A

For most types, Alms infers
how many times values of that
type can be used (freely or
only once) from the structure of
the type, but in general, the do-
main and codomain of a func-
tion type do not determine how
many times the function can be
used. Thus, function arrows re-
quire annotation.




Implicit Arrow Annotations in Alms

Jesse A. Tov

Northeastern University

NEPLS
March 4, 2011



Alms:

A practical language
with affine types



Affine types:

Some values can be
used at most once



What's that good for?

Programming with
stateful resources

(think: generalized typestate)



let finish (f : open file) : closed file =
let ' = writeFooter f
in close f’



let finish (f : open file) : closed file =
let ' = writeFooter f
in close f’

let finish (f : open file) : closed file =
Thread.fork (A () — writeFooter f);
close f



let finish (f : open file) : closed file =
let ' = writeFooter f
in close f’

let finish (f yopen file) : clo ile = |
Thread.fgrk (A () — writeFooter f); Type error!
close f



let finish (f : open file) : closed file =
let ' = writeFooter f
in close f’

let finish (f yopen file) : clo ile = |
Thread.fgrk (A () — writeFooter f); Type error!
close f

let square (z :int) =z X z



let finish (f : open file) : closed file =
let f = writeFooter f

in close f’

let finish (f yopen file) : clo ile = |
Thread.fgrk (A () — writeFooter f); Type error!
close f

let square (z :int) =z X z

int :U
a file : A



B list: g

BxC:qLdq






let later (name : string) : unit —> open file =
A () = open name

let now (name : string) : unit —> open file =
let f = open name

inA() >f



let later (name : string) : unit 5 open file =
A () = open name

let now (name : string) : unit 2> open file =
let f = open name

inA() >f






writelist : open file N string list A, open file



writelist : open file N string list A, open file

writelist f vs. f



writelist : open file N string list A, open file
writelist f vs. f

compose : ([ i)7) L)(a = B) i)cvéﬁry

composef  vs. f
composefg vs. fandg



writelist : open file N string list A, open file
writelist f vs. f

compose : ([ i)7) L)(a = B) i)cvéﬁry

composef  vs. f
composefg vs. fandg



writelist : open file N string list A, open file
writelist f vs. f

compose : ([ i)7) L)(a =5 8) i)cvéﬁry

composef  vs. f
composefg vs. fandg



writelist : open file -U> string list -A> open file

compose : (‘b -d> ‘c) -U> (‘a -e> ‘b) -d> ‘a -d,e> ‘c



writelList : open file -> string list -A> open file

compose : (‘b -d> ‘c) -> (‘a -e> ‘b) -d> ‘a -d,e> ‘c



writelist : open file -> string list -A> open file

compose : (‘b @ ‘c) -> (‘a @ ‘b) @ ‘a ‘c



writelist : open file -> string list -A> open file
let writelList file strs = foldl write file strs

compose : (‘b -d> ‘c) -> (‘a -e> ‘b) -d> ‘a -d,e> ‘c
let compose f g x = f (g x)



writelis » string list @ open file

let writelist file strs = foldl write file strs

compose : (‘b -d> ‘c) -> (‘a -e> ‘b) -d> ‘a -d,e> ‘c
let compose f g x = f (g x)



writelis » string list @ open file

let writelist file strs = foldl write file strs

compose m@ ‘a -d,e> ‘c

let compose F g x =



writelis » string list @ open file

let writelist file strs = fold ite file strs




writelis » string list (} open file

let writelList file strs = foldl write file strs

compose : (‘b ‘c) -> (‘a ‘b) (} ‘a (} ‘c

let compose f g x = f (g x)



writelis » string list 9» open file

let writelList file strs foldl write file strs
let writelist file_stFs = open tdes . te
compose : (‘b

let compose f g x = f (g x)
let compose f g x = raise Failure



writelis » string list (} open file

let writelList file strs = foldl write file strs




Alms’s Standard Library:

Rule NO of Annotations
explicit 588
implicit Us 63

new rule 20



Alms’s Standard Library:

Rule NO of Annotations
explicit 588
implicit Us 63

new rule f 20

17 have negative As
1 relates domain and range
2 for a weird contract thing



Try Alms:

http://www.ccs.neu.edu/ " tov/pubs/alms

(or Google: alms affine)


http://www.ccs.neu.edu/~tov/pubs/alms

