1(τ1 ( τ) ∆ ` ξ1 � ξ
∆; Γ ` v2 : ξ2(τ2 ( τ) ∆ ` ξ2 � ξ

∆; Γ ` [v1, v2] : ξ(ξ
′
(τ1 ⊕ τ2)( τ)

T-ProdE
∆ ` ξ : QUAL

∆; Γ ` v : ξ
′
(τ1 (

ξ′(τ2 ( τ))

∆; Γ ` uncurry v : ξ
′
(ξ(τ1 ⊗ τ2)( τ)

T-UnitE
∆ ` ξ : QUAL ∆ ` τ : ?

∆; Γ ` v : ξ
′
1

∆; Γ ` ignore v : ξ(τ( τ)

Figure 7: λURAL statics (iv): typing

(continued in Figure 8)
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(continued from Figure 7)

∆; Γ ` e : τ (typing expressions)

T-NewUA
q � A ∆; Γ ` e : τ

∆ ` τ � A

∆; Γ ` newq e : qref τ

T-NewRL
R � q ∆; Γ ` e : τ

∆; Γ ` newq e : qref τ

T-Delete
∆; Γ ` e : ξref τ

∆ ` A � ξ

∆; Γ ` free e : τ

T-Read
∆; Γ ` e : ξref τ

∆ ` τ � R

∆; Γ ` read e : τ

T-SwapStrong
∆ ` Γ  Γ1 � Γ2

∆; Γ1 ` e1 : ξref τ1 ∆ ` A � ξ
∆; Γ2 ` e2 : τ2 ∆ ` τ2 � ξ

∆; Γ ` swap e1 e2 : L(ξref τ2 ⊗ τ1)

T-SwapWeak
∆ ` Γ  Γ1 � Γ2 ∆; Γ1 ` e1 : ξref τ ∆; Γ2 ` e2 : τ

∆; Γ ` swap e1 e2 : L(ξref τ ⊗ τ)

Figure 8: λURAL statics (v): typing

the qualifiers of the types of the function’s free variables. As we will see in §5,
this property is key to our soundness theorem.

4 Generic Control Effects

Rather than add a specific control effect, such as exceptions or delimited continuations,
to λURAL, we aim to design a substructural type system with a general notion of control
effect. Thus, in this section, we define a new calculus, λURAL(C), parameterized by an
unspecified control effect.

4.1 The Control Effect Parameter

In this subsection, we give the form of the parameter that stands for a particular
control effect. Our definition of λURAL(C) relies only on this abstract specification of
the formal parameter. In §5, we specify several properties of the parameter that are
sufficient for a generic soundness theorem to hold, and in §6 we give three examples
of actual control effect parameters.

Definition 4.1 (Control effect).
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4.2 Updated Syntax 4 GENERIC CONTROL EFFECTS

A control effect instance is a triple (C,⊥C,5) where C is a set of control effects (c),
⊥C ∈ C is a distinguished pure effect that denotes no actual control, and 5 : C×C⇀ C

is an associative, partial, binary operation denoting effect sequencing.

For example, in §6.3 we add exception handling to λURAL(C). An exception effect
is the set of exceptions that may be raised by an expression, the distinguished pure
effect ⊥C is the empty set, and sequencing is set union. A non-empty effect indicates
that an expression may discard part of its continuation, whereas the empty effect
guarantees that an expression treats its continuation linearly.

In simple cases, as with exceptions, effects form a join semilattice where sequencing
is the join, but this is not necessarily true in general (§6.2).

4.2 Updated Syntax

In λURAL(C), control effects constitute a fourth kind of type-level term, in addition
to qualifiers, pretypes, and types. We add a new kind, CTL, and include abstract
control effects (c ∈ C) among the type-level terms:

k ::= kinds
| CTL control effects
| QUAL qualifiers
| ? pretypes
| ? types

i ::= type-level terms
| c control effect
| ξ qualifier
| t pretype
| t type

Function and universal pretypes now have latent effects, which record the effect
that will happen when an abstraction is applied. We update the definition of pretypes
to include these latent effects:

t ::= updated pretypes
| · · · other productions as before
| t1

c−( t2 function with latent effect
| ∀cα:k.t universal with latent effect

t ::= updated types
| α type variable
| ξt qualified pretype

14



4 GENERIC CONTROL EFFECTS 4.3 Static Semantics of λURAL(C)

D C̀ i : k (kinding type-level terms)

C-K-Bot

D C̀ ⊥C : CTL

C-K-Arr
D C̀ t1 : ? D C̀ t2 : ? D C̀ c : CTL

D C̀ t1
c−( t2 : ?

C-K-All
D, α:k C̀ t : ? D C̀ c : CTL

D C̀ ∀cα:k.t : ?

Figure 9: λURAL(C) statics (i): updated kinding rules

D C̀ c � ξ (qualifier bound for control effects)

C-B-Pure
D C̀ ξ : QUAL

D C̀ ⊥C � ξ

C-B-Unl
D C̀ c : CTL

D C̀ c � U

D C̀ c1 � c2 (control effect subsumption)

CSub-Refl
D C̀ c : CTL

D C̀ c � c

CSub-Trans
D C̀ c1 � c′ D C̀ c

′ � c2

D C̀ c1 � c2

Figure 10: λURAL(C) statics (ii): control effect judgments

The other pretype (t) productions remain unchanged.
For non-terminal symbols that differ between λURAL and λURAL(C), we use red

Roman letters (t, k, G, . . . ) for λURAL(C) to distinguish them from λURAL, where they
appeared in blue Greek (τ, κ, Γ, . . . ).

4.3 Static Semantics of λURAL(C)

All type system judgments from λURAL are updated for λURAL(C), and λURAL(C) adds
two new judgments as well. The kinding and expression typing judgments are the
only two to change significantly. The judgments for bounding types (D C̀ t � ξ),
bounding type contexts D C̀ G � ξ), and splitting type contexts (D C̀ G  G1�G2)
are isomorphic to the λURAL versions of those judgments from Figures 5 and 6. They
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D; G C̀ e : t ; c (typing expressions)

C-T-Subsume
D; G C̀ e : t ; c′ D C̀ c

′ � c

D; G C̀ e : t ; c

C-T-Weak
D C̀ G  G1 �G2 D; G1 C̀ e : t ; c D C̀ G2 � A

D; G C̀ e : t ; c

C-T-Var
D C̀ t : ?

D; •, x:t C̀ x : t ;⊥C

C-T-Abs
D C̀ G � ξ

D; G, x:t1 C̀ e : t2 ; c

D; G C̀ λx.e : ξ(t1
c−( t2) ;⊥C

C-T-TAbs
D C̀ G � ξ

D, α:k; G C̀ e : t ; c

D; G C̀ Λ.e : ξ∀cα:k.t ;⊥C

C-T-Unit
D C̀ ξ : QUAL

D; • C̀ 〈〉 : ξ1 ;⊥C

C-T-Inl
D C̀ t1 � ξ D C̀ t2 : ?

D; G C̀ v1 : t1 ;⊥C

D; G C̀ inl v1 : ξ(t1 ⊕ t2) ;⊥C

C-T-Inr
D C̀ t1 : ? D C̀ t2 � ξ

D; G C̀ v2 : t2 ;⊥C

D; G C̀ inr v2 : ξ(t1 ⊕ t2) ;⊥C

C-T-App
D; G1 C̀ e1 : ξ1(t1

c−( t2) ; c1 D; G2 C̀ e2 : t1 ; c2

D C̀ G2 � ξ2 D C̀ c1 � ξ2 D C̀ c2 � ξ1

D C̀ G  G1 �G2 D C̀ c1 5 c2 5 c : CTL

D; G C̀ e1 e2 : t2 ; c1 5 c2 5 c

C-T-TApp
D; G C̀ e : ξ∀c′α:k.t ; c

D C̀ i : k D C̀ c 5 c′ : CTL

D; G C̀ e : {i/α}t ; c 5 c′

C-T-Prod
D C̀ G  G1 �G2

D; G1 C̀ v1 : t1 ;⊥C D C̀ t1 � ξ
D; G2 C̀ v2 : t2 ;⊥C D C̀ t2 � ξ

D; G C̀ 〈v1, v2〉 : ξ(t1 ⊗ t2) ;⊥C

C-T-SumE
D C̀ ξ

′ : QUAL
D; G C̀ v1 : ξ1(t1

c−( t) ;⊥C D C̀ ξ1 � ξ
D; G C̀ v2 : ξ2(t2

c−( t) ;⊥C D C̀ ξ2 � ξ

D; G C̀ [v1, v2] : ξ(ξ
′
(t1 ⊕ t2)

c−( t) ;⊥C

C-T-ProdE
D C̀ ξ : QUAL D C̀ c1 5 c2 : CTL

D; G C̀ v : ξ
′
(t1

c1−( ξ′(t2
c2−( t)) ;⊥C

D; G C̀ uncurry v : ξ
′
(ξ(t1 ⊗ t2)

c15c2−−−( t) ;⊥C

C-T-UnitE
D C̀ ξ : QUAL D C̀ t : ?

D; G C̀ v : ξ
′
1 ;⊥C

D; G C̀ ignore v : ξ(t
⊥C−( t) ;⊥C

Figure 11: λURAL(C) statics (iii): typing

(continued in Figure 12)
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(continued from Figure 11)

D; G C̀ e : t ; c (typing expressions)

C-T-NewUA
q � A D; G C̀ e : t ; c D C̀ t � A

D; G C̀ newq e : qref t ; c

C-T-NewRL
R � q D; G C̀ e : t ; c

D; G C̀ newq e : qref t ; c

C-T-Delete
D; G C̀ e : ξref t ; c D C̀ A � ξ

D; G C̀ free e : t ; c

C-T-Read
D; G C̀ e : ξref t ; c D C̀ t � R

D; G C̀ read e : t ; c

C-T-SwapStrong
D C̀ G  G1 �G2

D; G1 C̀ e1 : ξ1ref t1 ; c1

D; G2 C̀ e2 : t2 ; c2 D C̀ G2 � ξ2

D C̀ c1 � ξ2 D C̀ c2 � ξ1

D C̀ A � ξ1 D C̀ t2 � ξ1 D C̀ c1 5 c2 : CTL

D; G C̀ swap e1 e2 : L(ξref t2 ⊗ t1) ; c1 5 c2

C-T-SwapWeak
D C̀ G  G1 �G2

D; G1 C̀ e1 : ξ1ref t ; c1

D; G2 C̀ e2 : t ; c2 D C̀ G2 � ξ2

D C̀ c1 � ξ2 D C̀ c2 � ξ1 D C̀ c1 5 c2 : CTL

D; G C̀ swap e1 e2 : L(ξref t ⊗ t) ; c1 5 c2

Figure 12: λURAL(C) statics (iv): typing
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4.3 Static Semantics of λURAL(C) 4 GENERIC CONTROL EFFECTS

are merely updated with new non-terminals as appropriate (i.e., κ to k, τ to t, and
τ to t).

Kinding. We identify control effects as the type-level terms (i) that are assigned
kind CTL by the kinding judgment. Figure 9 shows one new kinding rule, C-K-Bot,
which assigns kind CTL to the pure effect ⊥C. We update rules C-K-Arr and
C-K-All to account for latent effects in function and universal pretypes. The remain-
ing kinding rules are the same as for λURAL, with non-terminals mutatis mutandis.
Specific control effect instances (§6) must define additional kinding rules for their
particular effects.

Control effect judgments. The first new judgment for control effects (D C̀ c � ξ,
Figure 10) relates control effects to qualifiers. This gives the meaning of a control
effect in terms of a lower bound for how an expression with that effect may treat
its own continuation. For example, if an expression e has some effect c such that
D C̀ c � A, this indicates that e may drop but not duplicate its continuation. We
give two rules here:

• Rule C-B-Pure says that the pure effect is bounded by any qualifier, which
means that a pure expression satisfies any requirement for how it treats its
continuation.

• Rule C-B-Unl says that all control effects are bounded by U, which means that
we may assume, conservatively, that any expression might freely duplicate or
drop its continuation.

Specific instances of the control effect parameter will extend this judgment to take
into account the properties of a particular control effect.

The second judgment for control effects (D C̀ c1 � c2) defines a subsumption order
for control effects. This means that an expression whose effect is c1 may be safely
considered to have effect c2. Only two rules for the judgment appear in Figure 10,
which together ensure that control effect subsumption is a preorder. As with control
effect bounding, specific control effect instances will extend this judgment.

Expression typing. The expression typing judgment for λURAL(C) (Figure 11)
assigns not only a type t but an effect c to expressions: D; G C̀ e : t ; c. Having
seven premises, the rule for applications (C-T-App) is unwieldy, but it likely gives

18
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the most insight into how λURAL(C) works:

(1) D C̀ G  G1 �G2

(2) D; G1 C̀ e1 : ξ1(t1
c−( t2) ; c1

(3) D; G2 C̀ e2 : t1 ; c2

(4) D C̀ c2 � ξ1

(5) D C̀ G2 � ξ2

(6) D C̀ c1 � ξ2

(7) D C̀ c1 5 c2 5 c : CTL

D; G C̀ e1 e2 : t2 ; c1 5 c2 5 c

We consider the premises in order:

(1) The first premise, as in λURAL, splits the type context G into G1 for typing e1 and
G2 for typing e2.

(2–3) As in λURAL, these premises assign types to expressions e1 and e2, but they
assign control effects c1 and c2 as well.

(4) This premise relates the type of e1 to the effect of e2 to ensure that e2’s effect
does not violate e1’s invariants. Because we fix a left-to-right evaluation order,
by the time e2 gets to run, e1 has reduced to a value of type ξ1(t1

c−( t2), which
thus may be treated according to qualifier ξ1. Because that value is part of e2’s
continuation, we require that e2’s effect, c2, be lower-bounded by ξ1. In other
words, e2 will treat its continuation no more liberally than ξ1 allows.

(5–6) These premises relate the free variables of e2 to the effect of e1. Due to the
evaluation order, e2 appears unevaluated in e1’s continuation, which means that
if e1 drops or duplicates its continuation then e2 may be evaluated never or more
than once. Premise (5) says that the type context for typing e2, and thus e2’s
free variables, are bounded above by some qualifier ξ2, and this qualifier thus
indicates how many times it is safe to evaluate e2. Premise (6) lower bounds
e1’s effect, c1, by ξ2, ensuring that e1’s effect treats e2 properly.

(7) The net effect of the application expression is a sequence of the effect of e1 (c1),
then the effect of e2 (c2), and finally the latent effect of the function to which e1

must evaluate (c): c1 5 c2 5 c. This premise checks that those three effects may
be sequenced in that order according to a particular control effect’s definition
of sequencing and the kinding judgment.

Rules C-T-SwapStrong and C-T-SwapStrong (reference swap) are similar, since
they need to safely sequence two subexpressions. Both rules follow rule C-T-App in
relating the effect of the first subexpression to the type context of the second and
effect of the second to the qualifier of the first. Rule C-T-TApp (type application),
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5 THE GENERIC THEORY

while dealing with only one effectful subexpression, needs to sequence the effect of
evaluating the expression in a type application with the latent effect of the resulting
type abstraction value.

The subsumption rule C-T-Subsume implements control effect subsumption, whereby
an expression of effect c may also be considered to have effect c′ if c is less than c′

in the control effect subsumption order. C-T-Weak, which handles weakening, is
unchanged from λURAL.

The remaining rules are for typing values, which always have the pure effect ⊥C.
Rules C-T-Unit, C-T-Inl, and C-T-Inr, for unit and sum introduction, are un-
changed from λURAL, except that each of them assigns the pure effect. Rules C-T-Abs
and C-T-TAbs also assign the pure effect to their values, but each records the effect
of the abstraction body as the latent effect in the resulting type.

5 The Generic Theory

To prove type safety for λURAL(C), we define a type-preserving translation to λURAL.
Rather than provide a reduction semantics for λURAL(C), we define its operational
semantics in terms of the translation and the reduction semantics of λURAL (§3.1).
Thus, if we can show that all well-typed λURAL(C) programs translate to well-typed
λURAL programs, then λURAL’s type safety theorem applies to λURAL(C) as well.

The translation is into what Danvy and Filinski (1989) call continuation-composing
style (henceforth “CCoS”). It is similar to continuation-passing style, but unlike
continuation-passing style it still relies on the object language’s order of evaluation.

In order to specify the translation and prove the propositions specified later in this
section, we impose several more requirements on the abstract control effect parameter.
As the semantics of λURAL(C) was parameterized by an abstract control effect, so is the
theory of λURAL(C) parameterized by several definitions and properties that a control
effect must satisfy.

The development of this section is constrained by several dependencies, so we
provide an outline:

The Translation Parameter (§5.1). A control effect instance must supply a few defi-
nitions to fully specify its particular CCoS translation.

The Translation (§5.2). The definition of the CCoS translation relies on the defini-
tions supplied by the control effect parameter.

Parameter Properties (§5.3). A control effect instance must satisfy several properties
on which the generic type safety theorem relies.

Generic Type Safety (§5.4). The section culminates in a generic proof of type safety
for λURAL(C).
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5 THE GENERIC THEORY 5.1 The Translation Parameter

5.1 The Translation Parameter

Definition 5.1 (Translation parameter).
The definition of the generic CCoS translation relies on the following effect-specific
definitions:

• a metafunction (·)∗ from effects to qualifiers, such that ⊥C
∗ = L and α∗ = α;

• a value doneC, to use as the initial continuation for a CCoSed program; and

• a pair of answer-type metafunctions 〈〈·, ·〉〉−c and 〈〈·, ·〉〉+c , each of which maps a
λURAL type and a λURAL(C) effect to a λURAL type.

Intuitively, we can understand metafunctions (·)∗, 〈〈·, ·〉〉−c , and 〈〈·, ·〉〉+c as relating the
effect of a λURAL(C) expression to the type of its translation into λURAL. Typically,
the CPS translation of an expression of some type τ yields a type like

(τ → Answer)→ Answer.

Given a λURAL(C) expression whose translated type is τ and whose effect is c, our
translation yields type

c∗(τ( 〈〈τ0, c〉〉−C )( 〈〈τ0, c〉〉+C
for some answer type τ0. That is, (·)∗ gives the qualifier of the continuation, and the
other two metafunctions give the answer types, which may depend on the nature of the
control effect. Because they give the answer types in negative and positive positions,
respectively, we call 〈〈τ, c〉〉−

C
the negative answer type and 〈〈τ, c〉〉+

C
the positive answer

type.

5.2 The Translation

In this subsection, we specify the CCoS translation from λURAL(C) to λURAL. In several
places, we rely on the definitions of c∗, doneC, 〈〈τ, c〉〉−C , and 〈〈τ, c〉〉+C supplied by the
control effect parameter.

The translation for kinds and kind contexts appears in Figure 13. The control
effect kind CTL translates to QUAL, and the other three kinds translate to themselves.
The translation of a kind context merely translates each kind in its range.

Figure 14 presents the translation for pretypes, types, and type contexts. Most
of this translation is straightforward: type variables and the unit pretype translate
to themselves, sum, product, and reference types translate homomorphically, types
composed of a qualifier and a pretype translate the pretype, and type contexts
translate all the types in their range. The two interesting cases are for function
and universal pretypes. These follow the usual CPS translation for function and
universal types, with several refinements:

21



5.2 The Translation 5 THE GENERIC THEORY

QUAL∗ = QUAL (kinds)
?∗ = ?

?∗ = ?

CTL∗ = QUAL

•∗ = • (kind contexts)
(D, α:k)∗ = D∗, α:k∗

Figure 13: CCoS translation (i): kinds and kind contexts

α∗ = α (pretypes)
1∗ = 1

(t1 ⊕ t2)∗ = t1
∗ ⊕ t2∗

(t1 ⊗ t2)∗ = t1
∗ ⊗ t2∗

(ref t)∗ = ref t∗

(t1
c−( t2)∗ = ∀α: ? .L(t1

∗( L(c
∗
(t2
∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
))

(∀cβ:k.t)∗ = ∀α: ? .L∀β:k∗.L(c
∗
(t∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
)

α∗ = α (types)
(ξt)∗ = ξt∗

•∗ = • (type contexts)
(G, x:t)∗ = G∗, x:t∗

Figure 14: CCoS translation (ii): type-level terms and contexts
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• Each adds an extra universal quantifier in front of its result, which is used to
make (type) abstractions polymorphic in their answer types.

• Because the effect of an expression limits how it may use its continuation, the
translation c∗ of latent effect c becomes the qualifier of the continuation.

• All other qualifiers of the translated pretype are L. (This is because the transla-
tion never needs to duplicate partially-applied continuations, so L is a sufficiently
permissive qualifier for those continuations. Furthermore, because the type rules
for abstractions always allow a qualifier of L, using L wherever possible simplifies
the proof.)

Translation of values and expressions is defined by mutual induction in Figure 15.
Value translation (v∗) is mostly straightforward. Both value and type abstraction have
an additional type abstraction added to the front, which matches the addition of the
universal quantifier in the type translation, and both translate the body according
to the expression translation JeK

C
. The expression translation is standard except for

two unusual aspects of the translation of applications and type applications:

• The result of evaluating e1, bound to x1, is in each case instantiated by a type
application, which compensates for the new type abstraction in the translation
of abstractions. For the type application case, x1 is instantiated then again,
corresponding to the instantiation from the source expression.

• Curiously, the continuation y is η-expanded to λx.y x. While η-expanding a
variable may seem useless, it is actually necessary to obtain a type-preserving
translation.

In particular, the reason for this η expansion is to handle effect subsumption. Effects
in λURAL(C) are translated to qualifiers in λURAL, and while λURAL(C) supports effect
subsumption directly, there is no analogous qualifier subsumption in λURAL. However,
qualifier subsumption for function types can be done explicitly using η expansion:

Lemma 5.2 (Dereliction).
If ∆; Γ ` v : ξ(τ1 ( τ2) and ∆ ` ξ � ξ′ then ∆; Γ ` λx.v x : ξ

′
(τ1 ( τ2).

The proof of Lemma 5.2 relies on another lemma:

Lemma 5.3 (Value strengthening).
Any qualifier that upper bounds the type of a value also bounds the portion of the type
context necessary for typing that value. That is, if ∆; Γ ` v : τ and ∆ ` τ � ξ then
there exist some Γ1 and Γ2 such that

• ∆ ` Γ  Γ1 � Γ2,

• ∆; Γ1 ` v : τ,
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• ∆ ` Γ1 � ξ, and

• ∆ ` Γ2 � A.

Proof. See p. 48. B

Proof of Lemma 5.2. Choose type contexts Γ1 and Γ2 according to Lemma 5.3. Then
∆; Γ1, x:τ1 ` v x : τ2 by rule T-App. By induction on the length of Γ1 and transitivity
of qualifier subsumption, we know that ∆ ` Γ1 � ξ′. Then by rule T-Abs, ∆; Γ1 `
λx.v x : ξ

′
(τ1 ( τ2), and we change Γ1 to Γ by rule T-Weak.

See p. 51 for additional details. B

Operational semantics of λURAL(C). Having defined the translation, we run a
program e by applying the CCoS translation and passing it the initial continuation
doneC. We define the operational semantics of λURAL(C) as a partial function eval :
Expressions ⇀ Values ∪ {Wrong}:

eval(e) =


v if JeK

C
doneC

∗7−→ v;
Wrong if JeK

C
doneC

∗7−→ e′

such that e′ is not a value
and ¬∃e′′.e′ 7−→ e′′.

5.3 Parameter Properties

Having defined the CCoS translation, we are now ready to state the additional
properties that the abstract control effect parameter must satisfy for the generic
type safety theorem (§5.4) to hold:

Parameter Property 1 (Answer types).

1. For all τ, 〈〈τ,⊥C〉〉−C = 〈〈τ,⊥C〉〉+C .

Rationale. For pure expressions, the negative and positive answer types
agree, because a pure expression finishes by calling its continuation. Hence-
forth, we are justified defining the pure answer type 〈〈τ〉〉C , 〈〈τ,⊥C〉〉+C .

2. If D∗ ` τ : ? and D C̀ c : CTL then D∗ ` 〈〈τ, c〉〉−
C

: ? and D∗ ` 〈〈τ, c〉〉+
C

: ?.

Rationale. For the translation to be well typed, well-kinded types and
effects must become well-kinded answer types.

3. For all D, τ, c1 6= ⊥C, and c2 6= ⊥C such that D C̀ c1 5 c2 : CTL,

(a) 〈〈τ, c1 5 c2〉〉−C = 〈〈τ, c2〉〉−C ,
(b) 〈〈τ, c1 5 c2〉〉+C = 〈〈τ, c1〉〉+C , and

24



5 THE GENERIC THEORY 5.3 Parameter Properties

x∗ = x (values)

(λx.e)∗ = Λ.λx. JeK
C

(Λ.e)∗ = Λ.Λ. JeK
C

(inl v)∗ = inl v∗

(inr v)∗ = inr v∗

[v1, v2]∗ = Λ. [λx.v1
∗ x, λx.v2

∗ x]

〈v1, v2〉∗ = 〈v1
∗, v2

∗〉

(uncurry v)∗ = Λ. uncurry (λx1.λx2. Jv x1 x2KC
)

〈〉∗ = 〈〉

(ignore v)∗ = Λ.λx. ignore v∗ JxK
C

JvK
C

= λy.y v∗ (expressions)

Je1 e2KC
= λy. Je1KC

(λx1. Je2KC
(λx2.x1 x2 (λx.y x)))

Je K
C

= λy. JeK
C

(λx1.x1 (λx.y x))

Jnewq eK
C

= λy. JeK
C

(λx.y (newq x))

Jread eK
C

= λy. JeK
C

(λx.y (read x))

Jfree eK
C

= λy. JeK
C

(λx.y (free x))

Jswap e1 e2KC
= λy. Je1KC

(λx1. Je2KC
(λx2.y (swap x1 x2)))

Figure 15: CCoS translation (iii): values and expressions
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(c) 〈〈τ, c1〉〉−C = 〈〈τ, c2〉〉+C .

Rationale. Effect sequencing must maintain answer types in order for the
continuations of sequenced expressions to compose.

4. If D C̀ c1 � c2, then for every type τ there exists some type τ ′ such that
〈〈τ ′, c1〉〉−C = 〈〈τ, c2〉〉−C and 〈〈τ ′, c1〉〉+C = 〈〈τ, c2〉〉+C .

Rationale. For control effect subsumption to be valid, related control
effects must generate related answer types.

Parameter Property 2 (Done).
If ∆ ` τ � A then ∆; • ` doneC : L(τ( 〈〈τ〉〉C).

Rationale. The doneC value must be well typed for the translation of a
whole program to be well typed.

Parameter Property 3 (Effect sequencing).
If D C̀ c1 5 c2 : CTL then D∗ ` (c1 5 c2)∗ � c1

∗ and D∗ ` (c1 5 c2)∗ � c2
∗.

Rationale. Sequencing lowers the translation of control effects in the
qualifier order. This makes sense, because if either of two sequenced
expressions may duplicate or discard their continuations, then the compound
expression may do the same.

Parameter Property 4 (Bottom and lifting).

1. c1 5 c2 = ⊥C if and only if c1 = c2 = ⊥C.

Rationale. Sequencing impure expressions should not result in a pure
expression.

2. If D C̀ c1 5 c2 : CTL and c1 5 c2 6= ⊥C, then there exist some c′1 6= ⊥C and
c′2 6= ⊥C such that

• D C̀ c1 � c′1,

• D C̀ c2 � c′2,

• c′1 5 c′2 = c1 5 c2, and

• D C̀ c
′
1 5 c′2 : CTL.

Rationale. This assumption is likely not necessary, but it significantly
simplifies the proof by allowing the effects in a sequence to be considered
either all pure or all impure.

The final property concerns four lemmas that we state and prove for the generic
system in the next subsection. An actual control effect instance needs to extend these
lemmas to cover any additional rules added to the relevant judgments:
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Parameter Property 5 (New rules).

1. Lemma 5.4 (§5.4) must be extended, by induction on derivations, for any rules
added to the kinding judgment D C̀ i : k.

2. Lemma 5.5 (§5.4) must be extended, by induction on derivations, for any rules
added to the control effect bounding judgment D C̀ c � ξ.

3. Lemma 5.6 (§5.4) must be extended, by induction on derivations, for any rules
added to the control effect subsumption judgment D C̀ c1 � c2.

4. Lemma 5.7 (§5.4) must be extended, by induction on derivations, for any rules
added to the expression typing judgment D; G C̀ e : t ; c.

In §6, we give several example control effects and show that they satisfy the above
properties.

5.4 Generic Type Safety

Assuming that the above properties hold of the control effect parameter, we can now
prove a type safety theorem for λURAL(C) that leaves the control effect abstract. We
sketch the proof here, but the full proof is available in the appendices.

We begin with a lemma that ensures that control effects translate to well-formed
qualifiers:

Lemma 5.4 (Translation of kinding).
For all D, i, and k, if D C̀ i : k then D∗ ` i∗ : k∗.

Proof. See p. 52. B

We continue with two lemmas concerning how the translation of control effects
to qualifiers relates to qualifier subsumption. The former ensures that the control
effect bound used by typing rules such as C-T-App matches the qualifier assigned to
the type of a continuation by the CCoS translation. The latter shows that a larger
control effect, which indicates more liberal treatment of a continuation, maps to a
smaller qualifier, which indicates more liberal treatment of any value.

Lemma 5.5 (Translation of effect bounds).
If D C̀ c � ξ then D∗ ` ξ � c∗.

Proof. See p. 55. B

Lemma 5.6 (Translation of effect subsumption).
If D C̀ c1 � c2 then D∗ ` c2

∗ � c1
∗.

Proof. See p. 55. B
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The most difficult lemma, and the heart of the proof, is about typing translated
expressions. Given a λURAL(C) expression whose control effect is c, the translation of
the control effect, c∗, is the qualifier of the continuation of the translated expression:

Lemma 5.7 (Translation of term typing).
If D; G C̀ e : t ; c then

D∗; G∗ ` JeK
C

: L(c
∗
(t∗( 〈〈t∗, c〉〉−

C
)( 〈〈t∗, c〉〉+

C
).

Proof. By induction on the typing derivation, generalizing the induction hypothesis
thus:

If D; G C̀ e : t ; c, then for all τ0 such that D∗ ` τ0 : ?, and for all ξ0 such
that D∗ ` ξ0 � c∗, we have D∗; G∗ ` JeK

C
: L(ξ0(t∗( 〈〈τ0, c〉〉−C )( 〈〈τ0, c〉〉+C ).

We consider two cases here:

Case
D; G C̀ e : t ; c′ D C̀ c

′ � c

D; G C̀ e : t ; c
.

By Property 5 (part 3), D∗ ` c∗ � c′∗, and thus by Property 1 (part 4), there
exists some type τ ′0 such that 〈〈τ ′0, c′〉〉−C = 〈〈τ0, c〉〉−C and 〈〈τ ′0, c′〉〉+C = 〈〈τ0, c〉〉+C .
By the lemma assumption, D∗ ` ξ0 � c∗, and by transitivity of qualifier
subsumption, D∗ ` ξ0 � c′∗. Thus, we can apply the induction hypothesis
at D; G C̀ e : t ; c′, using the same ξ0 but with τ ′0 for τ0, yielding

D∗; G∗ ` JeKC : L(ξ0(t∗( 〈〈τ ′0, c′〉〉−C )( 〈〈τ ′0, c′〉〉+C ).

Then it suffices to substitute 〈〈τ0, c〉〉−C for 〈〈τ ′0, c′〉〉−C and 〈〈τ0, c〉〉+C for 〈〈τ ′0, c′〉〉+C ,
which we know to be equal by Property 1 (part 4).

Case

D C̀ G  G1 �G2 D C̀ G2 � ξ2

D; G1 C̀ e1 : ξ1(t1
c−( t2) ; c1 D C̀ c1 � ξ2

D; G2 C̀ e2 : t1 ; c2 D C̀ c2 � ξ1

D C̀ c1 5 c2 5 c : CTL

D; G C̀ e1 e2 : t2 ; c1 5 c2 5 c
.

For rule C-T-App, we want to show that Je1 e2KC
has type

L(ξ0(t2
∗( 〈〈τ0, c1 5 c2 5 c〉〉−

C
)( 〈〈τ0, c1 5 c2 5 c〉〉+

C
).

Consider the translation of e1 e2,

λy.Je1KC (λx1.Je2KC (λx2.x1 x2 (λx.y x))).

The type derivation is too large to show here in detail, but it hinges on giving the
right qualifiers to the types of continuations. We will consider the continuation
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5 THE GENERIC THEORY 5.4 Generic Type Safety

passed to the whole expression and the continuations constructed for e1, e2, and
the function application itself, in turn.

First we consider y, the continuation of the whole application expression. Given
the type that we need to derive for the whole expression, the qualifier of y’s type
must be ξ0. Furthermore, from the assumptions of the lemma, we know that
D∗ ` ξ0 � (c1 5 c2 5 c)∗. By Property 3, each of c1

∗, c2
∗, and c∗ is greater than

(c1 5 c2 5 c)∗, so by transitivity, ξ0 is less than each of these.

Expression e1 has effect c1, so by the induction hypothesis, its continuation may
have qualifier c1

∗. The continuation passed to Je1KC
is

λx1.Je2KC (λx2.x1 x2 (λx.y x)),

whose free variables are {y} ∪ fv(e2). Thus, the qualifier of this function must
upper bound both ξ0 and the qualifiers of the types in G2 (the type context for
e2). We have D∗ ` ξ0 � c1

∗ from the previous paragraph. Furthermore, looking
at the premises of rule T-App, we see that ξ2 upper bounds the types in G2

and is less than c1
∗ (by Property 5 (part 2)), so by transitivity, D∗ ` G2

∗ � c1
∗,

as desired.

Expression e2 has effect c2, so similarly, its continuation should have qualifier
c2
∗. The free variables of e2’s continuation are only y and x1, which is the value

of e1. We handle y as before. The type of x1 is ξ1((t1
c−( t2)∗), so it remains

to show that D∗ ` ξ1 � c2
∗, by Property 5 (part 2) applied to the premise

D C̀ c2 � ξ1.

Finally, given that x1 has type ξ1((t1
c−( t2)∗), it expects a continuation whose

qualifier is c∗. The type of y has qualifier ξ0, which is less than c∗. Then
by Lemma 5.2 (Dereliction), the type of the η expansion λx.y x may be given
qualifier c∗.

See p. 56 for the remaining cases. B

Corollary 5.8 (Translation of program typing).
If D; G C̀ e : t ;⊥C where D C̀ t � A, then

D∗; G∗ ` JeKC doneC : 〈〈t∗〉〉C.

Proof. By Lemma 5.4, Lemma 5.7, Property 2, and rules QSub-Refl and T-App.
See p. 74 for details. B

Lemma 5.9 (λURAL safety).
If •; • ` e1 : τ and e1

∗7−→ e2, then either ∃v2.e2 ≡ v2 or ∃e3.e2 7−→ e3.

Proof. See the proof in Ahmed et al. (2005).

29
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Theorem 5.10 (λURAL(C) safety).
If •; • C̀ e : t ;⊥C, and • C̀ t � A then eval(e) 6= Wrong.

Proof. By Corollary 5.8, •; • ` JeK
C
doneC : 〈〈t∗〉〉C. Then by Lemma 5.9, either

JeK
C
doneC reduces to a value v, in which case eval(e) = v, or JeK

C
doneC diverges, in

which case eval(e) is undefined.

6 Example Control Effects
In the previous section, we proved type safety for λURAL(C), a substructural λ calculus
parameterized by abstract control effects. In this section, we give three instances of
control effects as described by Definition 4.1 and show that they satisfy the properties
on which the generic type safety theorem depends.

It will be useful, when stating several later definitions, to have a definition for
meets and joins of qualifiers.

Definition 6.1 (Qualifier meets and joins).
We define meets and joins of qualifiers as follows:

L u ξ = ξ u L = ξ u ξ = ξ U t ξ = ξ t U = ξ t ξ = ξ
U u ξ = ξ u U = A u R = R u A = U L t ξ = ξ t L = A t R = R t A = L

otherwise, ξ u ξ′ is undefined otherwise, ξ t ξ′ is undefined

6.1 Shift and Reset

We define here a control effect instance for delimited continuations. In this example,
we restrict answer types to the unit type U1 in order to keep the effects simple. In §6.2,
we show how to define a more general control effect instance that allows answer-type
modification.

We add shift and reset to λURAL(C) as follows. First, we extend the syntax:

e ::= new expressions
| · · · extending syntax from Figure 1
| reset e delimiter
| shiftx in e control operator

We give the dynamics of the new expressions by defining their CCoS translations,
which are standard:

Jreset eK
D

= λy.y (JeK
D

(λx.x))

Jshiftx in eK
D

= λy.(λx. JeK
D

(λx′.x′)) (Λ.λx.λy′.y′ (y x))

To type shift and reset, we define delimited continuation effects d as the dual
lattice of the qualifier lattice ξ with a new point ⊥D:
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6 EXAMPLE CONTROL EFFECTS 6.1 Shift and Reset

D D̀ i : k (kinding delimited control effects)

D-K-Qual
D D̀ ξ : QUAL

D D̀ ξ : CTL

D-K-Join
D D̀ d1 : CTL D D̀ d2 : CTL

D D̀ d1 t d2 : CTL

D D̀ d � ξ (qualifier bound for delimited control effects)

D-B-Qual
D D̀ ξ � ξ′

D D̀ ξ′ � ξ

D-B-Join
D D̀ d1 � ξ D D̀ d2 � ξ

D D̀ d1 t d2 � ξ

D D̀ d1 � d2 (delimited control effect subsumption)

DSub-Bot
D D̀ d : CTL

D D̀ ⊥D � d

DSub-Lin
D D̀ ξ : QUAL

D D̀ L � ξ

DSub-Top
D D̀ d : CTL

D D̀ d � U

DSub-Join
D D̀ d1 � d′1 D D̀ d2 � d′2

D D̀ d1 t d2 : CTL D D̀ d′1 t d′2 : CTL

D D̀ d1 t d2 � d′1 t d′2

D; G D̀ e : t ; d (delimited control expression typing)

D-T-Reset
D; G D̀ e : U1 ; d

D; G D̀ reset e : U1 ;⊥D

D-T-Shift
D; G, x:ξ(t

⊥D−−( U1) D̀ e : U1 ; d

D; G D̀ shiftx in e : t ; d t ξ

Figure 16: Statics for delimited continuation effects
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6.1 Shift and Reset 6 EXAMPLE CONTROL EFFECTS

d ::= delimited continuation effects
| ⊥D no effect
| α an effect variable
| ξ treats continuation like ξ
| d1 t d2 effect join

Let D be the set of delimited continuation effects (d) quotiented by the following
equivalences:

ξ1 t ξ2 = (ξ1 u ξ2) when ξ1 u ξ2 is defined;

d t ⊥D = ⊥D t d = d t d = d.

(The quotient simplifies defining other functions and relations on delimited continua-
tion effects.) Then we define delimited continuation effects as the triple (D,⊥D,t).

We extend the type system of λURAL(C) with the new rules in Figure 16. The new
kinding rules say that qualifiers-as-effects (ξ) and joins (d1 t d2) are well-kinded if
their components are. The new control effect bound rules say that a control effect ξ′
is bounded by all qualifiers ξ that are less than ξ′ and that any bound of both effects
in a join bounds the join as well. The rules added for effect subsumption effectively
axiomatize the delimited continuation effect lattice. Finally, we add two rules for
typing shift and reset. To type an expression reset e, subexpression e may have any
effect whatsoever, but must return type U1. (We lift this restriction in §6.2.) Then
reset e is pure and also has type U1. To type shiftx in e, we give x type ξ(t

⊥D−−( U1)
for checking e, where ξ is joined with the effect of e to get the effect of the whole
shift expression. That is, because shift captures its continuation and gives the reified
continuation qualifier ξ, its effect must be at least ξ, since that qualifier determines
how it might treat its captured continuation.

Type safety. To prove type safety for λURAL(C) extended with delimited continua-
tion effects, we need to give the translation parameter as described by Definition 5.1.
We define the translation parameter as follows:

〈〈τ, d〉〉−
D

= 〈〈τ, d〉〉+
D

= U1

doneD = λx.〈〉

d∗ =


L if d = ⊥D

α if d = α

ξ if d = ξ

U otherwise

Then, we must show that this definition satisfies the properties of §5.3:

Theorem 6.2 (Delimited continuation properties).
Delimited continuation effects (D,⊥D,t) satisfy Properties 1–5.
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6 EXAMPLE CONTROL EFFECTS 6.1 Shift and Reset

Proof.
Property 1 (Answer types). We must show several equalities on answer
types, such as 〈〈τ, d1〉〉−D = 〈〈τ, d2〉〉+D, hold whenever d1 t d2 is well formed. All
of the equalities are trivial because 〈〈τ, d〉〉−

D
= 〈〈τ, d〉〉+

D
= U1.

Property 2 (Done). We need to show that ∆; • ` doneD : L(τ( 〈〈τ〉〉D).
Given the definition of doneD, we can show ∆; • ` λx.〈〉 : L(τ( 〈〈τ〉〉D) by a
straightforward type derivation.

Property 3 (Effect sequencing). We need to show that D D̀ d1 t d2 : CTL
implies that D∗ ` (d1 t d2)∗ � d1

∗ and D∗ ` (d1 t d2)∗ � d2
∗. By symmetry, it

suffices to show the former:

(1)D D̀ d1 � d1 by CSub-Refl

(2)D D̀ ⊥D � d2 by DSub-Bot

(3)D D̀ d1 t ⊥D � d1 t d2 by (1–2), DSub-Join

(4)D D̀ d1 � d1 t d2 by (3), d1 t ⊥D = d1

(5)D∗ ` (d1 t d2)∗ � d1
∗ by (4), Lemma 5.6.

Property 4 (Bottom and lifting).

1. To show that d1 t d2 = ⊥D if and only if d1 = d2 = ⊥D, we consider the
quotienting of D.

2. We must also show that if D D̀ d1 t d2 : CTL and d1 t d2 6= ⊥D, then
there exist some d′1 6= ⊥D and d′2 6= ⊥D with particular properties. For
each di (i∈{1,2}), if di = ⊥D then let d′i = L; otherwise, let d′i = di . This
ensures that 1–2) each D D̀ di � d′i , 3) d1 t d2 = d′1 t d′2, and 4) d′1 t d′2
is well formed.

Property 5 (New rules).

1. We show that D D̀ d � ξ implies that D∗ ` ξ � d∗, by induction on
the derivation. The only new cases to consider are for rules D-B-Qual
and D-B-Join. These require a lemma about the translation of qualifier
subsumption derivations.

2. We show that D D̀ d1 � d2 implies that D∗ ` d2
∗ � d1

∗, again by induction
on the derivation. The only nontrivial case is when

D D̀ d1 � d′1 D D̀ d2 � d′2
D D̀ d1 t d2 : CTL D D̀ d′1 t d′2 : CTL

D D̀ d1 t d2 � d′1 t d′2
.

We show that D∗ ` (d′1 t d′2)∗ � (d1 t d2)∗ by exhaustively enumerating
the possibilities for d1, d2, d′1, and d′2 such that the premises hold.
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6.2 Shift and Reset with Answer-Type Modification6 EXAMPLE CONTROL EFFECTS

3. For translation of kinding, we show that D C̀ d : CTL implies that D∗ `
d∗ : QUAL. We proceed, as usual, by a simple induction on the derivation,
considering the two new kinding rules for delimited continuation effects.

4. For translation of typing, we use the generalized induction hypothesis as
in the proof of Lemma 5.7. There are two cases, for shift and reset, each
of which requires a large type derivation.

See p. 75 for additional details. B

6.2 Shift and Reset with Answer-Type Modification

The type-and-effect system for shift and reset described in §6.1 requires that all answer
types—the type of all reset expressions—be U1. Our second example adds answer-
type modification (à la Danvy and Filinski 1989), which allows shift to capture and
compose continuations of differing types and allows the answer delivered by reset to
have any type. Both the syntax and CCoS translation are as in §6.1, but we change
the definition of control effects as follows. An answer-type control effect a is either the
pure effect ⊥A or a collection of qualifiers ξ1, . . . , ξj along with old and new answer
types t1 and t2:

a ::= answer-type modification effects
| ⊥A pure
| Ξ(t1 � t2) captures continuation

Ξ ::= ξ1, . . . , ξj qualifier collections

A type derivation D; G À e : t ; ξ1,...,ξj (t1 � t2) may be understood as follows:

• The collection of qualifiers ξ1, . . . , ξj keeps track of all the ways that expression
e may treat its context; expression e may be considered to treat its context
according to any qualifier ξ that lower bounds all of ξ1, . . . , ξj . We need a
collection of qualifiers because qualifiers do not, in the presence of qualifier
variables, have greatest lower bounds.

• Evaluated in a context expecting type t whose original answer type was t1,
expression e changes the answer type to t2. This means that our type-and-
effect judgment, disregarding substructural considerations, is equivalent to the
type judgment that Danvy and Filinski write as Γ, t1 ` e : t, t2.
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D À i : k (kinding answer-type effects)

A-K-Effect
D À ξ1 : QUAL · · · D À ξk : QUAL

D À t1 : ? D À t2 : ?

D À
ξ1,...,ξk (t1 � t2) : CTL

D À a � ξ (qualifier bound for answer-type effects)

A-B-Qual
D À ξ � ξ1 · · · D À ξ � ξj

D À t1 : ? D À t2 : ?

D À
ξ1,...,ξj (t1 � t2) � ξ

D À a1 � a2 (answer-type effect subsumption)

ASub-Bot
D À

Ξ(t� t) : CTL

D À ⊥A � Ξ(t� t)

ASub-L
D À

Ξ(t1 � t2) : CTL

D À
L(t1 � t2) � Ξ(t1 � t2)

ASub-Top
D À

Ξ(t1 � t2) : CTL

D À
Ξ(t1 � t2) � U(t1 � t2)

ASub-Join
D À

Ξ1(t1 � t2) � Ξ′1(t1 � t2)

D À
Ξ2(t1 � t2) � Ξ′2(t1 � t2)

D À
Ξ1,Ξ2(t1 � t2) � Ξ′1,Ξ

′
2(t1 � t2)

D; G À e : t ; a (answer-type effect expression typing)

A-T-Reset
D; G À e : t0 ; Ξ(t0 � t)

D; G À reset e : t ;⊥A

A-T-Shift
D; G, x:ξ(t1

⊥A−−( t2) À e : t0 ; Ξ(t0 � t)

D; G À shiftx in e : t1 ; Ξ,ξ(t2 � t)

Figure 17: Statics for answer-type effects
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For answer-type modification effects, we define the partial sequencing operation
as follows:

⊥A ◦ a = a

a ◦ ⊥A = a
Ξ(t′� t2) ◦ Ξ′(t1 � t′) = Ξ,Ξ′(t1 � t2).

Any other cases are undefined.
Collections of qualifiers are quotiented by the following equivalence:

ξ1, ξ2 = ξ1 u ξ2 when ξ1 u ξ2 is defined.

Then we define answer-type modification effects as the triple (A,⊥A, ◦).
The new type rules for answer-type effects appear in Figure 17. For the most

part, these rules treat the collection of qualifiers ξ1, . . . , ξj similarly to the delimited
continuation effect ξ1 t · · · t ξj from §6.1. However, there is some subtlety to the
definition of answer-type effect subsumption: the only non-bottom effects related by
subsumption are those whose before and after answer types match, pairwise, but the
pure effect ⊥A is less than any effect whose before and after answer types match each
other (rule ASub-Bot). This makes sense, as pure expressions do not change the
answer type.

The rules for typing shift and reset expressions are a hybrid of the rules from §6.1,
which they follow for the qualifier portion, and the rules from Danvy and Filinski
(1989), which they follow for maintaining answer types.

Type safety. To prove type safety for λURAL(C) extended with answer-type modifi-
cation, we define the translation parameter as follows:

〈〈τ,⊥A〉〉−A = τ

〈〈τ, Ξ(t1 � t2)〉〉−
A

= t1
∗

〈〈τ,⊥A〉〉+A = τ

〈〈τ, Ξ(t1 � t2)〉〉+
A

= t2
∗

doneA = λx.x

a∗ =


L if a = ⊥A

ξ if a = ξ(t1 � t2)

U otherwise

Theorem 6.3 (Answer-type effect properties).
Answer-type modification effects (A,⊥A, ◦) satisfy Properties 1–5.

Proof. See p. 83. B
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D X̀ i : k (kinding exception effects)

X-K-Sing

D X̀ {ψ} : CTL

X-K-Union
D X̀ Ψ1 : CTL D X̀ Ψ2 : CTL

D X̀ Ψ1 ∪Ψ2 : CTL

D X̀ Ψ � ξ (qualifier bound for exception effects)

X-B-Raise
D X̀ Ψ : CTL

D X̀ Ψ � A

D; G X̀ e : t ; Ψ (exception effect expression typing)

X-T-Raise
D X̀ t : ?

D; • X̀ raise ψ : t ; {ψ}

X-T-Handle
D X̀ G  G1 �G2

D; G1 X̀ e1 : t ; {ψ} ∪Ψ
D; G2 X̀ e2 : t ; Ψ D X̀ G2 � A

D; G X̀ e1 handle ψ → e2 : t ; Ψ

Figure 18: Statics for exception effects

6.3 Exceptions

We add exceptions to λURAL(C) as follows. We assume a set Exn of exception names
ψ and extend the syntax of expressions:

ψ ∈ Exn exception names

e ::= new expressions
| · · · extending syntax from Figure 1
| e1 handle ψ → e2 delimiter
| raise ψ control operator

While these exceptions are simple tags, it would not be difficult to have exceptions
carry values. As in the previous example, we define the dynamics by the CCoS
translation. However, because the CCoS translation for exceptions is type directed,
we show how the type system is extended first.

To type exceptions, we instantiate λURAL(C) as follows. Exception effects, Ψ, are
sets of primitive exception names ψ:
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6.3 Exceptions 6 EXAMPLE CONTROL EFFECTS

Ψ ::= exception effect sets
| ∅ the empty effect
| α an effect variable
| {ψ} singleton effect
| Ψ1 ∪Ψ2 effect union

Let X be the set of exception effect sets (Ψ). Then we define exception effects as
the triple (X,∅,∪). We consider exception effects as true sets, not merely as the free
algebra generated by the syntax. Thus, the subsumption order is set containment:

D X̀ Ψ1 � Ψ2 (exception effect subsumption)

XSub-Subset
Ψ1 ⊆ Ψ2 D X̀ Ψ1 : CTL D X̀ Ψ2 : CTL

D X̀ Ψ1 � Ψ2

The other new type rules for exception effects appear in Figure 18. Note that rule
X-B-Raise says that all exception effects are bounded below by A; this is because
exceptions allow an expression to discard its context but not duplicate it. (Of course,
the empty exception set ∅ is bounded by L by rule C-B-Pure.)

To define the CCoS translation, we assume a run-time representation of exceptions
and exception sets as follows:

• There is an exception pretype exn such that ∆ ` exn : ?.

• Each exception ψ is represented by a λURAL value ψ∗, such that ∆; • ` ψ∗ : Uexn.

• For each exception ψ and pair of λURAL values v1 and v2, there is a λURAL value
[v1, v2]ψ such that

[v1, v2]ψ ψ
∗ 7−→ v1 ψ

∗
ψ 6= ψ′

[v1, v2]ψ ψ
′∗ 7−→ v2 ψ

′∗ .

∆; Γ ` v1 : ξ1(Uexn( τ) ∆ ` ξ1 � ξ
∆; Γ ` v2 : ξ2(Uexn( τ) ∆ ` ξ2 � ξ

∆; Γ ` [v1, v2]ψ : ξ(Uexn( τ)

Intuitively, [v1, v2]ψ performs case analysis on exception values: when applied to
exception ψ, it passes the exception to v1, and when applied to any other exception,
it passes the exception to v2.

For exception effects, we use a typed CCoS translation that takes an extra pa-
rameter: the exception effect of the expression to be translated. We assume that
the generic CCoS has been updated to translate type derivations as well in order
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to propagate control effects correctly. Then we can give the CCoS translation for
exceptions:

Jraise ψKΨ
X

= λ . inl ψ∗

Je1 handle ψ → e2KΨ
X

= λy. [v, y] (Je1K
{ψ}∪Ψ
X (λx. inr x))

where v =

{
λ .Je2K∅X y if Ψ = ∅;
[λ .Je2KΨ

X
y, λx. inl x]ψ if Ψ 6= ∅.

Example. The first Scala example from §1 may be recast in λURAL (with integer
division) as follows:

λz1 z2.pair (ref (z1 / z2)) (ref (z2 / z1))

Let us assume the following (monomorphic, for brevity) types for the operations:

· / · : U(Uint ∅−( U(Uint {DivBy0}−−−−−( Uint))

ref : U(Uint ∅−( Lintref)

pair : U(Lintref ∅−( L(Lintref ∅−( L(Lintref⊗ Lintref)))

To type the application of term pair (ref (z1 / z2)) to term ref (z2 / z1), according to
premise (6) of rule C-T-App, the effect of the operator must be bounded by the
qualifier of the type of the operand. The effect of the operator, pair (ref (z1 / z2)),
is {DivBy0}, based on the type of /; the type of the operand, ref (z2 / z1), is Lintref.
But • X̀ {DivBy0} � L is not derivable—a term that can raise an exception does not
necessarily treat it context linearly—so the original code has a type error in λURAL(C).

We can repair the example, as we did in §1, by explicitly ordering the effects so
that both divisions happen before any references are allocated:

λz1 z2.(λx1 x2.pair (refx1) (refx2)) (z1 / z2) (z2 / z1)

Term λx1 x2.pair (refx1) (refx2) has an unlimited type:

U(Uint ∅−( U(Uint ∅−( L(Lintref⊗ Lintref)))

Thus, it does not matter that its argument, z1 / z2, has non-trivial effect. Similarly,
because the codomain of that type is unlimited, it is permissible that the second
argument, z2 / z1, has non-trivial effect as well. Thus, the repaired example is typeable
in λURAL(C).
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Type safety. To prove type safety for λURAL(C) extended with exceptions, we define
the translation parameter as follows:

〈〈τ,Ψ〉〉−
X

= 〈〈τ,Ψ〉〉+
X

= L(Uexn⊕ τ)

doneX = λx. inr x

Ψ∗ =

{
L if Ψ = ∅
A if Ψ 6= ∅

Theorem 6.4 (Exception effect properties).

Exception effects (X,∅,∪) satisfy Properties 1–5.

Proof. See p. 88. B

7 Conclusion

We began this study with the desire to add linear types to Alms, a general-purpose
programming language with affine types and exceptions. The treatment of exceptions
in §6.3 points the way toward that goal. One question that remains, however, concerns
the pragmatics of checked exceptions in a higher-order language such as Alms, where
latent exception effects are likely to appear on many function arrows. We believe that
with appropriate defaults most function arrows will not require annotation, but more
research is required in that direction.

Another potential direction for future research is to consider how other control
effects fit into our general framework. We suspect that some control operators
common to imperative languages, such as return, break, and goto, absent first-class
labels, would be straightforward. More exotic forms of control may be harder. Some
control operators, such as shift0, are very difficult to type even in a simpler setting
(Kiselyov and Shan 2007), which is why have not considered them. Others, such as
Felleisen’s prompt and control (1988) are probably tractable with a more expressive
version of our generic type system, because effects need to reflect not only how an
expression treats its continuation, but how a continuation, if captured and reinvoked,
treats its new continuation.

For the cases we consider, however, λURAL(C) provides a simple and generic frame-
work for integrating substructural types and control effects. We have shown that
our type system for λURAL(C) is sound provided that the particular instantiation of
control effects meets several criteria, and we have exhibited three instances of control
effects that meet these criteria. We contend that this provides a solid grounding for
the extension of realistic substructural programming languages with control effects.
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A Properties of λURAL

In this section, we state and prove several propositions about λURAL, including two
lemmas from §5.2.

Lemma A.1 (Qualifier subsumption transitivity).
If ∆ ` ξ1 � ξ′ and ∆ ` ξ′ � ξ2 then ∆ ` ξ1 � ξ2.

Proof. By cases on the derivation of ∆ ` ξ1 � ξ′:

Case
∆ ` ξ : QUAL

∆ ` U � ξ
.

That is, ξ1 = U, so by rule QSub-Bot.

Case
∆ ` ξ : QUAL

∆ ` ξ � L
.

That is, ξ′ = L. By cases on the derivation of ∆ ` ξ′ � ξ2:

Case
∆ ` ξ : QUAL

∆ ` U � ξ
.

That is, ξ′ = U, but since ξ′ = L, this case is vacuous.

Case
∆ ` ξ : QUAL

∆ ` ξ � L
.

That is, ξ2 = L, so by rule QSub-Top.

Case
∆ ` ξ : QUAL

∆ ` ξ � ξ
.

That is, ξ2 = ξ′ = L, so by rule QSub-Top.

Case
∆ ` ξ : QUAL

∆ ` ξ � ξ
.

That is, ξ1 = ξ′. Then by a simple substitution.

Lemma A.2 (Meet and join properties).
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Commutativity

• ξ1 u ξ2 = ξ2 u ξ1

• ξ1 t ξ2 = ξ2 t ξ1

Associativity

• ξ1 u (ξ2 u ξ3) = (ξ1 u ξ2) u ξ3

• ξ1 t (ξ2 t ξ3) = (ξ1 t ξ2) t ξ3

Completeness
If ∆ ` ξ1 � ξ2 then

• ξ1 u ξ2 = ξ1

• ξ1 t ξ2 = ξ2

Soundness
If ∆ ` ξ1 : QUAL and ∆ ` ξ2 : QUAL then

• ∆ ` ξ1 u ξ2 � ξ2 when ξ1 u ξ2 is defined
• ∆ ` ξ1 � ξ1 t ξ2 when ξ1 t ξ2 is defined

Optimality
If ∆ ` ξ1 : QUAL and ∆ ` ξ2 : QUAL then

• if ∆ ` ξ � ξ1 and ∆ ` ξ � ξ2 then ∆ ` ξ � ξ1 u ξ2 whenever
ξ1 u ξ2 is defined
• if ∆ ` ξ1 � ξ and ∆ ` ξ2 � ξ then ∆ ` ξ1 t ξ2 � ξ whenever
ξ1 t ξ2 is defined

Domain
The meet ξ1 u ξ2 is not defined if and only if one of:

• ξ1 is a variable and ξ2 is A or R;
• ξ2 is a variable and ξ1 is A or R; or
• ξ1 and ξ2 are two distinct variables.

Likewise for joins.

Substitution
Meet and join respect substitution:

• {ι/α}(ξ1 u ξ2) = {ι/α}ξ1 u {ι/α}ξ2 when ξ1 u ξ2 is defined
• {ι/α}(ξ1 t ξ2) = {ι/α}ξ1 t {ι/α}ξ2 when ξ1 t ξ2 is defined

Proof.

Commutativity By inspection.
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Associativity By inspection. Any multi-meet containing only Ls and
one qualifier ξ (possibly repeated) is ξ; if it contains U at all or
both A and R then it is U; otherwise it is undefined. Any multi-
join containing only Us and one qualifier ξ (possibly repeated) is ξ;
if it contains L at all or both A and R then it is L; otherwise it is
undefined.

Completeness By induction on the qualifier subsumption derivation:

Case
∆ ` α : QUAL

∆ ` U � α
.

Then U u α = U and U t α = α.

Case
q1 � q2

∆ ` q1 � q2

.

By cases on the derivation of q1 � q2:
Case q � q.

Then q u q = q = q t q.
Case U � q.

Then U u q = U and U t q = q.
Case q � L.

Then q u L = q and q t L = L.

Case
∆ ` α : QUAL

∆ ` α � L
.

Then α u L = α and α t L = L.

Case
∆ ` ξ : QUAL

∆ ` ξ � ξ
.

Then ξ u ξ = ξ = ξ t ξ.

Soundness

• We consider whether ∆ ` ξ1 u ξ2 � ξ2 by cases on ξ1 and ξ2:

∆ ` ξ1 u ξ2 � ξ2
ξ2

U R A L α

ξ1

U U � U U � R U � A U � L U � α
R U � U R � R U � A R � L ×
A U � U U � R A � A A � L ×
L U � U R � R A � A L � L α � α
α U � U × × α � L α � α
β U � U × × β � L ×

(× indicates that ξ1 u ξ2 is undefined)
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• We consider whether ∆ ` ξ1 � ξ1 t ξ2 by cases on ξ1 and ξ2:

∆ ` ξ1 � ξ1 t ξ2
ξ2

U R A L α

ξ1

U U � U U � R U � A U � L U � α
R R � R R � R R � L R � L ×
A A � A A � L A � A A � L ×
L L � L L � L L � L L � L L � L
α α � α × × α � L α � α
β β � β × × β � L ×

(× indicates that ξ1 t ξ2 is undefined)

Optimality
Let ∆ ` ξ1 : QUAL and ∆ ` ξ2 : QUAL. Then:

• Suppose that ∆ ` ξ � ξ1 and ∆ ` ξ � ξ2 and consider the
possibilities by which ξ1 u ξ2 may be defined:
Case L u ξ2 = ξ2.

By the assumption that ∆ ` ξ � ξ2.
Case ξ1 u L = ξ.

By symmetry.
Case ξ1 u ξ1 = ξ1.

That is, ξ1 = ξ2. Then by the assumption that ∆ ` ξ � ξ1.
Case U u ξ2 = U.

That is, ξ1 = U. Then ∆ ` ξ � U. By inspection of the
rules for qualifier subsumption, this implies that ξ = U, so
by rule QSub-Bot.

Case ξ1 u U = U.
By symmetry.

Case A u R = U.
By inspection of the rules for qualifier subsumption, ∆ `
ξ � A only if ξ is U or A, and ∆ ` ξ � A only if ξ is U or R.
Then ξ = U, so by rule QSub-Bot.

Case R u A = U.
By symmetry.

• By duality.

Domain
By inspection of the tables in the soundness case.

Substitution
By cases on the definition of meet:
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Case L u ξ = ξ.
Then {ι/α}(L u ξ) = {ι/α}ξ = L u {ι/α}ξ = {ι/α}L u {ι/α}ξ.

Case ξ u L = ξ.
By symmetry.

Case ξ u ξ = ξ.
Then {ι/α}(ξ u ξ) = {ι/α}ξ = {ι/α}ξ u {ι/α}ξ.

Case U u ξ = U.
Then {ι/α}(U u ξ) = {ι/α}U = U = U u {ι/α}ξ = {ι/α}U u
{ι/α}ξ.

Case ξ u U = U.
By symmetry.

Case A u R = U.
Then {ι/α}(A u R) = {ι/α}U = U = A u R = {ι/α}A u {ι/α}R.

Case R u A = U.
By symmetry.

Dually for join.

Lemma A.3 (Lower bound of undefined meets).
If ξ1 u ξ2 is undefined, ∆ ` ξ � ξ1, and ∆ ` ξ � ξ2, then ξ = U.

Proof. If either ξ1 or ξ2 is U or L, or if ξ1 = ξ2, or if one is A and the other R, then
the meet is defined. That leaves only two possibilities:

• One is A or R and the other is a variable α. The only possibilities for ξ to be
less than α are if ξ is α or U. But since α is not less than A nor R, we know
that ξ = U.

• They are different variables α and β. As before, the only ways that ∆ ` ξ � α
is if ξ is either α or U. Similarly, for ∆ ` ξ � β, ξ must be β or U. Since α 6= β,
we know that ξ = U

Note that we do not simply define the meet in such cases to be U, because then
meets would not be preserved by substitution.

Lemma A.4 (Properties of bounds).

1. If ∆ ` ξ1 � ξ2 then ∆ ` ξ1 : QUAL and ∆ ` ξ2 : QUAL.

2. If ∆ ` τ � ξ then ∆ ` τ : ?.

3. If ∆ ` τ : ? then ∆ ` τ � L.

4. If ∆ ` Γ � ξ and x:τ ∈ Γ then ∆ ` τ � ξ.

5. If ∆ ` τ : ? for all τ such that x:τ ∈ Γ, then ∆ ` Γ � L.
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Proof.

1. By induction on the derivation.

2. By cases on the derivation and the previous part.

3. If τ is a type variable, then by rule B-Var. Otherwise, by inversion of rules K-Type,
QSub-Top, and B-Type.

4. By induction on the derivation.

5. By induction on Γ and the rules for context bounding.

Lemma 5.3 (Value strengthening, restated from p. 23).

Any qualifier that upper bounds the type of a value also bounds the portion of the type
context necessary for typing that value. That is, if ∆; Γ ` v : τ and ∆ ` τ � ξ then
there exist some Γ1 and Γ2 such that

• ∆ ` Γ  Γ1 � Γ2,

• ∆; Γ1 ` v : τ,

• ∆ ` Γ1 � ξ, and

• ∆ ` Γ2 � A.

Proof. By induction on the derivation of ∆; Γ ` v : τ:

Case
∆ ` τ : ?

∆; •, x:τ ` x : τ
.

Let Γ1 = •, x:τ and Γ2 = •.

Case
∆ ` ξ : QUAL ∆ ` Γ � ξ ∆; Γ, x:τ1 ` e : τ2

∆; Γ ` λx.e : ξ(τ1 ( τ2)
.

Let Γ1 = Γ and Γ2 = •.

Case
∆ ` ξ : QUAL ∆ ` Γ � ξ ∆, α:κ; Γ ` e : τ

∆; Γ ` Λ.e : ξ∀α:κ.τ
.

Let Γ1 = Γ and Γ2 = •.

Case
∆ ` τ1 � ξ ∆ ` τ2 : ? ∆; Γ ` v1 : τ1

∆; Γ ` inl v1 : ξ(τ1 ⊕ τ2)
.

By the induction hypothesis, there exist some Γ1 and Γ2 such that

48



A PROPERTIES OF λURAL

(1) ∆ ` Γ  Γ1 � Γ2,

(2) ∆; Γ1 ` v1 : τ1,

(3) ∆ ` Γ2 � A, and

(4) ∆ ` Γ1 � ξ.

Then,

(5) ∆; Γ1 ` inl v1 : ξ(τ1 ⊕ τ2) by rule T-Inl .

Case
∆ ` τ2 � ξ ∆ ` τ1 : ? ∆; Γ ` v2 : τ2

∆; Γ ` inr v2 : ξ(τ1 ⊕ τ2)
.

By symmetry.

Case

∆ ` ξ′ : QUAL ∆; Γ ` v1 : ξ1(τ1 ( τ)
∆ ` ξ1 � ξ ∆; Γ ` v2 : ξ2(τ2 ( τ) ∆ ` ξ2 � ξ

∆; Γ ` [v1, v2] : ξ(ξ
′
(τ1 ⊕ τ2)( τ)

.

By the induction hypothesis, there exist some Γ11 and Γ21 such that

(1) ∆ ` Γ  Γ11 � Γ21,

(2) ∆; Γ12 ` v1 : ξ1(τ1 ( τ),

(3) ∆ ` Γ21 � A, and

(4) ∆ ` Γ11 � ξ1.

Likewise, by the induction hypothesis, there exist some Γ12 and Γ22 such that

(5) ∆ ` Γ  Γ12 � Γ22,

(6) ∆; Γ13 ` v2 : ξ2(τ2 ( τ),

(7) ∆ ` Γ22 � A, and

(8) ∆ ` Γ12 � ξ2.

Then let Γ1 = Γ11∪Γ12 and let Γ2 = Γ21∩Γ22. Note that because each pair is split
from the same Γ, they agree everywhere that they are defined. Furthermore,
note that if ξ1 upper bounds the qualifiers of the codomain of Γ11 and ξ2 upper
bounds the qualifiers of the codomain of Γ12, then ξ upper bounds the qualifiers
of the codomain of Γ1:

(9) ∆ ` Γ1 � ξ.

Furthermore,
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(10) ∆; Γ1 ` v1 : ξ1(τ1 ( τ) by weak.

(11) ∆; Γ1 ` v2 : ξ2(τ2 ( τ) by weak.

(12) ∆; Γ1 ` [v1, v2] : ξ(ξ
′
(τ1 ⊕ τ2)( τ) by rule T-SumE .

Case

∆ ` Γ  Γ1 � Γ2

∆; Γ1 ` v1 : τ1 ∆ ` τ1 � ξ ∆; Γ2 ` v2 : τ2 ∆ ` τ2 � ξ

∆; Γ ` 〈v1, v2〉 : ξ(τ1 ⊗ τ2)
.

By the induction hypothesis, there exist some Γ11 and Γ21 such that
(1) ∆ ` Γ1  Γ11 � Γ12,

(2) ∆; Γ11 ` v1 : τ1,

(3) ∆ ` Γ12 � A, and

(4) ∆ ` Γ11 � ξ.

Likewise, by the induction hypothesis, there exist some Γ21 and Γ21 such that

(5) ∆ ` Γ2  Γ21 � Γ22,

(6) ∆; Γ21 ` v2 : τ2,

(7) ∆ ` Γ22 � A, and

(8) ∆ ` Γ21 � ξ.

Then let Γ1 = Γ11 ∪ Γ21 and let Γ2 = Γ12 ∪ Γ22. Note that because each pair is
split from the same Γ, they agree everywhere that they are defined. Note also
that Γ can be split as

(9) ∆ ` Γ  Γ1 � Γ2.

Furthermore, note that because ξ upper bounds the qualifiers of the codomains
of both Γ11 and Γ21, it also upper bounds the qualifiers of the codomain of Γ1:

(10) ∆ ` Γ1 � ξ.

Furthermore,

(11) ∆; Γ1 ` v1 : τ1 by weak.

(12) ∆; Γ1 ` v2 : τ2 by weak.

(13) ∆; Γ1 ` 〈v1, v2〉 : ξ(τ1 ⊗ τ2) by rule T-Prod .
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Case
∆ ` ξ′ : QUAL ∆; Γ ` v : ξ(τ1 (

ξ(τ2 ( τ))

∆; Γ ` uncurry v : ξ(ξ
′
(τ1 ⊗ τ2)( τ)

.

As in the inl v case.

Case
∆ ` ξ : QUAL

∆; • ` 〈〉 : ξ1
.

Let Γ1 = Γ2 = •.

Case
∆ ` ξ : QUAL ∆ ` τ : ? ∆; Γ ` v : ξ

′
1

∆; Γ ` ignore v : ξ(τ( τ)
.

As in the inl v case.

Case
∆ ` Γ  Γ′1 � Γ′2 ∆; Γ′1 ` v : τ ∆ ` Γ′2 � A

∆; Γ ` v : τ
.

By the induction hypothesis, there exist some Γ11 and Γ12 such that

(1) ∆ ` Γ′1  Γ11 � Γ12,

(2) ∆; Γ11 ` v : τ,

(3) ∆ ` Γ12 � A, and

(4) ∆ ` Γ11 � ξ.

Then let Γ1 = Γ11 and let Γ2 = Γ′2 ∪ Γ12. Note that because ∆ ` Γ′2 � A and
∆ ` Γ12 � A, we know that ∆ ` Γ2 � A as well.

Lemma 5.2 (Dereliction, restated from p. 23).

If ∆; Γ ` v : ξ(τ1 ( τ2) and ∆ ` ξ � ξ′ then ∆; Γ ` λx.v x : ξ
′
(τ1 ( τ2).

Proof. By Lemma 5.3, there exist some Γ1 and Γ2 such that:

(1) ∆ ` Γ  Γ1 � Γ2,

(2) ∆; Γ1 ` v : ξ(τ1 ( τ2),

(3) ∆ ` Γ2 � A, and

(4) ∆ ` Γ1 � ξ.

Then:

(5) ∆; •, x:τ1 ` x : τ1 by rule T-Var

(6) ∆; Γ1, x:τ1 ` v x : τ2 by rule T-App

(7) ∆ ` Γ1 � ξ′ by ind. Γ1, trans.

(8) ∆; Γ1 ` λx.v x : ξ
′
(τ1 ( τ2) by rule T-Abs.
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B Properties of λURAL(C) and the Translation
In this section, we prove several propositions about λURAL(C) and the CCoS transla-
tion, including those from §5.

Lemma B.1 (λURAL(C) Regularity).

1. If D C̀ G  G1 �G1 and x:t′ ∈ G, G1, or G2, then D C̀ t
′ : ?.

2. If D; G C̀ e : t ; c and x:t′ ∈ G then D C̀ t
′ : ?

3. If D; G C̀ e : t ; c then D C̀ t : ?

4. If D; G C̀ e : t ; c then D C̀ c : CTL

Proof.

1. By induction on the derivation.

2. By induction on the derivation, using the previous part.

3. By induction on the derivation, using the previous part.

4. By induction on the derivation, considering that “derivations” with malformed
effect sequences are not valid derivations.

Lemma 5.4 (Translation of kinding, restated from p. 27).

For all D, i, and k, if D C̀ i : k then D∗ ` i∗ : k∗.

Proof. By simple induction on the kinding derivation:

Case
α:k ∈ D

D C̀ α : k
.

Then
(1) α:k∗ ∈ D∗ by the definition of D∗

and
(2) α∗ = α

and thus D∗ ` α∗ : k∗ by rule K-Var.

Case D C̀ q : QUAL.

By rule K-Qual.

Case
D C̀ t : ? D C̀ ξ : QUAL

D C̀
ξt : ?

.
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(1) D∗ ` t∗ : ? by IH,

(2) D∗ ` ξ∗ : QUAL by IH,

(3) (ξt)∗ = ξ(t∗) by def. t∗, and

(4) ξ∗ = ξ by def. ξ∗.

Thus, by rule K-Type.

Case D C̀ 1 : ?.

By rule K-Unit.

Case
D C̀ t1 : ? D C̀ t2 : ?

D C̀ t1 ⊗ t2 : ?
.

(1) D∗ ` t1∗ : ? by IH and

(2) D∗ ` t2∗ : ? by IH.

Thus by rule K-Prod.

Case
D C̀ t1 : ? D C̀ t2 : ?

D C̀ t1 ⊕ t2 : ?
.

Likewise.

Case
D C̀ t1 : ? D C̀ t2 : ? D C̀ c : CTL

D C̀ t1
c−( t2 : ?

.

(1) D∗, α:? ` t1∗ : ? by IH and weak.

(2) D∗, α:? ` t2∗ : ? by IH and weak.

(3) D∗, α:? ` c∗ : QUAL by IH and weak.

(4) D∗, α:? ` L : QUAL by rule K-Qual

(5) D∗, α:? ` α : ? by rule K-Var

(6) D∗, α:? ` 〈〈α, c〉〉−
C

: ? by (5), Property 1.2

(7) D∗, α:? ` t2∗( 〈〈α, c〉〉−C : ? by (2, 6), rule K-Arr

(8) D∗, α:? ` c∗(t2
∗( 〈〈α, c〉〉−

C
) : ? by (3, 7),

rule K-Type
(9) D∗, α:? ` 〈〈α, c〉〉+

C
: ? by (5), Property 1.2

(10) D∗, α:? ` c∗(t2
∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
: ? by (8–9), rule K-Arr

(11) D∗, α:? ` L(c
∗
(t2
∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
) : ? by (4, 10),

rule K-Type
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(12) D∗, α:? ` t1∗( L(c
∗
(t2
∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
) : ?
by (1, 11),
rule K-Arr

(13) D∗, α:? ` L(t1
∗( L(c

∗
(t2
∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
)) : ?
by (4, 12),
rule K-Type

(14) D∗ ` ∀α: ? .L(t1
∗( L(c

∗
(t2
∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
)) : ?

by (13), rule K-All

(15) D∗ ` (t1
c−( t2)∗ : ? by (14), def. t∗.

Case
D C̀ t : ?

D C̀ ref t : ?
.

As in product and sum cases.

Case
D, β:k C̀ t : ? D C̀ c : CTL

D C̀ ∀cβ:k.t : ?
.

(1) D, α:?, β:k C̀ c : CTL by prem., weak.

(2) D∗, α:?, β:k∗ ` α : ? by rule K-Var

(3) D∗, α:?, β:k∗ ` t∗ : ? by IH, weak.

(4) D∗, α:?, β:k∗ ` 〈〈α, c〉〉−
C

: ? by (1–2), Property 1.2

(5) D∗, α:?, β:k∗ ` t∗( 〈〈α, c〉〉−
C

: ? by (3–4), rule K-Arr

(6) D∗, α:?, β:k∗ ` c∗ : QUAL by IH, weak.

(7) D∗, α:?, β:k∗ ` c∗(t∗( 〈〈α, c〉〉−
C

) : ? by (5–6), rule K-Type

(8) D∗, α:?, β:k∗ ` 〈〈α, c〉〉+
C

: ? by (1–2), Property 1.2

(9) D∗, α:?, β:k∗ ` c∗(t∗( 〈〈α, c〉〉−
C

)( 〈〈α, c〉〉+
C

: ? by (7–8), rule K-Arr

(10) D∗, α:?, β:k∗ ` L(c
∗
(t∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
) : ?

by (9), rule K-Type

(11) D∗, α:? ` ∀β:k∗.L(c
∗
(t∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
) : ?

by (10), rule K-All

(12) D∗, α:? ` L∀β:k∗.L(c
∗
(t∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
) : ?
by (11), rule K-Type

(13) D∗ ` ∀α: ? .L∀β:k∗.L(c
∗
(t∗( 〈〈α, c〉〉−

C
)( 〈〈α, c〉〉+

C
) : ?
by (12), rule K-All

(14) D∗ ` (∀cβ:k.t)∗ : ? by (13), def. t∗.
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Lemma B.2 (Translation of qualifier judgments).

1. If D C̀ ξ1 � ξ2 then D∗ ` ξ1 � ξ2.

2. If D C̀ t � ξ then D∗ ` t∗ � ξ.

3. If D C̀ G � ξ then D∗ ` G∗ � ξ.

4. If D C̀ G  G1 �G2 then D∗ ` G∗  G1
∗ �G2

∗

Proof. By simple induction on each derivation.

Lemma 5.5 (Translation of effect bounds, restated from p. 27).

If D C̀ c � ξ then D∗ ` ξ � c∗.

Proof. By cases on the derivation:

Case
D C̀ ξ : QUAL

D C̀ ⊥D � ξ
.

Then ⊥C
∗ = L, so by rule QSub-Top.

Case
D C̀ c : CTL

D C̀ c � U
.

By rule QSub-Bot.

Additional cases must be proved for new rules added by specific control effect
instances.

Lemma 5.6 (Translation of effect subsumption, restated from p. 27).

If D C̀ c1 � c2 then D∗ ` c2
∗ � c1

∗.

Proof. By induction on the derivation:

Case
D C̀ c : CTL

D C̀ c � c
.

By rule QSub-Refl.

Case
D C̀ c1 � c′ D C̀ c

′ � c2

D C̀ c1 � c2

.

By the induction hypothesis twice and Lemma A.1.

Additional cases must be proved for new rules added by specific control effect
instances.
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Lemma 5.7 (Translation of term typing, restated from p. 28).

If D; G C̀ e : t ; c then

D∗; G∗ ` JeK
C

: L(c
∗
(t∗( 〈〈t∗, c〉〉−

C
)( 〈〈t∗, c〉〉+

C
).

Proof. We generalize the lemma to the following induction hypothesis:

If D; G C̀ e : t ; c, then for all τ0 such that D∗ ` τ0 : ?, and for
all ξ0 such that D∗ ` ξ0 � c∗, it is the case that D∗; G∗ ` JeK

C
:

L(ξ0(t∗( 〈〈τ0, c〉〉−C )( 〈〈τ0, c〉〉+C )

We use lexical induction on the pair of: 1) the size of e, using size defined as
follows, and 2) the height of the typing derivation for D; G C̀ e : t ; c. The size of an
expression is given by:

|x| = 1 |λx.e′| = 1 + |e′|
|Λ.e′| = 1 + |e′| |inl v| = 1 + |v|
|inr v| = 1 + |v| |[v1, v2]| = |v1|+ |v2|

|〈v1, v2〉| = |v1|+ |v2| |uncurry v| = 3 + |v|
|〈〉| = 1 |ignore v| = 1 + |v|

|e1 e2| = |e1|+ |e2| |e′ | = 1 + |e′|
|newq e′| = 1 + |e′| |free e′| = 1 + |e′|
|read e′| = 1 + |e′| |swap e1 e2| = |e1|+ |e2|

|e1 handle ψ → e2| = |e1|+ |e2| |raise ψ| = 1

|reset e| = 1 + |e| |shiftx in e| = 1 + |e|

In particular, this means that we can apply the induction hypothesis to any smaller
expression than e, or to the same expression e provided that we use a subderivation
of the derivation at hand. We proceed by cases on the conclusion of the typing
derivation. We start with the cases that apply to values, since those have much in
common:

Case v.

By inspection, note that in all rules for typing values, the effect is pure, and
thus:

(1) c = ⊥C

Note further that by Property 1.1,

(2) 〈〈τ ′, c〉〉−
C

= 〈〈τ ′, c〉〉+
C

= 〈〈τ ′〉〉C.

Furthermore, by the definition of JvKC, we know that
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(3) JeKC = λy.y v∗.

Thus, it is sufficient to show that D∗; G∗ ` λy.y v∗ : L(ξ0(t∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)
(where y is fresh for v). Suppose that (4) D∗; G∗ ` v∗ : t∗. Then:

(5) D∗ ` L : QUAL by rule K-Qual

(6) D C̀ t : ? by Lemma B.1

(7) D∗ ` t∗ : ? by Lemma 5.4

(8) D∗ ` ξ0(t∗( 〈〈τ ′〉〉C) : ? by (5, 7), Property 1.2

(9) D∗; •, y:ξ0(t∗( 〈〈τ ′〉〉C) ` y : ξ0(t∗( 〈〈τ ′〉〉C) by (8)

(10) D∗ ` G∗  •�G∗ by ind. G∗,
rule S-ConsR

(11) D∗ ` G∗, y:ξ0(t∗( 〈〈τ ′〉〉C) •, y:ξ0(t∗( 〈〈τ ′〉〉C)�G∗

by (10), rule S-ConsL

(12) D∗; G∗, y:ξ0(t∗( 〈〈τ ′〉〉C) ` y v∗ : 〈〈τ ′〉〉C by (4, 9, 11)

(13) D∗; G∗ ` λy.y v∗ : L(ξ0(t∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C) by (5, 12).

Therefore, it is sufficient to show (4) D∗; G∗ ` v∗ : t∗. We proceed by a nested
induction on the structure of v, considering the possible typing derivations:

Case
D C̀ t : ?

D; •, x:t C̀ x : t ;⊥C

.

By rule T-Var.

Case
D C̀ ξ : QUAL D C̀ G � ξ D; G, x:t1 C̀ e : t2 ; c′

D; G C̀ λx.e : ξ(t1
c′−( t2) ;⊥C

.

We want to show that D∗; G∗ ` (λx.e)∗ : ξ((t1
c′−( t2)∗). Note that

(1) (t1
c′−( t2)∗ = ∀α: ? .L(t1

∗( L(c
′∗

(t2
∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
))

by def. t∗ and
(2) (λx.e)∗ = Λ.λx.JeKC by def. v∗.

Then

(3) D, α:?; G, x:t1 C̀ e : t2 ; c′ by weak.
(4) D∗, α:? ` α : ? by rule K-Var
(5) D∗, α:?; G∗, x:t1

∗ ` JeKC : L(c
′∗

(t2
∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
)

by IH, (3–4)
(6) D∗, α:? ` G∗ � L by Lemma A.4
(7) D∗, α:?; G∗ ` λx.JeKC : L(t1

∗( L(c
′∗

(t2
∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
))

by (5–6)
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(8) D∗ ` G∗ � ξ by Lemma B.2
(9) D∗; G∗ ` Λ.λx.JeKC :

ξ∀α: ? .L(t1
∗( L(c

′∗
(t2
∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
))

by (7–8)
(10) D∗; G∗ ` (λx.e)∗ : ξ((t1

c′−( t2)∗) by (1–2, 9).

Case
D C̀ ξ : QUAL D C̀ G � ξ D, β:k; G C̀ e : t ; c′

D; G C̀ Λ.e : ξ∀c′β:k.t ;⊥C

.

We want to show that D∗; G∗ ` (Λ.e)∗ : ξ((∀c′β:k.t)∗). Note that
(1) (∀c′β:k.t)∗ = ∀α: ? .L∀β:k∗.L(c

′∗
(t∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
)

by def. t∗ and
(2) (Λ.e)∗ = Λ.Λ.JeKC by def. v∗.

Then

(3) D, β:k, α:?; G C̀ e : t ; c′ by weak.
(4) D∗, β:k∗, α:? ` α : ? by rule K-Var
(5) D∗, β:k∗, α:?; G∗ ` JeKC : L(c

′∗
(t∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
)

by IH, (3–4)
(6) D∗, β:k∗, α:? ` G∗ � L by Lemma A.4
(7) D∗, α:?; G∗ ` Λ.JeKC : L∀β:k∗.L(c

′∗
(t∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
)

by (5–6)
(8) D∗ ` G∗ � ξ by Lemma B.2
(9) D∗; G∗ ` Λ.Λ.JeKC :

ξ∀α: ? .L∀β:k∗.L(c
′∗

(t∗( 〈〈α, c′〉〉−
C

)( 〈〈α, c′〉〉+
C

)
by (7–8)

(10) D∗; G∗ ` (Λ.e)∗ : ξ((∀c′β:k.t)∗) by (1–2, 9).

Case
D C̀ t1 � ξ D C̀ t2 : ? D; G C̀ v1 : t1 ;⊥C

D; G C̀ inl v1 : ξ(t1 ⊕ t2) ;⊥C

.

We want to show that D∗; G∗ ` (inl v1)∗ : ξ((t1 ⊕ t2)∗). Note that
(1) (t1 ⊕ t2)∗ = t1

∗ ⊕ t2∗ by def. t∗ and
(2) (inl v1)∗ = inl v1

∗ by def. v∗.

Then

(3) D∗ ` t1∗ � ξ by Lemma B.2
(4) D∗ ` t2∗ : ? by Lemma 5.4
(5) D∗; G∗ ` v1

∗ : t1
∗ by IH (inner)

(6) D∗; G∗ ` inl v1
∗ : ξ(t1

∗ ⊕ t2∗) by (3–5)
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(7) D∗; G∗ ` (inl v1)∗ : (ξ(t1 ⊕ t2))∗ by (1–2, 6).

Case
D C̀ t2 � ξ D C̀ t1 : ? D; G C̀ v2 : t2 ;⊥C

D; G C̀ inr v2 : ξ(t1 ⊕ t2) ;⊥C

.

By symmetry.

Case

D C̀ ξ
′ : QUAL D; G C̀ v1 : ξ1(t1

c′−( t) ;⊥C

D C̀ ξ1 � ξ D; G C̀ v2 : ξ2(t2
c′−( t) ;⊥C D C̀ ξ2 � ξ

D; G C̀ [v1, v2] : ξ(ξ
′
(t1 ⊕ t2)

c′−( t) ;⊥C

.

We want to show that D∗; G∗ ` [v1, v2]∗ : ξ((ξ
′
(t1 ⊕ t2)

c′−( t)∗). Note that

(1) (ξ
′
(t1 ⊕ t2)

c′−( t)∗ =
∀α: ? .L(ξ

′
(t1
∗ ⊕ t2∗)( L(c

′∗
(t∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
))

by def. t∗ and
(2) [v1, v2]∗ = Λ. [λx.v1

∗ x, λx.v2
∗ x] by def. v∗.

Then:

(3) D∗, α:? ` ξ′ : QUAL by Lemma 5.4, weak.
(4) D∗, α:?; •, x:t1

∗ ` x : t1
∗ by rule T-Var

(5) D∗, α:?; G∗ ` v1
∗ : ξ1((t1

c′−( t)∗) by IH (inner), weak.
(6) D∗, α:?; G∗ ` v2

∗ : ξ2((t2
c′−( t)∗) by IH (inner), weak.

By Lemma 5.3, there exist some Γ11 and Γ12 such that

(7) D∗, α:? ` G∗  Γ11 � Γ12,

(8) D∗, α:?; Γ11 ` v1
∗ : ξ1((t1

c′−( t)∗),

(9) D∗, α:? ` Γ12 � A, and
(10) D∗, α:? ` Γ11 � ξ1,

and likewise, there exist some Γ21 and Γ22 such that

(11) D∗, α:? ` G∗  Γ21 � Γ22,

(12) D∗, α:?; Γ21 ` v2
∗ : ξ2((t2

c′−( t)∗),

(13) D∗, α:? ` Γ22 � A, and
(14) D∗, α:? ` Γ21 � ξ2.

Let Γ1 = Γ11 ∪ Γ21. Then:

(15) D∗, α:? ` Γ1 � ξ by (10, 14)
(16) D∗, α:?; Γ1 ` v1

∗ : ξ1((t1
c′−( t)∗) by (5), weak.

(17) D∗, α:?; Γ1 ` v1
∗ :

ξ1∀β: ? .L(t1
∗( L(c

′∗
(t∗( 〈〈β, c′〉〉−

C
)( 〈〈β, c′〉〉+

C
))

by def. t∗, (5)
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(18) D∗, α:?; Γ1 ` v1
∗ : L(t1

∗( L(c
′∗

(t∗( 〈〈α, c′〉〉−
C

)( 〈〈α, c′〉〉+
C

))
by (17)

(19) D∗, α:? ` Γ1, x:t1
∗  Γ1 � •, x:t1

∗ by rules S-ConsL and
S-ConsR

(20) D∗, α:?; Γ1, x:t1
∗ ` v1

∗ x : L(c
′∗

(t∗( 〈〈α, c′〉〉−
C

)( 〈〈α, c′〉〉+
C

)
by (4, 18–19)

(21) D∗, α:?; Γ1 ` λx.v1
∗ x : L(t1

∗( L(c
′∗

(t∗( 〈〈α, c′〉〉−
C

)( 〈〈α, c′〉〉+
C

))
by (20)

(22) D∗, α:?; Γ1 ` λx.v2
∗ x : L(t2

∗( L(c
′∗

(t∗( 〈〈α, c′〉〉−
C

)( 〈〈α, c′〉〉+
C

))
by symmetry

(23) D∗, α:?; Γ1 ` [λx.v1
∗ x, λx.v2

∗ x] :
L(ξ
′
(t1
∗ ⊕ t2∗)( L(c

′∗
(t∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
))

by (3, 21–22)
(24) D∗; Γ1 ` Λ. [λx.v1

∗ x, λx.v2
∗ x] : ξ((ξ

′
(t1 ⊕ t2)

c′−( t)∗)
by (1, 15, 23),
rule T-TAbs

(25) D∗; Γ1 ` [v1, v2]∗ : (ξ(ξ
′
(t1 ⊕ t2)

c′−( t))∗ by (2).

Case

D C̀ G  G1 �G2

D; G1 C̀ v1 : t1 ;⊥C D C̀ t1 � ξ
D; G2 C̀ v2 : t2 ;⊥C D C̀ t2 � ξ

D; G C̀ 〈v1, v2〉 : ξ(t1 ⊗ t2) ;⊥C

.

We want to show that D∗; G∗ ` 〈v1, v2〉∗ : ξ((t1 ⊗ t2)∗). Note that
(1) (t1 ⊗ t2)∗ = t1

∗ ⊗ t2∗ by def. t∗ and
(2) 〈v1, v2〉∗ = 〈v1

∗, v2
∗〉 by def. v∗.

Then
(3) D∗ ` G∗  G1

∗ �G2
∗ by Lemma B.2

(4) D∗; G1
∗ ` v1

∗ : t1
∗ by IH (inner)

(5) D∗ ` t1∗ � ξ by Lemma B.2
(6) D∗; G2

∗ ` v2
∗ : t2

∗ by IH (inner)
(7) D∗ ` t2∗ � ξ by Lemma B.2
(8) D∗; G∗ ` 〈v1

∗, v2
∗〉 : ξ(t1

∗ ⊗ t2∗) by (3)–(7)
(9) D∗; G∗ ` 〈v1, v2〉∗ : (ξ(t1 ⊗ t2))∗ by (1–2, 8).

Case

D C̀ ξ
′ : QUAL

D; G C̀ v : ξ(t1
c1−( ξ(t2

c2−( t)) ;⊥C D C̀ c1 5 c2 : CTL

D; G C̀ uncurry v : ξ(ξ
′
(t1 ⊗ t2)

c15c2−−−( t) ;⊥C

.

We want to show that D∗; G∗ ` (uncurry v)∗ : ξ((ξ
′
(t1 ⊗ t2)

c15c2−−−( t)∗).
Then:
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(1) (ξ
′
(t1 ⊗ t2)

c15c2−−−( t)∗ = ∀α: ?
.L(ξ

′
(t1
∗ ⊗ t2∗)( L((c15c2)∗(t∗( 〈〈α, c1 5 c2〉〉−C )( 〈〈α, c1 5 c2〉〉+C ))

by def. t∗ and
(2) (uncurry v)∗ = Λ. uncurry (λx1.λx2.Jv x1 x2KC)

by def. v∗.
(3) D, α:?; G C̀ v : ξ(t1

c1−( ξ(t2
c2−( t)) ;⊥C by prem., weak.

(4) D, α:?; •, x1:t1 C̀ x1 : t1 ;⊥C by rule C-T-Var
(5) D, α:?; •, x2:t2 C̀ x2 : t2 ;⊥C by rule C-T-Var
(6) D, α:?; G, x1:t1 C̀ v x1 : ξ(t2

c2−( t) ; c1 by (3–4),
rule C-T-App

(7) D, α:?; G, x1:t1, x2:t2 C̀ v x1 x2 : t ; c1 5 c2 by (5–6),
rule C-T-App

(8) |v x1 x2| = 2 + |v| by def. |·|
(9) |uncurry v| = 3 + |v| by def. |·|
(10) |v x1 x2| < |uncurry v| by (8–9)
(11) D∗ ` (c1 5 c2)∗ � (c1 5 c2)∗ by rule QSub-Refl
(12) D∗, α:?; G∗, x1:t1

∗, x2:t2
∗ ` Jv x1 x2KC :

L((c15c2)∗(t∗( 〈〈α, c1 5 c2〉〉−C )( 〈〈α, c1 5 c2〉〉+C )
by IH (outer), (10–11)

(13) D∗, α:?; G∗ ` λx1.λx2.Jv x1 x2KC :
L(t1

∗( L(t2
∗( L((c15c2)∗(t∗( 〈〈α, c1 5 c2〉〉−C )( 〈〈α, c1 5 c2〉〉+C )))

by (12), rule T-Abs2

(14) D∗, α:? ` ξ′ : QUAL by Lemma 5.4, weak.
(15) D∗, α:?; G∗ ` uncurry (λx1.λx2.Jv x1 x2KC) :

L(ξ
′
(t1
∗ ⊗ t2∗)( L((c15c2)∗(t∗( 〈〈α, c1 5 c2〉〉−C )( 〈〈α, c1 5 c2〉〉+C ))

by (13–14)

By Lemma 5.3, there exist some Γ1 and Γ2 such that

(16) D∗, α:? ` G∗  Γ1 � Γ2,

(17) D∗, α:?; Γ1 ` uncurry (λx1.λx2.Jv x1 x2KC) :
L(ξ
′
(t1
∗ ⊗ t2∗)( L((c15c2)∗(t∗( 〈〈α, c1 5 c2〉〉−C )( 〈〈α, c1 5 c2〉〉+C ))

(18) D∗, α:? ` Γ2 � A, and
(19) D∗, α:? ` Γ1 � ξ.

Then:

(20) D∗; Γ1 ` Λ. uncurry (λx1.λx2.Jv x1 x2KC) :
ξ∀α: ? .L(ξ

′
(t1
∗ ⊗ t2∗)( L((c15c2)∗(t∗( 〈〈α, c1 5 c2〉〉−C )( 〈〈α, c1 5 c2〉〉+C ))

by (17, 19)
(21) D∗; Γ1 ` (uncurry v)∗ : (ξ((ξ

′
(t1 ⊗ t2)

c15c2−−−( t)))∗

by (1–2, 20)
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(22) D∗; G∗ ` (uncurry v)∗ : (ξ((ξ
′
(t1 ⊗ t2)

c15c2−−−( t)))∗

by weak., (18, 21)

Case
D C̀ ξ : QUAL

D; • C̀ 〈〉 : ξ1 ;⊥C

.

We want to show that D∗; G∗ ` 〈〉∗ : ξ(1∗). Note that
(1) 1∗ = 1 by def. t∗ and
(2) 〈〉∗ = 〈〉 by def. v∗.

Then:

(3) D∗ ` ξ : QUAL by Lemma 5.4
(4) D∗; • ` 〈〉∗ : ξ1∗ by rule T-Unit, (1–2).

Case
D C̀ ξ : QUAL D C̀ t : ? D; G C̀ v : ξ

′
1 ;⊥C

D; G C̀ ignore v : ξ(t
⊥C−( t) ;⊥C

.

We want to show that D∗; G∗ ` (ignore v)∗ : ξ((t
⊥C−( t)∗). Note that

(1) (t
⊥C−( t)∗ = ∀α: ? .L(t∗( L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C))

by def. t∗ and
(2) (ignore v)∗ = Λ.λx. ignore v∗ JxKC by def. v∗.

Then:

(3) D∗ ` ξ : QUAL by Lemma 5.4
(4) D∗ ` t∗ : ? by Lemma 5.4
(5) D∗, α:?; G∗ ` v∗ : ξ

′
1 by IH (inner), def. t∗

(6) D∗, α:? ` L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C) : ? by (4), rule K-Var,
Property 1.2, . . .

(7) D∗, α:?; G∗ ` ignore v∗ :
ξ(L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C)( L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C))

by (5) and
rule T-UnitE

By Lemma 5.3, there exist some Γ1 and Γ2 such that

(8) D∗, α:? ` G∗  Γ1 � Γ2,

(9) D∗, α:?; Γ1 ` ignore v∗ :
ξ(L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C)( L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C))

(10) D∗, α:? ` Γ2 � A, and
(11) D∗, α:? ` Γ1 � ξ.

Then:

(12) D, α:?; •, x:t C̀ x : t ;⊥C by rule C-T-Var
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(13) D∗, α:? ` α : ? by rule K-Type
(14) |x| = 1 < 1 + |v| = |ignore v| by def. |·|
(15) D∗ ` L � ⊥C

∗ by rule QSub-Refl
(16) D∗, α:?; •, x:t∗ ` JxKC : L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C)

by IH (outer), (12–15)
(17) D∗, α:? ` Γ1, x:t∗  Γ1 � •, x:t∗ by rules S-ConsR

and S-ConsL, . . .
(18) D∗, α:?; Γ1, x:t∗ ` ignore v∗ JxKC : L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C)

by (7, 16–17)
(19) D∗, α:?; Γ1 ` λx. ignore v∗ JxKC : L(t∗( L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C))

by (18)
(20) D∗; Γ1 ` Λ.λx. ignore v∗ JxKC :

ξ∀α: ? .L(t∗( L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C)) by (11, 20)
(21) D∗; Γ1 ` (ignore v)∗ : (ξ(t

⊥C−( t))∗ by (1–2)
(22) D∗; G∗ ` (ignore v)∗ : (ξ(t

⊥C−( t))∗ by weak. and (10).

That completes the value case. We continue with the non-value expressions, again
considering type derivations:

Case
D C̀ G  G1 �G2 D; G1 C̀ e : t ; c D C̀ G2 � A

D; G C̀ e : t ; c
.

By Lemma B.2 and IH.

Case
D; G C̀ e : t ; c′ D C̀ c

′ � c

D; G C̀ e : t ; c
.

(1) D∗ ` c∗ � c′∗ by Property 5.3
(2) D∗ ` ξ � c∗ by antecedent
(3) D∗ ` ξ � c′∗ by (1–2), Lemma A.1
(4) ∃τ ′′.〈〈τ ′′, c′〉〉−

C
= 〈〈τ ′, c〉〉−

C
and 〈〈τ ′′, c′〉〉+

C
= 〈〈τ ′, c〉〉+

C

by (1), Property 1.4
(5) D∗; G∗ ` JeKC : L(ξ(t∗( 〈〈τ ′′, c′〉〉−

C
)( 〈〈τ ′′, c′〉〉+

C
) by IH(τ ′′), (3)

(6) D∗; G∗ ` JeKC : L(ξ(t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

) by (4–5).

Case

D C̀ G  G1 �G2 D; G1 C̀ e1 : ξ1(t1
c′−( t2) ; c′1 D; G2 C̀ e2 : t1 ; c′2

D C̀ G2 � ξ2 D C̀ c
′
1 � ξ2 D C̀ c

′
2 � ξ1 D C̀ c

′
1 5 c′2 5 c′ : CTL

D; G C̀ e1 e2 : t2 ; c′1 5 c′2 5 c′
.

We want to show that

D∗; G∗ ` Je1 e2KC : L(ξ0(t2
∗( 〈〈τ ′, c′1 5 c′2 5 c′〉〉−

C
)( 〈〈τ ′, c′1 5 c′2 5 c′〉〉+

C
).
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Consider whether the term e1 e2 has a control effect:

Case c′1 5 c′2 5 c′ 6= ⊥C.
By Property 4.2, there exist some c1 6= ⊥C, c2 6= ⊥C, and c 6= ⊥C such that

(1) D C̀ c
′
1 � c1,

(2) D C̀ c
′
2 � c2,

(3) D C̀ c
′ � c,

(4) c1 5 c2 5 c = c′1 5 c′2 5 c′, and
(5) D C̀ c1 5 c2 5 c : CTL.

From the antecedent of the lemma to be proved,

(6) D∗ ` ξ0 � (c′1 5 c′2 5 c′)∗.

Then:

(7) Je1 e2KC = λy.Je1KC (λx1.Je2KC (λx2.x1 x2 (λx.y x)))
by def. JeKC

(8) ∃τ ′′1 .〈〈τ ′′1 , c′1〉〉−C = 〈〈τ ′, c1〉〉−C and 〈〈τ ′′1 , c′1〉〉+C = 〈〈τ ′, c1〉〉+C
by (1), Property 1.4

(9) ∃τ ′′2 .〈〈τ ′′2 , c′2〉〉−C = 〈〈τ ′, c2〉〉−C and 〈〈τ ′′2 , c′2〉〉+C = 〈〈τ ′, c2〉〉+C
by (2), Property 1.4

(10) ∃τ ′′.〈〈τ ′′, c′〉〉−
C

= 〈〈τ ′, c〉〉−
C
and 〈〈τ ′′, c′〉〉+

C
= 〈〈τ ′, c〉〉+

C

by (3), Property 1.4
(11) D∗; G1

∗ ` Je1KC : L(c
′
1
∗
(ξ1((t1

c′−( t2)∗)( 〈〈τ ′, c1〉〉−C )( 〈〈τ ′, c1〉〉+C )
by IH(τ ′′1 ), (8)

(12) D∗; G2
∗ ` Je2KC : L(c

′
2
∗
(t1
∗( 〈〈τ ′, c2〉〉−C )( 〈〈τ ′, c2〉〉+C )

by IH(τ ′′2 ), (9)
(13) D∗; •, x1:ξ1((t1

c′−( t2)∗) ` x1 : ξ1((t1
c′−( t2)∗) by rule T-Var

(14) D∗; •, x1:ξ1((t1
c′−( t2)∗) ` x1 :

ξ1(∀α: ? .L(t1
∗( L(c

′∗
(t2
∗( 〈〈α, c′〉〉−

C
)( 〈〈α, c′〉〉+

C
)))

by (13), def. t∗

(15) D∗; •, x1:ξ1((t1
c′−( t2)∗) ` x1 :

L(t1
∗( L(c

′∗
(t2
∗( 〈〈τ ′′, c′〉〉−

C
)( 〈〈τ ′′, c′〉〉+

C
))
by (14), rule T-TApp

(16) D∗; •, x1:ξ1((t1
c′−( t2)∗) ` x1 :

L(t1
∗( L(c

′∗
(t2
∗( 〈〈τ ′, c〉〉−

C
)( 〈〈τ ′, c〉〉+

C
)) by (10, 15)

(17) D∗; •, x2:t1
∗ ` x2 : t1

∗ by rule T-Var
(18) D∗; •, x1:ξ1((t1

c′−( t2)∗), x2:t1
∗ ` x1 x2 :

L(c
′∗

(t2
∗( 〈〈τ ′, c〉〉−

C
)( 〈〈τ ′, c〉〉+

C
) by (16–17),

rule T-App
(19) D∗; •, y:ξ0(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

) ` y :
ξ0(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

) by rule T-Var
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(20) D∗ ` (c′1 5 c′2 5 c′)∗ � c′∗ by Property 3
(21) D∗ ` ξ0 � c′∗ by (6, 20), Lemma A.1
(22) D∗; •, y:ξ0(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

) ` λx.y x :
c′∗(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

) by (19, 21),
Lemma 5.2

(23) D∗; •, y:ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
) ` λx.y x : c

′∗
(t2
∗( 〈〈τ ′, c〉〉−

C
)

by (22), Property 1.3a
(24) D∗; •, x1:ξ1((t1

c′−( t2)∗), x2:t1
∗, y:ξ0(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

) `
x1 x2 (λx.y x) : 〈〈τ ′, c〉〉+

C
by (18, 23),
rule T-App

(25) D∗ ` ξ1 � c′2
∗ by Property 5.2

(26) D∗ ` ξ0 � c′2
∗ by (6), Property 3,

Lemma A.1
(27) D∗ ` •, x1:ξ1((t1

c′−( t2)∗), y:ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
) � c′2

∗

by (25–26)
(28) D∗; •, x1:ξ1((t1

c′−( t2)∗), y:ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
) `

λx2.x1 x2 (λx.y x) : c
′
2
∗
(t1
∗( 〈〈τ ′, c〉〉+

C
) by (24, 27),

rule T-Abs
(29) D∗; •, x1:ξ1((t1

c′−( t2)∗), y:ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
) `

λx2.x1 x2 (λx.y x) : c
′
2
∗
(t1
∗( 〈〈τ ′, c2〉〉−C ) by (28), Property 1.3c

(30) D∗; G2
∗, x1:ξ1((t1

c′−( t2)∗), y:ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
) `

Je2KC (λx2.x1 x2 (λx.y x)) : 〈〈τ ′, c2〉〉+C by (12, 29),
rule T-App

(31) D∗ ` ξ2 � c′1
∗ by Property 5.2

(32) D∗ ` G2
∗ � c′1

∗ by (31), Lemma B.2
(33) D∗ ` ξ0 � c′1

∗ by Property 3,
Lemma A.1

(34) D∗ ` G2
∗, y:ξ0(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

) � c′1
∗

by (32–33)
(35) D∗; G2

∗, y:ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
) `

λx1.Je2KC (λx2.x1 x2 (λx.y x)) : c
′
1
∗
(ξ1((t1

c′−( t2)∗)( 〈〈τ ′, c2〉〉+C )
by (30, 34),
rule T-Abs

(36) D∗; G2
∗, y:ξ0(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

) `
λx1.Je2KC (λx2.x1 x2 (λx.y x)) : c

′
1
∗
(ξ1((t1

c′−( t2)∗)( 〈〈τ ′, c1〉〉−C )
by (35), Property 1.3c

(37) D∗ ` G∗, y:ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
) 

G1
∗ �G2

∗, y:ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
) by Lemma B.2,

rule S-ConsR
(38) D∗; G∗, y:ξ0(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

) `
Je1KC (λx1.Je2KC (λx2.x1 x2 (λx.y x))) : 〈〈τ ′, c1〉〉+C

by (11, 36–37),
rule T-App
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(39) D∗; G∗ ` λy.Je1KC (λx1.Je2KC (λx2.x1 x2 (λx.y x))) :
L(ξ0(t2

∗( 〈〈τ ′, c1 5 c2 5 c〉〉−
C

)( 〈〈τ ′, c1〉〉+C ) by (38), rule T-Abs
(40) D∗; G∗ ` Je1 e2KC :

L(ξ0(t2
∗( 〈〈τ ′, c1 5 c2 5 c〉〉−

C
)( 〈〈τ ′, c1 5 c2 5 c〉〉+

C
)

by (39), Property 1.3b,
(7).

(41) D∗; G∗ ` Je1 e2KC :
L(ξ0(t2

∗( 〈〈τ ′, c′1 5 c′2 5 c′〉〉−
C

)( 〈〈τ ′, c′1 5 c′2 5 c′〉〉+
C

)
by (4, 40).

Case c′1 5 c′2 5 c′ = ⊥C.
By Property 4.1, c1 = c2 = c = ⊥C. This is similar to the previous case,
but much of the effect management goes away:

(1) Je1 e2KC = λy.Je1KC (λx1.Je2KC (λx2.x1 x2 (λx.y x)))
by def. JeKC

(2) D∗; G1
∗ ` Je1KC : L(L(ξ1((t1

⊥C−( t2)∗)( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)
by IH

(3) D∗; G2
∗ ` Je2KC : L(L(t1

∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)
by IH

(4) D∗; •, x1:ξ1((t1
⊥C−( t2)∗) ` x1 : ξ1((t1

⊥C−( t2)∗)
by rule T-Var

(5) D∗; •, x1:ξ1((t1
⊥C−( t2)∗) ` x1 :

ξ1(∀α: ? .L(t1
∗( L(L(t2

∗( 〈〈α〉〉C)( 〈〈α〉〉C)))
by (4), def. t∗

(6) D∗; •, x1:ξ1((t1
⊥C−( t2)∗) ` x1 :

L(t1
∗( L(L(t2

∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)) by (5), rule T-TApp
(7) D∗; •, x2:t1

∗ ` x2 : t1
∗ by rule T-Var

(8) D∗; •, x1:ξ1((t1
⊥C−( t2)∗), x2:t1

∗ ` x1 x2 :
L(L(t2

∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C) by (6–7), rule T-App
(9) D∗; •, y:ξ0(t2

∗( 〈〈τ ′〉〉C) ` y : ξ0(t2
∗( 〈〈τ ′〉〉C)

by rule T-Var
(10) D∗ ` ξ0 � L by rule QSub-Top
(11) D∗; •, y:ξ0(t2

∗( 〈〈τ ′〉〉C) ` λx.y x : L(t2
∗( 〈〈τ ′〉〉C)

by (9–10), Lemma 5.2
(12) D∗; •, x1:ξ1((t1

⊥C−( t2)∗), x2:t1
∗, y:ξ0(t2

∗( 〈〈τ ′〉〉C) `
x1 x2 (λx.y x) : 〈〈τ ′〉〉C by (8, 11), rule T-App

(13) D∗; •, x1:ξ1((t1
⊥C−( t2)∗), y:ξ0(t2

∗( 〈〈τ ′〉〉C) ` λx2.x1 x2 (λx.y x) :
L(t1

∗( 〈〈τ ′〉〉C) by (12), rule T-Abs
(14) D∗; G2

∗, x1:ξ1((t1
⊥C−( t2)∗), y:ξ0(t2

∗( 〈〈τ ′〉〉C) `
Je2KC (λx2.x1 x2 (λx.y x)) : 〈〈τ ′〉〉C by (3, 13), rule T-App
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(15) D∗; G2
∗, y:ξ0(t2

∗( 〈〈τ ′〉〉C) ` λx1.Je2KC (λx2.x1 x2 (λx.y x)) :
L(ξ1((t1

⊥C−( t2)∗)( 〈〈τ ′〉〉C) by (14), rule T-Abs
(16) D∗ ` G∗, y:ξ0(t2

∗( 〈〈τ ′〉〉C) G1
∗ �G2

∗, y:ξ0(t2
∗( 〈〈τ ′〉〉C)

by Lemma B.2,
rule S-ConsR

(17) D∗; G∗, y:ξ0(t2
∗( 〈〈τ ′〉〉C) `

Je1KC (λx1.Je2KC (λx2.x1 x2 (λx.y x))) : 〈〈τ ′〉〉C
by (2, 15–16),
rule T-App

(18) D∗; G∗ ` λy.Je1KC (λx1.Je2KC (λx2.x1 x2 (λx.y x))) :
L(ξ0(t2

∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C) by (17), rule T-Abs
(19) D∗; G∗ ` Je1 e2KC : L(ξ0(t2

∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)
by (18), (1).

Case
D; G C̀ e : ξ∀c′2β:k.t ; c′1 D C̀ i : k D C̀ c

′
1 5 c′2 : CTL

D; G C̀ e : {i/β}t ; c′1 5 c′2
.

We want to show that

D∗; G∗ ` Je KC : L(ξ0({i∗/β}t∗( 〈〈τ ′, c′1 5 c′2〉〉−C )( 〈〈τ ′, c′1 5 c′2〉〉+C ).

Consider whether the term e has a control effect:

Case c′1 5 c′2 6= ⊥C.
By Property 4.2, there exist some c′1 6= ⊥C and c′2 6= ⊥C such that

(1) D C̀ c
′
1 � c1,

(2) D C̀ c
′
2 � c2,

(3) c1 5 c2 = c′1 5 c′2, and
(4) D C̀ c1 5 c2 : CTL.

From the antecedent of the lemma to be proved,

(5) D∗ ` ξ0 � (c′1 5 c′2)∗.

Then:

(6) Je KC = λy.JeKC (λx1.x1 (λx.y x)) by def. JeKC

(7) ∃τ ′′1 .〈〈τ ′′1 , c′1〉〉−C = 〈〈τ ′, c1〉〉−C and 〈〈τ ′′1 , c′1〉〉+C = 〈〈τ ′, c1〉〉+C
by (1), Property 1.4

(8) ∃τ ′′2 .〈〈τ ′′2 , c′2〉〉−C = 〈〈τ ′, c2〉〉−C and 〈〈τ ′′2 , c′2〉〉+C = 〈〈τ ′, c2〉〉+C
by (2), Property 1.4

(9) D∗; G∗ ` JeKC : L(c
′
1
∗
(ξ((∀c′2β:k.t)∗)( 〈〈τ ′, c1〉〉−C )( 〈〈τ ′, c1〉〉+C )

by IH(τ ′′1 ), (7)
(10) D∗; •, x1:ξ((∀c′2β:k.t)∗) ` x1 : ξ((∀c′2β:k.t)∗) by rule T-Var
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(11) D∗; •, x1:ξ((∀c′2β:k.t)∗) ` x1 :
ξ∀α: ? .L∀β:k∗.L(c

′
2
∗
(t∗( 〈〈α, c′2〉〉−C )( 〈〈α, c′2〉〉+C )

by def. t∗

(12) D∗; •, x1:ξ((∀c′2β:k.t)∗) ` x1 :
L∀β:k∗.L(c

′
2
∗
(t∗( 〈〈τ ′′2 , c′2〉〉−C )( 〈〈τ ′′2 , c′2〉〉+C ) by (11), rule T-TApp

(13) D∗; •, x1:ξ((∀c′2β:k.t)∗) ` x1 :
L∀β:k∗.L(c

′
2
∗
(t∗( 〈〈τ ′, c2〉〉−C )( 〈〈τ ′, c2〉〉+C ) by (8, 12)

(14) D∗; •, x1:ξ((∀c′2β:k.t)∗) ` x1 :
L(c
′
2
∗
({i∗/β}t∗( 〈〈τ ′, c2〉〉−C )( 〈〈τ ′, c2〉〉+C ) by (13), rule T-TApp

(15) D∗; •, y:ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) ` y :
ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) by rule T-Var

(16) D∗ ` ξ0 � c′2
∗ by (5), Property 3

(17) D∗; •, y:ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) ` λx.y x :
c′2
∗
({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) by (15–16),

Lemma 5.2
(18) D∗; •, y:ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) ` λx.y x :

c′2
∗
({i∗/β}t∗( 〈〈τ ′, c2〉〉−C ) by (17), Property 1.3a

(19) D∗; •, x1:ξ((∀c′2β:k.t)∗), y:ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) `
x1 (λx.y x) : 〈〈τ ′, c2〉〉+C by (14, 18),

rule T-App
(20) D∗ ` ξ0 � c′1

∗ by (5), Property 3
(21) D∗; •, y:ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) ` λx1.x1 (λx.y x) :

c′1
∗
(ξ((∀c′2β:k.t)∗)( 〈〈τ ′, c2〉〉+C ) by (19–20),

rule T-Abs
(22) D∗; •, y:ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) ` λx1.x1 (λx.y x) :

c′1
∗
(ξ((∀c′2β:k.t)∗)( 〈〈τ ′, c1〉〉−C ) by Property 1.3c

(23) D∗; G∗, y:ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C ) `
JeKC (λx1.x1 (λx.y x)) : 〈〈τ ′, c1〉〉+C by (9, 22), rule T-App

(24) D∗; G∗ ` λy.JeKC (λx1.x1 (λx.y x)) :
L(ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C )( 〈〈τ ′, c1〉〉+C )

by (23), rule T-Abs
(25) D∗; G∗ ` Je KC : L(ξ0({i∗/β}t∗( 〈〈τ ′, c1 5 c2〉〉−C )( 〈〈τ ′, c1 5 c2〉〉+C )

by (6, 24),
Property 1.3b

(26) D∗; G∗ ` Je KC : L(ξ0({i∗/β}t∗( 〈〈τ ′, c′1 5 c′2〉〉−C )( 〈〈τ ′, c′1 5 c′2〉〉+C )
by (3, 25)

Case c′1 5 c′2 = ⊥C.
By Property 4.1, c′1 = c′2 = ⊥C. This is similar to the previous case, but
much of the effect management goes away:

(1) Je KC = λy.JeKC (λx1.x1 (λx.y x)) by def. JeKC
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(2) D∗; G∗ ` JeKC : L(L(ξ((∀⊥Cβ:k.t)∗)( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)
by IH

(3) D∗; •, x1:ξ((∀⊥Cβ:k.t)∗) ` x1 : ξ((∀⊥Cβ:k.t)∗)
by rule T-Var

(4) D∗; •, x1:ξ((∀⊥Cβ:k.t)∗) ` x1 :
ξ∀α: ? .L∀β:k∗.L(L(t∗( 〈〈α〉〉C)( 〈〈α〉〉C) by def. t∗

(5) D∗; •, x1:ξ((∀⊥Cβ:k.t)∗) ` x1 : L∀β:k∗.L(L(t∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)
by (4), rule T-TApp

(6) D∗; •, x1:ξ((∀⊥Cβ:k.t)∗) ` x1 : L(L({i∗/β}t∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)
by (5), rule T-TApp

(7) D∗; •, y:ξ0({i∗/β}t∗( 〈〈τ ′〉〉C) ` y : ξ0({i∗/β}t∗( 〈〈τ ′〉〉C)
by rule T-Var

(8) D∗ ` ξ0 � L by rule QSub-Top
(9) D∗; •, y:ξ0({i∗/β}t∗( 〈〈τ ′〉〉C) ` λx.y x : L({i∗/β}t∗( 〈〈τ ′〉〉C)

by (7–8), Lemma 5.2
(10) D∗; •, x1:ξ((∀⊥Cβ:k.t)∗), y:ξ0({i∗/β}t∗( 〈〈τ ′〉〉C) ` x1 (λx.y x) :

〈〈τ ′〉〉C by (6, 9), rule T-App
(11) D∗; •, y:ξ0({i∗/β}t∗( 〈〈τ ′〉〉C) ` λx1.x1 (λx.y x) :

L(ξ((∀⊥Cβ:k.t)∗)( 〈〈τ ′〉〉C) by (8, 10), rule T-Abs
(12) D∗; G∗, y:ξ0({i∗/β}t∗( 〈〈τ ′〉〉C) ` JeKC (λx1.x1 (λx.y x)) : 〈〈τ ′〉〉C

by (2, 11), rule T-App
(13) D∗; G∗ ` λy.JeKC (λx1.x1 (λx.y x)) :

L(ξ0({i∗/β}t∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C) by (12), rule T-Abs
(14) D∗; G∗ ` Je KC : L(ξ0({i∗/β}t∗( 〈〈τ ′〉〉C)( 〈〈τ ′〉〉C)

by (1, 13)

Case
q � A D; G C̀ e : t ; c D C̀ t � A

D; G C̀ newq e : qref t ; c
.

We want to show that D∗; G∗ ` Jnewq eKC : L(ξ0(qref t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

).
Then:

(1) Jnewq eKC = λy.JeKC (λx.y (newq x)) by def. JeKC

(2) D∗; G∗ ` JeKC : L(ξ0(t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

) by IH

(3) D∗; •, y:ξ0(qref t∗( 〈〈τ ′, c〉〉−
C

) ` y : ξ0(qref t∗( 〈〈τ ′, c〉〉−
C

)
by rule T-Var

(4) D∗; •, x:t∗ ` x : t∗ by rule T-Var

(5) D∗ ` t∗ � A by Lemma B.2

(6) D∗; •, x:t∗ ` newq x : ξref t∗ by (4–5),
rule T-NewUA
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(7) D∗; •, x:t∗, y:ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

) ` y (newq x) : 〈〈τ ′, c〉〉−
C

by (3, 6), rule T-App

(8) D∗ ` •, y:ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

) � ξ0 by rule B-Type

(9) D∗; •, y:ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

) ` λx.y (newq x) : ξ0(t∗( 〈〈τ ′, c〉〉−
C

)
by (7–8), rule T-Abs

(10) D∗; G∗, y:ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

) ` JeKC (λx.y (newq x)) : 〈〈τ ′, c〉〉+
C

by (2, 9), rule T-App

(11) D∗; G∗ ` λy.JeKC (λx.y (newq x)) : L(ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

)
by (10), rule T-Abs

(12) D∗; G∗ ` Jnewq eKC : L(ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

)
by (1, 11).

Case
R � q D; G C̀ e : t ; c

D; G C̀ newq e : qref t ; c
.

As in the previous case.

Case
D; G C̀ e : ξref t ; c D C̀ A � ξ

D; G C̀ free e : t ; c
.

We want to show that D∗; G∗ ` Jfree eKC : L(ξ0(t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

).
Then:

(1) Jfree eKC = λy.JeKC (λx.y (free x)) by def. JeKC

(2) D∗; G∗ ` JeKC : L(ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

)
by IH

(3) D∗; •, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) ` y : ξ0(t∗( 〈〈τ ′, c〉〉−
C

) by rule T-Var

(4) D∗; •, x:ξref t∗ ` x : ξref t∗ by rule T-Var

(5) D∗ ` A � ξ by Lemma B.2

(6) D∗; •, x:ξref t∗ ` free x : t∗ by (4–5),
rule T-Delete

(7) D∗; •, x:ξref t∗, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) ` y (free x) : 〈〈τ ′, c〉〉−
C

by (3, 6), rule T-App

(8) D∗ ` •, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) � ξ0 by rule B-Type

(9) D∗; •, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) ` λx.y (free x) : ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

)
by (7–8), rule T-Abs

(10) D∗; G∗, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) ` JeKC (λx.y (free x)) : 〈〈τ ′, c〉〉+
C

by (2, 9), rule T-App
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(11) D∗; G∗ ` λy.JeKC (λx.y (free x)) : L(ξ0(t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

)
by (10), rule T-Abs

(12) D∗; G∗ ` Jfree eKC : L(ξ0(t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

)
by (1, 11).

Case
D; G C̀ e : ξref t ; c D C̀ t � R

D; G C̀ read e : t ; c
.

We want to show that D∗; G∗ ` Jread eKC : L(ξ0(t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

).
Then:

(1) Jread eKC = λy.JeKC (λx.y (read x)) by def. JeKC

(2) D∗; G∗ ` JeKC : L(ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

)
by IH

(3) D∗; •, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) ` y : ξ0(t∗( 〈〈τ ′, c〉〉−
C

) by rule T-Var

(4) D∗; •, x:ξref t∗ ` x : ξref t∗ by rule T-Var

(5) D∗ ` t∗ � R by Lemma B.2

(6) D∗; •, x:ξref t∗ ` read x : t∗ by (4–5), rule T-Read

(7) D∗; •, x:ξref t∗, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) ` y (read x) : 〈〈τ ′, c〉〉−
C

by (3, 6), rule T-App

(8) D∗ ` •, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) � ξ0 by rule B-Type

(9) D∗; •, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) ` λx.y (read x) : ξ0(ξref t∗( 〈〈τ ′, c〉〉−
C

)
by (7–8), rule T-Abs

(10) D∗; G∗, y:ξ0(t∗( 〈〈τ ′, c〉〉−
C

) ` JeKC (λx.y (read x)) : 〈〈τ ′, c〉〉+
C

by (2, 9), rule T-App

(11) D∗; G∗ ` λy.JeKC (λx.y (read x)) : L(ξ0(t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

)
by (10), rule T-Abs

(12) D∗; G∗ ` Jread eKC : L(ξ0(t∗( 〈〈τ ′, c〉〉−
C

)( 〈〈τ ′, c〉〉+
C

)
by (1, 11).

Case

D C̀ G  G1 �G2 D; G1 C̀ e1 : ξ1ref t1 ; c′1
D; G2 C̀ e2 : t2 ; c′2 D C̀ G2 � ξ2 D C̀ c

′
1 � ξ2

D C̀ c
′
2 � ξ1 D C̀ A � ξ1 D C̀ t2 � ξ1 D C̀ c

′
1 5 c′2 : CTL

D; G C̀ swap e1 e2 : L(ξref t2 ⊗ t1) ; c′1 5 c′2
.

We want to show that

D∗; G∗ ` Jswap e1 e2KC : L(ξ0(L(ξref t2
∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C )( 〈〈τ ′, c1 5 c2〉〉+C ).

71



B PROPERTIES OF λURAL(C)

Consider whether the term swap e1 e2 has a control effect:

Case c′1 5 c′2 6= ⊥C.
By Property 4.2, there exist some c1 6= ⊥C and c2 6= ⊥C such that

(1) D C̀ c
′
1 � c1,

(2) D C̀ c
′
2 � c2,

(3) c1 5 c2 = c′1 5 c′2, and
(4) D C̀ c1 5 c2 : CTL.

From the antecedent of the lemma to be proved,

(5) D∗ ` ξ0 � (c′1 5 c′2)∗.

Then:

(6) Jswap e1 e2KC = λy.Je1KC (λx1.Je2KC (λx2.y (swap x1 x2)))
by def. JeKC

(7) ∃τ ′′1 .〈〈τ ′′1 , c′1〉〉−C = 〈〈τ ′, c1〉〉−C and 〈〈τ ′′1 , c′1〉〉+C = 〈〈τ ′, c1〉〉+C
by (1), Property 1.4

(8) ∃τ ′′2 .〈〈τ ′′2 , c′2〉〉−C = 〈〈τ ′, c2〉〉−C and 〈〈τ ′′2 , c′2〉〉+C = 〈〈τ ′, c2〉〉+C
by (2), Property 1.4

(9) D∗; G1
∗ ` Je1KC : L(c

′
1
∗
(ξ1ref t1

∗( 〈〈τ ′, c1〉〉−C )( 〈〈τ ′, c1〉〉+C )
by IH(τ ′′1 ), (7)

(10) D∗; G2
∗ ` Je2KC : L(c

′
2
∗
(t2
∗( 〈〈τ ′, c2〉〉−C )( 〈〈τ ′, c2〉〉+C )

by IH(τ ′′1 ), (8)
(11) D∗; •, x1:ξ1ref t1

∗ ` x1 : ξ1ref t1
∗ by rule T-Var

(12) D∗; •, x2:t2
∗ ` x2 : t2

∗ by rule T-Var
(13) D∗ ` A � ξ1 by Lemma B.2
(14) D∗ ` t2∗ � ξ1 by Lemma B.2
(15) D∗; •, x1:ξ1ref t1

∗, x2:t2
∗ ` swap x1 x2 : L(ξref t2

∗ ⊗ t1∗)
by (11–13), (14),
rule T-SwapStrong

(16) D∗; •, y:ξ0(L(ξref t2
∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) ` y :

ξ0(L(ξref t2
∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) by rule T-Var

(17) D∗; •, x1:ξ1ref t1
∗, x2:t2

∗, y:ξ0(L(ξref t2
∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) `

y (swap x1 x2) : 〈〈τ ′, c1 5 c2〉〉−C by (15–16),
rule T-App

(18) D∗ ` ξ1 � c′2
∗ by Property 5.2

(19) D∗ ` ξ0 � c′2
∗ by (5), Property 3

(20) D∗ ` •, x1:ξ1ref t1
∗, y:ξ0(L(ξref t2

∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) � c′2
∗

by rule B-Cons,
(18–19), . . .
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(21) D∗; •, x1:ξ1ref t1
∗, y:ξ0(L(ξref t2

∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) `
λx2.y (swap x1 x2) : c

′
2
∗
(t2
∗( 〈〈τ ′, c1 5 c2〉〉−C )

by (17, 20),
rule T-Abs

(22) D∗; •, x1:ξ1ref t1
∗, y:ξ0(L(ξref t2

∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) `
λx2.y (swap x1 x2) : c

′
2
∗
(t2
∗( 〈〈τ ′, c2〉〉−C ) by (21), Property 1.3a

(23) D∗; G2
∗, x1:ξ1ref t1

∗, y:ξ0(L(ξref t2
∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) `

Je2KC (λx2.y (swap x1 x2)) : 〈〈τ ′, c2〉〉+C by (10, 22),
rule T-App

(24) D∗ ` ξ2 � c′1
∗ by Property 5.2

(25) D∗ ` G2
∗ � ξ2 by Lemma B.2

(26) D∗ ` G2
∗ � c′1

∗ by (24–25), ind. G2
∗,

. . .
(27) D∗ ` ξ0 � c′1

∗ by (5), Property 3
(28) D∗ ` G2

∗, y:ξ0(L(ξref t2
∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) � c′1

∗

by rule B-Cons, (24,
27), . . .

(29) D∗; G2
∗, y:ξ0(L(ξref t2

∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) `
λx1.Je2KC (λx2.y (swap x1 x2)) : c

′
1
∗
(ξ1ref t1

∗( 〈〈τ ′, c2〉〉+C )
by (23, 28),
rule T-Abs

(30) D∗; G2
∗, y:ξ0(L(ξref t2

∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) `
λx1.Je2KC (λx2.y (swap x1 x2)) : c

′
1
∗
(ξ1ref t1

∗( 〈〈τ ′, c1〉〉−C )
by (29), Property 1.3c

(31) D∗; G∗, y:ξ0(L(ξref t2
∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C ) `

Je1KC (λx1.Je2KC (λx2.y (swap x1 x2))) : 〈〈τ ′, c1〉〉+C
by (9, 30), rule T-App

(32) D∗; G∗ ` λy.Je1KC (λx1.Je2KC (λx2.y (swap x1 x2))) :
L(ξ0(L(ξref t2

∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C )( 〈〈τ ′, c1〉〉+C )
by (31), rule T-Abs

(33) D∗; G∗ ` Jswap e1 e2KC :
L(ξ0(L(ξref t2

∗ ⊗ t1∗)( 〈〈τ ′, c1 5 c2〉〉−C )( 〈〈τ ′, c1 5 c2〉〉+C )
by (32), Property 1.3b,
(6).

Case c′1 5 c′2 = ⊥C.
As in the previous case, but with all the control effect manipulation elided,
because all the control effects are pure. This follows from the impure case
just as the pure cases for application and type application from from their
impure cases.

73



C EXAMPLE PROOFS

Case

D C̀ G  G1 �G2 D; G1 C̀ e1 : ξ1ref t ; c1 D; G2 C̀ e2 : t ; c2

D C̀ G2 � ξ2 D C̀ c1 � ξ2 D C̀ c2 � ξ1 D C̀ c1 5 c2 : CTL

D; G C̀ swap e1 e2 : L(ξref t ⊗ t) ; c1 5 c2

.

As in the previous case.

Corollary 5.8 (Translation of program typing, restated from p. 29).

If D; G C̀ e : t ;⊥C where D C̀ t � A, then

D∗; G∗ ` JeKC doneC : 〈〈t∗〉〉C.

Proof. Then:

(1) D∗ ` t∗ � A by Lemma B.2

(2) D∗ ` t∗ : ? by Lemma B.1,
Lemma 5.4

(3) D C̀ L � ⊥C
∗ by rule QSub-Refl

(4) D∗; G∗ ` JeKC : L(L(t∗( 〈〈t∗〉〉C)( 〈〈t∗〉〉C) by prem., (2–3),
Lemma 5.7

(5) D∗; • ` doneC : L(t∗( 〈〈t∗〉〉C) by (1–2), Property 2

(6) D∗ ` G∗  G∗ � • by ind. G∗,
rule S-ConsL

(7) D∗; G∗ ` JeKC doneC : 〈〈t∗〉〉C by (4–6),
rule T-App.

C Proofs for Example Control Effects

In this section, we prove that each of the control effects in §6 meets the control effect
parameter soundness criteria.

C.1 Delimited Continuation Effects

In this section, we consider the delimited continuation effects from §6.1.

Lemma C.1 (Top).
If d∗ = U then (d t d′)∗ = U.

Proof. Assuming d∗ = U, we proceed by cases on d t d′:
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Case α.

Then (d t d′)∗ = α. By the quotienting of d, d t d′ = α only if d is α or ⊥D. If
d = α then d∗ = α, which contradicts our assumption. If d = ⊥D then d∗ = L,
which also contradicts our assumption.

Case ⊥D.

Then (d t d′)∗ = L. By the quotienting of d, d t d′ = ⊥D only if d = ⊥D, which
means that d∗ = L, which contradicts our assumption.

Case ξ.

Then (d t d′)∗ = ξ. By the quotienting of d, we can have d t d′ = ξ in one of
two ways:

Case d = ξ1 and d′ = ξ2 and ξ1 u ξ2 = ξ.
That is, (d t d′)∗ = ξ1 u ξ2 and d∗ = ξ1. Then ξ1 = U, which means that
(d t d′)∗ = ξ1 u ξ2 = U u ξ2 = U.

Case d = d′ = ξ.
This is subsumed by the previous case.

Otherwise.

Then (d t d′)∗ = U, which is the desired conclusion.

Theorem 6.2 (Delimited continuation properties, restated from p. 32).

Delimited continuation effects (D,⊥D,t) satisfy Properties 1–5.

Proof.
Property 1 (Answer types). All properties here are trivial because 〈〈τ, d〉〉−

D
=

〈〈τ, d〉〉+
D

= U1.

Property 2 (Done). Then:

(1) ∆; • ` 〈〉 : U1 by rules T-Unit and
K-Qual

(2) ∆ ` •, x:τ � A by rules B-Nil and
B-Cons

(3) ∆ ` •, x:τ  •� •, x:τ by rules S-Nil and
S-ConsR

(4) ∆; •, x:τ ` 〈〉 : U1 by (1–3),
rule T-Weak

(5) ∆; • ` λx.〈〉 : L(τ( U1) by (4), rule T-Abs

(6) 〈〈τ〉〉D = U1 by def. 〈〈τ〉〉D
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(7) ∆; • ` λx.〈〉 : L(τ( 〈〈τ〉〉D) by (5–6).

Property 3 (Effect sequencing). Let D C̀ d1td2 : CTL. We must show that
D∗ ` (d1 t d2)∗ � d1

∗ and D∗ ` (d1 t d2)∗ � d2
∗. By symmetry, it suffices to

show the former. Then:

(1) D D̀ d1 � d1 by rule CSub-Trans

(2) D D̀ ⊥D � d2 by rule DSub-Bot

(3) D D̀ d1 t ⊥D � d1 t d2 by (1–2),
rule DSub-Join

(4) D D̀ d1 � d1 t d2 by (3), quotient

(5) D∗ ` (d1 t d2)∗ � d1
∗ by Lemma 5.6.

Property 4 (Bottom and lifting).

1. To show that d1 t d2 = ⊥D if and only if d1 = d2 = ⊥D, we consider the
quotienting of D.

2. We must also show that if D D̀ d1 t d2 : CTL and d1 t d2 6= ⊥D, then
there exist some d′1 6= ⊥D and d′2 6= ⊥D with particular properties. For
each di (i∈{1,2}), if di = ⊥D then let d′i = L; otherwise, let d′i = di . This
ensures that 1–2) each D D̀ di � d′i , 3) d1 t d2 = d′1 t d′2, and 4) d′1 t d′2
is well formed.

Property 5 (New rules).

1. For translation of effect bounds, let D D̀ d � ξ; we need to show that
D∗ ` ξ � d∗. We proceed by induction on the derivation of D D̀ d � ξ,
which has two new cases to consider:

Case
D C̀ ξ � ξ′

D D̀ ξ′ � ξ
.

Then ξ′∗ = ξ′, and by Lemma B.2, D∗ ` ξ � ξ′.

Case
D D̀ d1 � ξ D D̀ d2 � ξ

D D̀ d1 t d2 � ξ
.

By the induction hypothesis,
(1) D∗ ` ξ � d1

∗ and
(2) D∗ ` ξ � d2

∗.

Now we consider several possibilities for d1 t d2 in light of the quoti-
enting of D:
– If d1 = d2 then d1 t d2 = d1, so we have D∗ ` ξ � (d1 t d2)∗ by

(1).
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– If d1 = ⊥D, then d1 t d2 = d2, and thus D∗ ` ξ � (d1 t d2)∗ by
(2).

– By symmetry with the previous case if d2 = ⊥D.
– If d1 = ξ1 and d2 = ξ2 where ξ1 u ξ2 is defined, then

(3) d1 t d2 = (ξ1 u ξ2).

Then:
(4) D∗ ` ξ � ξ1 by (1), def. ξ1

∗

(5) D∗ ` ξ � ξ2 by (2), def. ξ2
∗

(6) D∗ ` ξ � ξ1 u ξ2 by (4–5), Lemma A.2
(7) D∗ ` ξ � (d1 t d2)∗ by (3, 6), def. ξ∗

– If d1 = ξ1 and d2 = ξ2 where ξ1 u ξ2 is not defined, then by
Lemma A.3 and (1–2), ξ = U. Then by rule QSub-Bot.

– If d1 = α, then since D D̀ α � ξ, we know by inversion that
ξ = U. Then by rule QSub-Bot.

– If d2 = α, then by symmetry with the previous case.

2. For translation of effect subsumption, let D D̀ d1 � d2; we must show that
D∗ ` d2

∗ � d1
∗. We proceed by induction on the derivation of D D̀ d1 � d2,

which has several cases to consider:

Case
D D̀ d : CTL

D D̀ ⊥D � d
.

Then D∗ ` d∗ � L by rule QSub-Top.

Case
D C̀ ξ : QUAL

D D̀ L � ξ
.

Then D∗ ` ξ � L by rule QSub-Top.

Case
D D̀ d : CTL

D D̀ d � U
.

Then D∗ ` U � d∗ by rule QSub-Bot.

Case

D D̀ d1 � d′1 D D̀ d2 � d′2
D D̀ d1 t d2 : CTL D D̀ d′1 t d′2 : CTL

D D̀ d1 t d2 � d′1 t d′2
.

Without loss of generality, let
(1) D = •, α:QUAL, β:QUAL, α′:CTL, β′:CTL.

By cases on the possibilities for d1, d2, d′1, and d′2, we construct a table
showing all the cases in Figure 19. We label the rows with instances
of the judgment (i) D D̀ d1 � d′1 and the columns with instances of
the judgment (ii) D D̀ d2 � d′2. Using Lemma C.1, we fill the cells
with instances of D∗ ` (d′1 t d′2)∗ � (d1 t d2)∗.
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(ii)
⊥D � d α′ � α′ R � R A � A L � R L � A L � L L � α α � α β � β d � U

(i)

⊥D � d U � L U � α′ U � R U � A U � L U � L U � L U � L U � α U � β U � U
α′ � α′ U � α′ α′ � α′ U � U U � U U � U U � U U � U U � U U � U U � U U � U
β′ � β′ U � β′ U � U U � U U � U U � U U � U U � U U � U U � U U � U U � U

R � R U � R U � U R � R U � U R � R U � R R � R U � R U � U U � U U � U

A � A U � A U � U U � U A � A U � A A � A A � A U � A U � U U � U U � U

L � R U � L U � U R � R U � A R � L U � L R � L U � L U � α U � β U � U

L � A U � L U � U U � R A � A U � L A � L A � L U � L U � α U � β U � U

L � L U � L U � U R � R A � A R � L A � L L � L α � L α � α β � β U � U

L � α U � L U � U U � R U � A U � L U � L α � L α � L α � α U � β U � U

L � β U � L U � U U � R U � A U � L U � L β � L U � L U � α β � β U � U
α � α U � α U � U U � U U � U U � α U � α α � α α � α α � α U � U U � U

β � β U � β U � U U � U U � U U � β U � β β � β U � β U � U β � β U � U

d � U U � U U � U U � U U � U U � U U � U U � U U � U U � U U � U U � U

Figure 19: Exhaustive proof for final case in translation subsumption

3. For translation of kinding, let D C̀ d : CTL. We must show that D∗ ` d∗ :
QUAL. We proceed by induction on the derivation, considering the two
new kinding rules:

Case
D C̀ ξ : QUAL

D D̀ ξ : CTL
.

By the induction hypothesis, D∗ ` ξ : QUAL, noting that (ξ)∗ = ξ and
CTL∗ = QUAL.

Case
D C̀ d1 : CTL D C̀ d2 : CTL

D D̀ d1 t d2 : CTL
.

By cases on d1 t d2:
Case α.

Then (d1 t d2)∗ = α. By the quotienting of d, d1 t d2 = α only
if at least one of d1 or d2 is α. From the premises, we know that
D C̀ α : CTL, which means that α:CTL ∈ D. This means that
α:QUAL ∈ D∗, so D∗ ` α : QUAL.

Case ⊥D.
Then (d1 t d2)∗ = L, so D∗ ` L : QUAL by rule K-Qual.

Case ξ.
Then (d1 t d2)∗ = ξ. By the quotienting of d, d1 t d2 = ξ in one
of two ways:
Case d1 = ξ1 and d2 = ξ2 and ξ1 u ξ2 = ξ.
That is,

(1) (d1 t d2)∗ = ξ1 u ξ2,

(2) d1
∗ = ξ1, and

(3) d2
∗ = ξ2.

By the induction hypothesis, twice, we have that
(4) D∗ ` d1

∗ : QUAL and
(5) D∗ ` d2

∗ : QUAL,

and by substitution (2–3).
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(6) D∗ ` ξ1 : QUAL and
(7) D∗ ` ξ2 : QUAL,

Since ξ1 u ξ2 = ξ, the meet is defined. By the definition of
meet, ξ1 u ξ2 is either a constant qualifier q, which has a kind
by rule K-Qual, or it is a identical to at least one of ξ1 or ξ2,
both of which are well-kinded under D∗.

Case d1 = d2 = ξ.
This is subsumed by the previous case.

Otherwise.
Then (d1 t d2)∗ = U, so D∗ ` U : QUAL by rule K-Qual.

4. For translation of typing, let

– D; G D̀ e : t ; d.
– D∗ ` ξ0 � d∗, and
– D∗ ` τ ′ : ?.

We must show that D∗; G∗ ` JeKD : L(ξ0(t∗( U1)( U1). We proceed by
induction on the typing derivation, with two cases to consider:

Case
D; G D̀ e′ : U1 ; d′

D; G D̀ reset e′ : U1 ;⊥D

.

We must show that D∗; G∗ ` Je′KD : L(ξ0(U1( U1)( U1). Then,
(1) Jreset e′KD = λy.y (Je′KD (λx.x)) by def. JeKD

(2) D∗; G∗ ` Je′KD : L(d
′∗

(U1( U1)( U1) by IH
(3) D∗; •, x:U1 ` x : U1 by rule T-Var
(4) D∗; • ` λx.x : d

′∗
(U1( U1) by (3), rule T-Abs

(5) D∗; G∗ ` Je′KD (λx.x) : U1 by (2, 4), rule T-App
(6) D∗; •, y:ξ0(U1( U1) ` y : ξ0(U1( U1) by rule T-Var
(7) D∗; G∗, y:ξ0(U1( U1) ` y (Je′KD (λx.x)) : U1

by (5–6), rule T-App
(8) D∗; G∗ ` λy.y (Je′KD (λx.x)) : L(ξ0(U1( U1)( U1)

by (7),rule T-Abs
(9) D∗; G∗ ` Jreset e′KD : L(ξ0(U1( U1)( U1)

by (1, 8).

Case
D; G, y′:ξ(t

⊥D−−( U1) D̀ e′ : U1 ; d′

D; G D̀ shift y′ in e′ : t ; d′ t ξ
.

We must show that D∗; G∗ ` Jshift y′ in e′KD : L(ξ0(t∗( U1)( U1). By
our premises, we know that

(1) D∗ ` ξ0 � (d′ t ξ)∗
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Now, consider whether d′∗ u ξ is defined: If so, then D∗ ` ξ0 � d′∗ u ξ,
which means that D∗ ` ξ0 � ξ by Lemma A.2. If the meet is not
defined, then (d′ t ξ)∗ = U, which means that D∗ ` ξ0 � U. In either
case, we have that

(2) D∗ ` ξ0 � ξ.

Then,
(3) Jshift y′ in e′KD = λy.(λy′.Je′KD (λx.x)) (Λ.λx.λy′′.y′′ (y x))

by def. JeKD

(4) D∗; G∗, y′:(ξ(t
⊥D−−( U1))∗ ` Je′KD : L(d

′∗
(U1( U1)( U1)
by IH

(5) D∗; • ` λx.x : d
′∗

(U1( U1) by rules T-Var and
T-Abs

(6) D∗; G∗, y′:(ξ(t
⊥D−−( U1))∗ ` Je′KD (λx.x) : U1

by (4–5), rule T-App
(7) D∗; G∗ ` λy′.Je′KD (λx.x) : L((ξ(t

⊥D−−( U1))∗( U1)
by (6), rule T-Abs

(8) D∗, α:?; •, y′′:L(U1( U1) ` y′′ : L(U1( U1)
by rule T-Var

(9) D∗, α:?; •, y:ξ0(t∗( U1) ` y : ξ0(t∗( U1)
by rule T-Var

(10) D∗, α:?; •, x:t∗ ` x : t∗ by rule T-Var
(11) D∗, α:?; •, y:ξ0(t∗( U1), x:t∗ ` y x : U1 by (9–10), rule T-App
(12) D∗, α:?; •, y:ξ0(t∗( U1), x:t∗, y′′:L(U1( U1) ` y′′ (y x) : U1

by (8, 11), rule T-App
(13) D∗, α:?; •, y:ξ0(t∗( U1), x:t∗ ` λy′′.y′′ (y x) :

L(L(U1( U1)( U1) by (12), rule T-Abs
(14) D∗, α:?; •, y:ξ0(t∗( U1) ` λx.λy′′.y′′ (y x) :

L(t∗( L(L(U1( U1)( U1)) by (13), rule T-Abs
(15) D∗ ` •, y:ξ0(t∗( U1) � ξ by (2)
(16) D∗; •, y:ξ0(t∗( U1) ` Λ.λx.λy′′.y′′ (y x) :

ξ∀α: ? .L(t∗( L(L(U1( U1)( U1)) by (14–15),
rule T-TAbs

(17) D∗; •, y:ξ0(t∗( U1) ` Λ.λx.λy′′.y′′ (y x) : (ξ(t
⊥D−−( U1))∗

by (16), def. t∗

(18) D∗; G∗, y:ξ0(t∗( U1) ` (λy′.Je′KD (λx.x)) (Λ.λx.λy′′.y′′ (y x)) :
U1 by (7, 17), rule T-App

(19) D∗; G∗ ` λy.(λy′.Je′KD (λx.x)) (Λ.λx.λy′′.y′′ (y x)) :
L(ξ0(t∗( U1)( U1) by (18), rule T-Abs

(20) D∗; G∗ ` Jshift y′ in e′KD : L(ξ0(t∗( U1)( U1)
by (3, 19).
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C.2 Answer-Type Modification Effects

In this section, we consider the delimited continuations with answer-type modification
effects from §6.2.

Definition C.2 (λURAL(A) effects to λURAL(D) effects).
We define a translation from answer-type modification effects to fixed-answer type
effects:

D(⊥A) = ⊥D

D( ξ1,...,ξj (t1 � t2)) = ξ1 t . . . t ξj

Lemma C.3 (Effect translation).
For all a and a′:

1. a∗ = D(a)∗.

2. D(a 5 a′) = D(a) t D(a′) when a 5 a′ is defined.

3. If D À a : CTL then D D̀ D(a) : CTL.

4. If D À a1 � a2 then D D̀ D(a1) � D(a2).

Proof.

1. By cases on a:

Case ⊥A.
Then ⊥A

∗ = L = ⊥D
∗ = D(⊥A)∗.

Case Ξ(t1 � t2).
By cases on Ξ:

Case ξ.
Then ξ(t1 � t2)∗ = ξ = ξ∗ = D(ξ(t1 � t2))∗.

Case ξ1, . . . , ξj .
Then ( ξ1,...,ξj (t1 � t2))∗ = U = ( ξ1t . . .t ξj )∗ = D(( ξ1,...,ξj (t1 � t2)))∗.

2. By cases on a:

Case ⊥A.
Then D(⊥A 5 a′) = D(a2) = ⊥D t D(a′) = D(⊥A) t D(a′).

Case Ξ(t1 � t2).
By cases on a′:
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Case ⊥A.
By symmetry with the a = ⊥A case above.

Case Ξ′(t′1 � t′2).
Then Ξ(t1 � t2) 5 Ξ′(t′1 � t′2) is well formed only if t1 = t′2. Let
ξ1, . . . , ξj = Ξ and ξ′1, . . . , ξ

′
k = Ξ′. Then,

(1) D( ξ1,...,ξj (t1 � t2) 5 ξ′1,...,ξ
′
k (t′1 � t′2))

(2) = D( ξ1,...,ξj ,ξ
′
1,...,ξ

′
k (t′1 � t2))

(3) = ξ1 t . . . t ξj t ξ′1 t . . . t ξ′k
(4) = D( ξ1,...,ξj (t1 � t2)) t D( ξ

′
1,...,ξ

′
k (t′1 � t′2)).

3. By induction on the derivation of D À a : CTL:

Case
D À ⊥A : CTL

.

Then by rule C-K-Bot, D D̀ ⊥D : CTL.

Case
D À ξ : QUAL D À t1 : ? D À t2 : ?

D À
ξ(t1 � t2) : CTL

.

Then by rule D-K-Qual, D D̀ ξ : CTL.

Case
D À

ξ1,...,ξj (t1 � t2) : CTL D À
ξ′1,...,ξ

′
k (t1 � t2) : CTL

D À
ξ1,...,ξj ,ξ

′
1,...,ξ

′
k (t1 � t2) : CTL

.

By the induction hypothesis, twice,
(1) D D̀ ξ1 t . . . t ξj : CTL and
(2) D D̀ ξ′1 t . . . t ξ′k : CTL.

Then by rule D-K-Join,

(3) D D̀ ξ1 t . . . t ξj t ξ′1 t . . . t ξ′k : CTL,

or equivalently,

(4) D D̀ D( ξ1,...,ξj (t1 � t2)) 5D( ξ
′
1,...,ξ

′
k (t1 � t2)) : CTL.

Otherwise.
No other cases assign kind CTL to a type.

4. By induction on the derivation of D À a1 � a2:

Case
D À a : CTL

D À a � a
.

Then D D̀ D(a) � D(a) by rule CSub-Refl.

Case
D À a1 � a′ D À a′ � a2

D À a1 � a2

.

By the induction hypothesis twice and rule CSub-Trans.
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Case
D À

Ξ(t� t) : CTL

D À ⊥A � Ξ(t� t)
.

Then D D̀ ⊥D � D(Ξ(t� t)) by rule DSub-Bot.

Case
D À

ξ1,...,ξj (t1 � t2) : CTL

D À
L(t1 � t2) � ξ1,...,ξj (t1 � t2)

.

For each ξk in ξ1, . . . , ξj , by rule DSub-Lin, we have that D D̀ L � ξk .
By induction on the length of ξ1 t . . . t ξj and repeated application of
rule DSub-Join, we have that D D̀ L � ξ1 t . . . t ξj . Then note that
L(t1 � t2) = L(t1 � t2) by the quotienting of Ξ.

Case
D À

ξ1,...,ξj (t1 � t2) : CTL

D À
ξ1,...,ξj (t1 � t2) � U(t1 � t2)

.

As in the previous case, but using rule DSub-Top for each D D̀ ξj � U.

Case

D À
ξ1,...,ξj (t1 � t2) � ξ′′1 ,...,ξ

′′
k (t1 � t2)

D À
ξ′1,...,ξ

′
m (t1 � t2) � ξ′′′1 ,...,ξ

′′′
n (t1 � t2)

D À
ξ1,...,ξj ,ξ

′′
1 ,...,ξ

′′
k (t1 � t2) � ξ′1,...,ξ

′
m ,ξ
′′′
1 ,...,ξ

′′′
n (t1 � t2)

.

By the induction hypothesis,

(1) D D̀ ξ1 t . . . t ξj � ξ′′1 t . . . t ξ′′k and
(2) D D̀ ξ′1 t . . . t ξ′m � ξ′′′1 t . . . t ξ′′′n .

Then by rule DSub-Join,

(3) D D̀ ξ1 t . . .t ξj t ξ′1 t . . .t ξ′m � ξ′′1 t . . .t ξ′′k t ξ′′′1 t . . .t ξ′′′n .

Lemma C.4 (No information).
If a∗ = U then (a 5 a′)∗ = U.

Proof. Then:

(1) a∗ = U by antecedent

(2) D(a)∗ = U by (1), Lemma C.3.1

(3) (a 5 a′)∗ = D(a 5 a′)∗ by Lemma C.3.1

(4) = (D(a) t D(a′))∗ by Lemma C.3.2

(5) = U by (2),
Lemma C.1.

Theorem 6.3 (Answer-type effect properties, restated from p. 36).

Answer-type modification effects (A,⊥A, ◦) satisfy Properties 1–5.
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Proof.
Property 1 (Answer types).

1. By the definition, 〈〈τ,⊥A〉〉−A = τ = 〈〈τ,⊥A〉〉+A. Thus, 〈〈τ〉〉A = τ.

2. Let D∗ ` τ : ? and D À a : CTL. We need to show that D∗ ` 〈〈τ, a〉〉−
A

: ?
and D∗ ` 〈〈τ, a〉〉+

A
: ?. By induction on the latter derivation:

Case
D À ⊥A : CTL

.

Then 〈〈τ, a〉〉−
A

= 〈〈τ, a〉〉+
A

= 〈〈τ〉〉A = τ, and D∗ ` τ : ? by our assump-
tion.

Case
D À ξ : QUAL D À t1 : ? D À t2 : ?

D À
ξ(t1 � t2) : CTL

.

Then 〈〈τ, a〉〉−
A

= t1
∗ and 〈〈τ, a〉〉+

A
= t2

∗. By Lemma 5.4, D∗ ` t1∗ : ?
and D∗ ` t1∗ : ?.

Case
D À

Ξ1(t1 � t2) : CTL D À
Ξ2(t1 � t2) : CTL

D À
Ξ1,Ξ2(t1 � t2) : CTL

.

Then 〈〈τ, a〉〉−
A

= t1
∗ = 〈〈τ, Ξ1(t1 � t2)〉〉−

A
and 〈〈τ, a〉〉+

A
= t2

∗ = 〈〈τ, Ξ1(t1 � t2)〉〉+
A
.

Then by the induction hypothesis.
Otherwise.

No other cases assign kind CTL to a type.

3. Let c1 6= ⊥A, c2 6= ⊥A, and D À a1 5 a2 : CTL. By the definition of effect
sequencing, a1 5a2 is defined only if one of the effects is ⊥A, which is rules
out by the assumption, or if the sequenced effect is of the form

a1 5 a2 = Ξ(t′� t2) 5 Ξ′(t1 � t′) = Ξ,Ξ′(t1 � t2).

Then:

(a) 〈〈τ, a1 5 a2〉〉−A = 〈〈τ, Ξ,Ξ′(t1 � t2)〉〉−
A

= t1
∗ = 〈〈τ, Ξ′(t1 � t′)〉〉−

A
= 〈〈τ, a2〉〉−A.

(b) 〈〈τ, a1 5 a2〉〉+A = 〈〈τ, Ξ,Ξ′(t1 � t2)〉〉+
A

= t2
∗ = 〈〈τ, Ξ(t′� t2)〉〉+

A
= 〈〈τ, a1〉〉+A.

(c) 〈〈τ, a1〉〉−A = 〈〈τ, Ξ(t′� t2)〉〉−
A

= t′∗ = 〈〈τ, Ξ′(t1 � t′)〉〉+
A

= 〈〈τ, a2〉〉+A.
4. Let D À a1 � a2. Given an arbitrary type τ, we must find a type τ ′ such

that 〈〈τ ′, a1〉〉−A = 〈〈τ, a2〉〉−A and 〈〈τ ′, a1〉〉+A = 〈〈τ, a2〉〉+A. By induction on the
effect subsumption derivation:

Case
D À a : CTL

D À a � a
.

Then a1 = a2, so by substitution of one for the other.

Case
D À a1 � a′ D À a′ � a2

D À a1 � a2

.

By the induction hypothesis, twice, and transitivity of equality.
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Case
D À

Ξ(t� t) : CTL

D À ⊥A � Ξ(t� t)
.

Let τ ′ = t∗. Then 〈〈t∗, a1〉〉−A = 〈〈t∗〉〉A = t∗ = 〈〈τ, Ξ(t� t)〉〉−
A
, and

likewise 〈〈t∗, a1〉〉+A = 〈〈t∗〉〉A = t∗ = 〈〈τ, Ξ(t� t)〉〉+
A
.

Case
D À

Ξ(t1 � t2) : CTL

D À
L(t1 � t2) � Ξ(t1 � t2)

.

It does not matter what τ ′ we choose, so let τ ′ = τ. Then 〈〈τ, a1〉〉−A =
t1
∗ = 〈〈τ, a2〉〉−A and 〈〈τ, a1〉〉+A = t2

∗ = 〈〈τ, a2〉〉+A.

Case
D À

Ξ(t1 � t2) : CTL

D À
Ξ(t1 � t2) � U(t1 � t2)

.

As in the previous case, let τ ′ = τ.

Case
D À

Ξ1(t1 � t2) � Ξ′1(t1 � t2) D À
Ξ2(t1 � t2) � Ξ′2(t1 � t2)

D À
Ξ1,Ξ2(t1 � t2) � Ξ′1,Ξ

′
2(t1 � t2)

.

As in the previous case, let τ ′ = τ.

Property 2 (Done).

(1) ∆; •, x:τ ` x : τ by rule T-Var

(2) ∆; • ` λx.x : L(τ( τ) by (1), rule T-Abs

(3) 〈〈τ〉〉A = τ by def. 〈〈τ〉〉A
(4) ∆; • ` λx.x : L(τ( 〈〈τ〉〉A) by (2–3).

Property 3 (Effect sequencing). Let D À a1 5 a2 : CTL. By Lemma C.3,

(1) (a1 5 a2)∗ = D(a1 5 a2)∗ = D(a1)∗ t D(a2)∗,

(2) a1
∗ = D(a1)∗,

(3) a2
∗ = D(a2)∗,

(4) D D̀ D(a1) t D(a2) : CTL.

By this same property for λURAL(D), we have that

(5) D∗ ` D(a1)∗ t D(a2)∗ � D(a1)∗ and

(6) D∗ ` D(a1)∗ t D(a2)∗ � D(a2)∗.

Property 4 (Bottom and lifting).

1. By the definition of a1 5 a2.

2. By cases on a1 and a2:
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Case ⊥A and ⊥A.
Contradicts the assumption that a1 5 a2 6= ⊥A.

Case ⊥A and Ξ2(t1 � t′).
Let c′1 = L(t′� t′) and c′2 = c2.

Case Ξ1(t′� t2) and ⊥A.
Let c′1 = c1 and c′2 = L(t′� t′).

Case Ξ1(t′� t2) and Ξ2(t1 � t′).
Let c′1 = c1 and c′2 = c2.

Property 5 (New rules).

1. For translation of effect bounds, let D À a � ξ; we need to show that
D∗ ` ξ � a∗. We proceed by induction on the derivation of D À a � ξ,
which has but one new case to consider:

Case

D À ξ � ξ1 · · · D À ξ � ξj
D À t1 : ? D À t2 : ?

D À
ξ1,...,ξj (t1 � t2) � ξ

.

If ξ1, . . . , ξj is equivalent to a single qualifier ξ′, then ξ′(t1 � t2)∗ = ξ′.
By the premises, D À ξ � ξ′, and by Lemma B.2, D∗ ` ξ � ξ′.

Otherwise, ξ1, . . . , ξj is not equivalent to a single qualifier. Based on
the quotienting of A, means that there are some qualifiers ξi and ξ′i in
the collection of qualifiers such that ξiuξ′i is undefined. By Lemma A.3,
we know that ξ = U. Then by rule QSub-Bot.

2. For translation of effect subsumption, let D À a1 � a2; we must show that
D∗ ` a2

∗ � a1
∗.

(1) D D̀ D(a1) � D(a2) by Lemma C.3.4
(2) D∗ ` D(a2)∗ � D(a1)∗ by λURAL(D)

Property 5
(3) D∗ ` a2

∗ � a1
∗ by Lemma C.3.1.

3. For translation of kinding, let D À a : CTL. By Lemma C.3.3, D D̀

D(a) : CTL. Then by Lemma 5.4, D∗ ` D(a)∗ : QUAL. Note, finally, that
D(a)∗ = a∗ by Lemma C.3.1.

4. For translation of typing, let

– D; G À e : t ; a.
– D∗ ` ξ0 � a∗, and
– D∗ ` τ ′ : ?.

We must show that D∗; G∗ ` JeKA : L(ξ0(t∗( 〈〈τ ′, a〉〉−
A

)( 〈〈τ ′, a〉〉−
A

). We
proceed by induction on the typing derivation, with two cases to consider:
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Case
D; G À e′ : t0 ; Ξ(t0 � t)

D; G À reset e′ : t ;⊥A

.

We must show that D∗; G∗ ` Je′KA : L(ξ0(t∗( τ ′)( τ ′). Let a′ =
Ξ(t0 � t). Then,

(1) Jreset e′KA = λy.y (Je′KD (λx.x)) by def. JeKA

(2) D∗; G∗ ` Je′KA : L(a
′∗

(t0
∗( t0

∗)( t∗) by IH
(3) D∗; •, x:t0

∗ ` x : t0
∗ by rule T-Var

(4) D∗; • ` λx.x : a
′∗

(t0
∗( t0

∗) by (3), rule T-Abs
(5) D∗; G∗ ` Je′KA (λx.x) : t∗ by (2, 4), rule T-App
(6) D∗; •, y:ξ0(t∗( τ ′) ` y : ξ0(t∗( τ ′) by rule T-Var
(7) D∗; G∗, y:ξ0(t∗( τ ′) ` y (Je′KA (λx.x)) : τ ′

by (5–6), rule T-App
(8) D∗; G∗ ` λy.y (Je′KA (λx.x)) : L(ξ0(t∗( τ ′)( τ ′)

by (7), rule T-Abs
(9) D∗; G∗ ` Jreset e′KA : L(ξ0(t∗( τ ′)( τ ′)

by (1, 8).

Case
D; G, y′:ξ(t1

⊥A−−( t2) À e′ : t0 ; Ξ(t0 � t)

D; G À shift y′ in e′ : t1 ; Ξ,ξ(t2 � t)
.

We must show that D∗; G∗ ` Jshift y′ in e′KA : L(ξ0(t1
∗( t2

∗)( t∗).
Let a′ = Ξ(t0 � t).

(1) Jshift y′ in e′KA = λy.(λy′.Je′KA (λx.x)) (Λ.λx.λy′′.y′′ (y x))
by def. JeKA

(2) D∗ ` ξ0 � (Ξ,ξ(t2 � t))∗ by lem. assumption
(3) D∗ ` (Ξ(t0 � t) 5 ξ(t2 � t0))∗ � ξ(t2 � t0)∗

by Property 3
(4) D∗ ` (Ξ,ξ(t2 � t))∗ � ξ by (3), def a∗

(5) D∗ ` ξ0 � ξ by (2, 4), trans.
(6) D∗ ` •, y:ξ0(t1

∗( t2
∗) � ξ by (5)

(7) D∗; G∗, y′:(ξ(t1
⊥A−−( t2))∗ ` Je′KA : L(a

′∗
(t0
∗( t0

∗)( t∗)
by IH

(8) D∗; • ` λx.x : a
′∗

(t0
∗( t0

∗) by rules T-Var and
T-Abs

(9) D∗; G∗, y′:(ξ(t1
⊥A−−( t2))∗ ` Je′KA (λx.x) : t∗

by (7–8), rule T-App
(10) D∗; G∗ ` λy′.Je′KA (λx.x) : L((ξ(t1

⊥A−−( t2))∗( t∗)
by (9), rule T-Abs

(11) D∗, α:?; •, y′′:L(t2
∗( α) ` y′′ : L(t2

∗( α)
by rule T-Var
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(12) D∗, α:?; •, y:ξ0(t1
∗( t2

∗) ` y : ξ0(t1
∗( t2

∗)
by rule T-Var

(13) D∗, α:?; •, x:t1
∗ ` x : t1

∗ by rule T-Var
(14) D∗, α:?; •, y:ξ0(t1

∗( t2
∗), x:t1

∗ ` y x : t2
∗

by (12–13),
rule T-App

(15) D∗, α:?; •, y:ξ0(t1
∗( t2

∗), x:t1
∗, y′′:L(t2

∗( α) ` y′′ (y x) : α
by (11, 14),
rule T-App

(16) D∗, α:?; •, y:ξ0(t1
∗( t2

∗), x:t1
∗ ` λy′′.y′′ (y x) :

L(L(t2
∗( α)( α) by (15), rule T-Abs

(17) D∗, α:?; •, y:ξ0(t1
∗( t2

∗) ` λx.λy′′.y′′ (y x) :
L(t1

∗( L(L(t2
∗( α)( α)) by (16), rule T-Abs

(18) D∗; •, y:ξ0(t1
∗( t2

∗) ` Λ.λx.λy′′.y′′ (y x) :
ξ∀α: ? .L(t1

∗( L(L(t2
∗( α)( α)) by (6, 17),

rule T-TAbs
(19) D∗; •, y:ξ0(t1

∗( t2
∗) ` Λ.λx.λy′′.y′′ (y x) : (ξ(t1

⊥A−−( t2))∗

by (18), def. t∗

(20) D∗; G∗, y:ξ0(t1
∗( t2

∗) `
(λy′.Je′KA (λx.x)) (Λ.λx.λy′′.y′′ (y x)) : t∗

by (10, 19),
rule T-App

(21) D∗; G∗ ` λy.(λy′.Je′KA (λx.x)) (Λ.λx.λy′′.y′′ (y x)) :
L(ξ0(t1

∗( t2
∗)( t∗) by (20), rule T-Abs

(22) D∗; G∗ ` Jshift y′ in e′KA : L(ξ0(t1
∗( t2

∗)( t∗)
by (1, 21).

C.3 Exception Effects

In this section, we consider the exception effects from §6.3.

Theorem 6.4 (Exception effect properties, restated from p. 40).

Exception effects (X,∅,∪) satisfy Properties 1–5.

Proof.
Property 1 (Answer types).

1. Trivial, because 〈〈τ,Ψ〉〉−
X

= L(Uexn⊕ τ) = 〈〈τ,Ψ〉〉+
X
for all τ and Ψ.

2. Then,

(1) D∗ ` τ : ? by lemma assumption
(2) D∗ ` Uexn : ? by def. exn,

rule K-Type
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(3) D∗ ` Uexn⊕ τ : ? by (1–2), rule K-Sum
(4) D∗ ` L(Uexn⊕ τ) : ? by (3), rule K-Type
(5) D∗ ` 〈〈τ,Ψ〉〉−

X
: ? and D∗ ` 〈〈τ,Ψ〉〉+

X
: ? by (4), defs.

3. Trivial, as in the first case.

4. Let τ ′ = τ.

Property 2 (Done).

(1) ∆ ` τ � L by rule B-Var or
rules B-Type and
QSub-Top

(2) ∆ ` Uexn : ? by rule K-Type

(3) ∆; •, x:τ ` x : τ by rule T-Var

(4) ∆; •, x:τ ` inr x : L(Uexn⊕ τ) by (1–3), rule T-Inr

(5) ∆; • ` λx. inr x : L(τ( L(Uexn⊕ τ)) by (4), rule T-Abs

(6) ∆; • ` doneX : L(τ( 〈〈τ〉〉X) by (5), def. doneX, def.
〈〈τ〉〉X.

Property 3 (Effect sequencing). Let D À Ψ1 ∪ Ψ2 : CTL. We need that
D∗ ` (Ψ1 ∪Ψ2)∗ � Ψ1

∗ and D∗ ` (Ψ1 ∪Ψ2)∗ � Ψ2
∗. By cases on Ψ1 and Ψ2:

Case Ψ1 = ∅ and Ψ2 = ∅.
Then (Ψ1 ∪Ψ2)∗ = L, Ψ1

∗ = L, and Ψ2
∗ = L, so by rule QSub-Top.

Case Ψ1 = ∅ and Ψ2 6= ∅.
Then (Ψ1 ∪ Ψ2)∗ = A, Ψ1

∗ = L, and Ψ2
∗ = A, so by rules QSub-Top

and QSub-Refl.

Case Ψ1 6= ∅ and Ψ2 = ∅.
By symmetry.

Case Ψ1 6= ∅ and Ψ2 6= ∅.
Then (Ψ1 ∪Ψ2)∗ = A, Ψ1

∗ = A, and Ψ2
∗ = A, so by rule QSub-Refl.

Property 4 (Bottom and lifting).

1. By the definition of set union.

2. Let c′1 = c1 and c′2 = c2.

Property 5 (New rules).
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1. For translation of effect bounds, let D X̀ Ψ � ξ; we need to show that
D∗ ` ξ � Ψ∗. We proceed by induction on the derivation of D X̀ Ψ � ξ,
which has but one new case to consider:

Case
D X̀ Ψ : CTL

D X̀ Ψ � A
.

By cases on Ψ:
Case ∅.

Then Ψ∗ = L, so by rule QSub-Top.
Otherwise.

Then Ψ∗ = A, so by rule QSub-Refl.

2. For translation of effect subsumption, let D X̀ Ψ1 � Ψ2; we must show
that D∗ ` Ψ2

∗ � Ψ1
∗. By cases on Ψ1 and Ψ2:

Case Ψ1 = ∅ and Ψ2 = ∅.
Then Ψ1

∗ = L and Ψ2
∗ = L, so by rule QSub-Top.

Case Ψ1 = ∅ and Ψ2 6= ∅.
Then Ψ1

∗ = L and Ψ2
∗ = A, so by rule QSub-Top.

Case Ψ1 6= ∅ and Ψ2 = ∅.
Vacuous, because Ψ1 6⊆ Ψ2.

Case Ψ1 6= ∅ and Ψ2 6= ∅.
Then Ψ1

∗ = A and Ψ2
∗ = A, so by rule QSub-Refl.

3. By definition Ψ∗ = L or Ψ∗ = A, so D∗ ` Ψ∗ : QUAL by rule K-Qual.

4. For translation of typing, let

– D; G X̀ e : t ; Ψ.
– D∗ ` ξ0 � Ψ∗, and
– D∗ ` τ ′ : ?.

We must show that

D∗; G∗ ` JeKΨ
X

: L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′)).

We proceed by induction on the typing derivation, with two cases to
consider:

Case
D C̀ t : ?

D; • X̀ raise ψ : t ; {ψ}
.

(1) Jraise ψK{ψ}X = λx. inl ψ∗ by def. JeKΨ
X

(2) D∗ ` Uexn � L by rules B-Type and
QSub-Top

(3) D∗ ` •, x:ξ0(t∗( L(Uexn⊕ τ ′)) 
•� •, x:ξ0(t∗( L(Uexn⊕ τ ′)) by rules S-Nil and

S-ConsR
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(4) D∗; • ` ψ∗ : Uexn by def. exn
(5) Ψ∗ = A by def. {ψ}∗
(6) D∗ ` ξ0 � A by lemma assumption,

(5)
(7) D∗ ` •, x:ξ0(t∗( L(Uexn⊕ τ ′)) � A by (6), rules B-Type

and B-Cons
(8) D∗; •, x:ξ0(t∗( L(Uexn⊕ τ ′)) ` ψ∗ : Uexn

by (3–4, 7),
rule T-Weak

(9) D∗; •, x:ξ0(t∗( L(Uexn⊕ τ ′)) ` inl ψ∗ : L(Uexn⊕ τ ′)
by (2, 8), rule T-Inl

(10) D∗; • ` λx. inl ψ∗ : L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′))
(11) D∗; • ` Jraise ψK{ψ}X : L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′))

by (1, 10).

Case

D C̀ G  G1 �G2

D; G1 X̀ e1 : t ; {ψ} ∪Ψ′ D; G2 X̀ e2 : t ; Ψ′ D C̀ G2 � A

D; G X̀ e1 handle ψ → e2 : t ; Ψ′
.

By cases on Ψ′:
Case Ψ′ = ∅.

(1) Je1 handle ψ → e2K∅X =

λy. [λ .Je2K∅X y, y] (Je1K
{ψ}
X (λx. inr x))

by def. JeKΨ
X

(2) D∗; G2
∗ ` Je2K∅X : L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′))

by IH, ξ0 � ∅∗

(3) D∗; •, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` y : ξ0(t∗( L(Uexn⊕ τ ′))
by rule T-Var

(4) D∗; G2
∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` Je2K∅X y : L(Uexn⊕ τ ′)

by (2–3), rule T-App
(5) D∗; G2

∗, y:ξ0(t∗( L(Uexn⊕ τ ′)), x′:Uexn ` Je2K∅X y :
L(Uexn⊕ τ ′) by (4), rule T-Weak

(6) D∗; G2
∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` λ .Je2K∅X y :

L(Uexn( L(Uexn⊕ τ ′)) by (5), rule T-Abs
(7) D∗; G∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` y : ξ0(t∗( L(Uexn⊕ τ ′))

by (3), rule T-Weak
(8) D∗; G∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` [λ .Je2K∅X y, y] :

L(L(Uexn⊕ t∗)( L(Uexn⊕ τ ′)) by (6–7),
rule T-SumE

(9) D∗; G1
∗ ` Je1K

{ψ}
X : L(A(t∗( L(Uexn⊕ t∗))( L(Uexn⊕ t∗))

by IH, A � {ψ}∗
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(10) D∗; •, x:t∗ ` x : t∗ by rule T-Var
(11) D∗; •, x:t∗ ` inr x : L(Uexn⊕ t∗) by (10), rule T-Inr
(12) D∗; • ` λx. inr x : A(t∗( L(Uexn⊕ t∗))

by (11), rule T-Abs

(13) D∗; G1
∗ ` Je1K

{ψ}
X (λx. inr x) : L(Uexn⊕ t∗)

by (9, 12), rule T-App
(14) D∗; G∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) `

[λ .Je2K∅X y, y] (Je1K
{ψ}
X (λx. inr x)) : L(Uexn⊕ τ ′)

by (8, 13), rule T-App

(15) D∗; G∗ ` λy. [λ .Je2K∅X y, y] (Je1K
{ψ}
X (λx. inr x)) :

L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′))
by (14), rule T-Abs

(16) D∗; G∗ ` Je1 handle ψ → e2K∅X :
L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′))

by (1, 15).

Case Ψ′ 6= ∅.
This means that Ψ′∗ = A, so we know that

(1) D∗ ` ξ0 � A.

Then:
(2) Je1 handle ψ → e2K

Ψ′

X =

λy. [[λ .Je2K
Ψ′

X y, λx. inl x]ψ , y] (Je1K
{ψ}∪Ψ′

X (λx. inr x))
by def. Je1KΨ

X

(3) D∗; G2
∗ ` Je2K

Ψ′

X : L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′))
by IH, ξ0 � ∅∗

(4) D∗; •, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` y : ξ0(t∗( L(Uexn⊕ τ ′))
by rule T-Var

(5) D∗; G2
∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` Je2K

Ψ′

X y : L(Uexn⊕ τ ′)
by (3–4), rule T-App

(6) D∗; G2
∗, y:ξ0(t∗( L(Uexn⊕ τ ′)), x′:Uexn ` Je2K

Ψ′

X y :
L(Uexn⊕ τ ′) by (5), rule T-Weak

(7) D∗; G2
∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` λ .Je2K

Ψ′

X y :
L(Uexn( L(Uexn⊕ τ ′)) by (6), rule T-Abs

(8) D∗; • ` λx. inl x : L(Uexn( L(Uexn⊕ τ ′))
by rules T-Var,
T-Inl, and T-Abs

(9) D∗ ` G2
∗ � A by assumption,

Lemma B.2
(10) D∗ ` G2

∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) � A
by (1, 9)
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(11) D∗; G2
∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` λx. inl x :

L(Uexn( L(Uexn⊕ τ ′)) by (8, 10),
rule T-Weak

(12) D∗; G2
∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` [λ .Je2K

Ψ′

X y, λx. inl x]ψ :
L(Uexn( L(Uexn⊕ τ ′)) by (7, 11), def.

[v1, v2]ψ
(13) D∗; G2

∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) ` y : ξ0(t∗( L(Uexn⊕ τ ′))
by (4), rule T-Weak

(14) D∗; G2
∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) `

[[λ .Je2K
Ψ′

X y, λx. inl x]ψ , y] : L(L(Uexn⊕ t∗)( L(Uexn⊕ τ ′))
by (12–13),
rule T-SumE

(15) D∗; G1
∗ ` Je1K

{ψ}∪Ψ′

X :
L(A(t∗( L(Uexn⊕ t∗))( L(Uexn⊕ t∗))

by IH, A � ({ψ}∪Ψ′)∗

(16) D∗; • ` λx. inr x : A(t∗( L(Uexn⊕ t∗))
by rules T-Var,
T-Inr, and T-Abs

(17) D∗; G1
∗ ` Je1K

{ψ}∪Ψ′

X (λx. inr x) : L(Uexn⊕ t∗)
by (15–16),
rule T-App

(18) D∗; G∗, y:ξ0(t∗( L(Uexn⊕ τ ′)) `
[[λ .Je2K

Ψ′

X y, λx. inl x]ψ , y] (Je1K
{ψ}∪Ψ′

X (λx. inr x)) :
L(Uexn⊕ τ ′) by (14, 17),

rule T-App
(19) D∗; G∗ `

λy. [[λ .Je2K
Ψ′

X y, λx. inl x]ψ , y] (Je1K
{ψ}∪Ψ′

X (λx. inr x)) :
L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′))

by (18), rule T-Abs

(20) D∗; G∗ ` Je1 handle ψ → e2K
Ψ′

X :
L(ξ0(t∗( L(Uexn⊕ τ ′))( L(Uexn⊕ τ ′))

by (2, 19).
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