
Stateful Contracts for Affine Types∗

Jesse A. Tov and Riccardo Pucella

Northeastern University, Boston, MA 02115, USA
{tov,riccardo}@ccs.neu.edu

Abstract. Affine type systems manage resources by preventing some
values from being used more than once. This offers expressiveness and
performance benefits, but difficulty arises in interacting with components
written in a conventional language whose type system provides no way
to maintain the affine type system’s aliasing invariants. We propose and
implement a technique that uses behavioral contracts to mediate between
code written in an affine language and code in a conventional typed
language. We formalize our approach via a typed calculus with both
affine-typed and conventionally-typed modules. We show how to preserve
the guarantees of both type systems despite both languages being able
to call into each other and exchange higher-order values.

1 Introduction

Substructural type systems augment conventional type systems with the ability
to control the number and order of uses of a data structure or operation [20].
Linear type systems [19, 11, 3, 1], for example, ensure that values with linear type
cannot be duplicated or dropped, but must be eliminated exactly once. Other
substructural type systems refine these constraints. Affine type systems, which
we consider here, prevent values from being duplicated but allow them to be
dropped: a value of affine type may be used once or not at all.

Affine types are useful to support language features that rely on avoidance of
aliasing. One example is session types [6], which are a method to represent and
statically check communication protocols. Suppose that the type declared by

typeA prot = (int send → string recv → unit) chan (1)

represents a channel whose protocol allows us to to send an integer, then receive a
string, and finally end the session. Further, suppose that send and recv consume
a channel whose type allows sending or receiving, as appropriate, and return a
channel whose type is advanced to the next step in the protocol. Then we might
write a function that takes two such channels and runs their protocols in parallel:

letA twice (c1 : prot, c2 : prot, z : int): string ⊗ string =
let once (c : prot) ( : unit) =

let c = send c z in
let (s, ) = recv c in s

in (once c1) ||| (once c2) (2)
∗ Our prototype implementation and the full details of our soundness theorem may

be found at http://www.ccs.neu.edu/~tov/pubs/affine-contracts/.
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The protocol is followed correctly provided that c1 and c2 are different channels.
Calling twice(c, c, 5), for instance, would violate the protocol. An affine type
system can prevent this.

In addition to session types and other forms of typestate [15], substructural
types have been used for memory management [8], for optimization of lazy lan-
guages [18], and to handle effects in pure languages [2]. Given this range of
features, a programmer may wish to take advantage of substructural types in
real-world programs. Writing real systems, however, often requires access to com-
prehensive libraries, which mainstream programming languages usually provide
but experimental implementations often do not. The prospect of rewriting a large
library to work in a substructural language strikes these authors as unappealing.

It is therefore compelling to allow conventional and substructural languages
to interoperate. We envision complementary scenarios:

– A programmer wishes to import legacy code for use by affine-typed client
code. Unfortunately, legacy code unaware of the substructural conditions
may duplicate values received from the substructural language.

– A programmer wishes to export substructural library code for access from
a conventional language. A client may duplicate values received from the li-
brary and resubmit them, causing aliasing that the library could not produce
on its own and bypassing the substructural type system’s guarantees.

Our Contributions. We present a novel approach to regulating the interaction
between an affine language and a conventionally-typed language and implement
a multi-language system having several notable features:

– The non-affine language may gain access to affine values and may apply
affine-language functions.

– The non-affine type system is utterly standard, making no concessions to
the affine type system.

– And yet, the composite system preserves the affine language’s invariants.

We model the principal features of our implementation in a multi-language cal-
culus that enjoys type soundness. In particular, the conventional language, al-
though it has access to the affine language’s functions and values, cannot be
used to subvert the affine type system.

Our solution is to wrap each exchanged value in a software contract [4], which
uses one bit of state to track when an affine value has been used. While this idea
is simple, the details can be subtle.

Design Rationale and Background. Our multi-language system combines
two sublanguages with different type systems. The C (“conventional”) lan-
guage is based on the call-by-value, polymorphic λ calculus [7, 12] with alge-
braic datatypes and SML-style abstype [10]. The A (“affine”) language adds
affine types and the ability to declare new abstract affine types, allowing us to
implement affine abstractions such as session types and static read-write locks.
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A program in our language consists of top-level module, value, and type def-
initions, each of which may be written in either of the two sublanguages. (In
the example above (2), the subscripts on typeA and letA indicate the A lan-
guage.) Each language has access to modules written in the other language,
although they view foreign types through a translation into the native type sys-
tem. Affine modules are checked by an affine type system, and non-affine modules
are checked by a conventional type system. Notably, non-functional affine types
appear as abstract types to the conventional type system, which requires no
special knowledge about affine types other than comparing them for equality.

In our introductory example, a protocol violation occurs only if the two
arguments to twice are aliases for the same session-typed channel, which the
A language type system prevents. Problems would arise if we could use the
C language to subvert A language’s type system non-aliasing invariants. To
preserve the safety properties guaranteed by each individual type system and
allow the two sublanguages to invoke one another and exchange values, we need
to perform run-time checks in cases where the non-affine type system is too weak
to express the affine type system’s invariants. Because the affine type system can
enforce all of the conventional type system’s invariants, we may dispense with
checks in the other direction.

For instance, the affine type system guarantees that an affine value created in
an affine module will not be duplicated within the affine sublanguage. If, however,
the value flows into a non-affine module, then static bets are off. In that case,
we resort to a dynamic check that prevents the value from flowing back into an
affine context more than once. Since our language is higher-order, we use a form
of higher-order contract [4] to keep track of each module’s obligations toward
maintaining the affine invariants.

Our approach to integrating affine and conventional types borrows heavily
from recent literature on multi-language interoperability [5, 13]. Our approach
borrows from that of Typed Scheme [17, 16] and of Matthews and Findler [9],
both of which use contracts to mediate between an untyped, Scheme-like lan-
guage and a typed language.

2 Example: Taming the Berkeley Sockets API

The key feature of our system is the ability to write programs that safely mix
code written in an affine-typed language and a conventionally-typed language.
As an example, we develop a small networking library and application, using
both of our sublanguages where appropriate.

The Berkeley sockets API is the standard C language interface to network
communication [14]. Transmission Control Protocol (TCP), which provides re-
liable byte streams, is the standard transport layer protocol used by most in-
ternet applications (e.g., SMTP, HTTP, and SSH). Setting up a TCP session
using Berkeley sockets is a multi-step process (Fig. 1). A client must first create
a communication end-point, called a socket, via the socket system call. It may
optionally select a port to use with bind, and then it establishes a connection
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Fig. 1. States and transitions for TCP (simplified)

moduleC Socket : sig
type socket
val socket : unit → socket (* ∅ ⇒ initial *)
val bind : socket → port → unit (* initial ⇒ bound *)
val listen : socket → unit (* bound ⇒ listening *)
val accept : socket → socket (* listening ⇒ connected ⊗ listening *)
val send : socket → string → bool (* connected ⇒ connected ⊕ closed *)

· · · end

Fig. 2. Selected C language socket operations, annotated with state transitions

with connect. Once a connection is established, the client may send and recv
until either the client or the other side closes the connection.

For a server, the process is more involved: it begins with socket and bind as
the client does, and then it calls listen to allow connection requests to begin
queuing. The server calls accept to accept a connection request. When accept
succeeds, it returns a new socket that is connected to a client, and the old,
listening socket is available for further accept calls. (For simplicity, we omit
error transitions, except for failure of send and recv.)

Our C sublanguage provides the interface to sockets shown in Fig. 2. The
socket operations are annotated with their pre- and post-conditions, but the
implementation detects and signals state errors dynamically. For example, calling
listen on a socket in state initial or calling connect on a socket that is already
connected will raise an exception. If the other side hangs up, send and recv
raise exceptions, but nothing in this interface prevents further communication
attempts that are bound to fail.1

By reimplementing the sockets API in language A , we can use language A ’s
type system to move the state transition information from comments into the
type system itself. For example, we give listen in sublanguage A the type

∀α. α socket → α bound → α listening , (3)

1 This simplifies the Berkeley sockets API by omitting address families, protocols,
half-closed sockets, non-blocking IO, etc., but the stateful essence remains.
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val socket : unit → ∃α. α socket ⊗ α initial
val bind : ∀α. α socket → port → α initial → α bound
val listen : ∀α. α socket → α bound → α listening
val accept : ∀α. α socket → α listening → (α listening ⊗ ∃β. β socket ⊗ β initial)
val connect : ∀α. α socket → host → port → (α initial ⊕ α bound) → α connected
val send : ∀α. α socket → string → α connected → α connected
val recv : ∀α. α socket → int → α connected → string ⊗ α connected
val close : ∀α. α socket → α connected → unit

Fig. 3. The A language sockets API

which means that given a socket and evidence that the socket is bound, listen
changes the state to listening and returns evidence to that effect. These evidence
tokens are capabilities, and the type parameter on each capability ties it to the
particular socket whose state it describes. These capabilities have affine type so
that when listen consumes the bound capability, we cannot call listen again on
the same socket.

We reimplement the sockets API in language A in terms of the language C
operations. From the vantage of language A , C function types are mapped to
A function types, but the C type Socket.socket is mapped to an opaque type
{Socket.socket}. Type constructor {·} delimits foreign types referenced from the
other sublanguage.

We declare a new abstract type for sockets in language A , along with a type
to represent each of the states:

abstypeA α socket = Sock of {Socket.socket}
and α initial qualifier A = Initial
and α bound qualifier A = Bound
and α listening qualifier A = Listening
and α connected qualifier A = Connected

with · · · (* operations detailed below *) · · · end (4)

Several aspects of this abstype declaration bear further explanation:

– Each type has a phantom parameter α, which is used to associate a socket
with the type witnessing its state.

– The syntax qualifier A on each the state type declares that outside the
abstraction boundary, values of those types will appear as affine. Code inside
the abstype declaration sees that they are ordinary, non-affine data types.

– Because each of the capabilities has only one constructor with no values,
they need not be represented at run time.

The A language sockets interface appears in Fig. 3. The A sockets imple-
mentation relies on delegating to C language functions. From within A , C types
are viewed through a simple translation: function types, quantified types, and a
few base types such as int pass through transparently, whereas other types are



6 J. Tov and R. Pucella

letA clientLoop[α] (sock: α socket) (f : string → string) (cap: α connected) =
let rec loop (cap: α connected): unit =

let (str, cap) = recv sock 1024 cap in
let cap = send sock (f str) cap in
loop cap

in try loop cap with SocketError → ()

let interface threadFork :> (unit(
a

unit) → {thread}C = threadForkC

let recA acceptLoop[α] (sock: α socket) (f : string → string) (cap: α listening): unit =
let (cap, Pack(β, (clientsock, clientcap))) = accept sock cap in

threadFork (fun () → clientLoop clientsock f clientcap);
acceptLoop sock f cap

letA echoServe (port: int) (f : string → string) =
let Pack(α, (sock, cap)) = socket () in
let cap = bind sock port cap in
let cap = listen sock cap in

acceptLoop sock f cap

Fig. 4. An echo server in language A

wrapped opaquely as Socket.socket was above. Thus, the type of Socket.socketC

becomes unit → {Socket.socket} when viewed from A . Each A function is a
minimal wrapper around its C counterpart:

letA socket () =
let sock = Socket.socketC () in

in Pack(unit, (Sock[unit] sock, Initial[unit])) as ∃β. β socket ⊗ β initial

letA listen[α] (Sock sock as s: α socket) ( : α bound) =
try Socket.listenC sock;

Listening[α]
with IOError msg → raise (StillBound (freezeBound s cap, msg)) (5)

For socketA , we call Socket.socketC to create the new socket, which we wrap in
the Sock constructor and pack into an existential with a new initial capability.
(The type abstracted by the existential is immaterial; unit will do.) Function
listenA calls its C counterpart on the socket and returns a listening capabil-
ity tied by α to the socket. On failure, the socket is still in state bound, so it
raises an exception containing the bound capability. The remaining functions
are equally straightforward, but when we’re done, provided we got this trusted
kernel correct, we have an A library that enforces the correct ordering of socket
operations.

Calling the various C socket operations from A is safe because none has a
type that enables it to gain access to an A language value. Other situations are
not as simple. Figure 4 shows an implementation of an echo server in language
A . (The working code is included with our prototype implementation on our web
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site.) The server sends back the data it receives from each client after passing it
through an unspecified string → string function f . The main function echoServe
creates a socket, binds it to the requested port, and begins to listen. The type
system ensures that echoServe performs these operations in the right order, and
because the capabilities have affine types, it disallows referring to any one of them
more then once. Function echoServe calls acceptLoop, which blocks in accept
waiting for clients. For each client, it spawns a thread to handle that client and
continues waiting for another client. Spawning the thread is where the multi-
language interaction becomes tricky.

As in other substructural type systems, A requires that a function be given
a type whose usage (unlimited or affine) is at least as restrictive as any variable
that it closes over. Thus far, we have seen only unlimited function types (→),
also written (u . Language A also has affine function types, written (a .

The new client capability clientcap, returned by accept, has affine type β con-
nected. Because the thunk for the new thread, (fun () → clientLoop clientsock f
clientcap), closes over clientcap, it has affine type as well: unit (a unit. This causes
a problem: To create a new thread, we must pass the thunk to the C function
threadForkC , whose type as viewed from A is (unit → unit) → {thread}C . Such
a type makes no guarantee about how many times threadForkC applies its argu-
ment. In order to pass the affine thunk to it, we assert that threadForkC has the
desired behavior:

let interface threadFork :> (unit (a unit) → {thread}C = threadForkC (6)

This constitutes a checked assertion that the C value actually behaves accord-
ing to the given A type. This gets the program past A ’s type checker, and if
threadForkC attempts to apply its argument twice at run time, a dynamic check
prevents it from doing so and signals an error.

The two sublanguages can interact in other ways:

– We may call echoServeA from the C language, passing it a C function for f .
This is safe because function f has type string → string, and thus can never
gain access to an affine value.

– We may use the A language sockets library from a C program:

letC sneaky () =
let Pack(α, (sock, cap1)) = socketA () in
let cap2 = connectA sock "sneaky.example.org" 25 cap1 in
let cap3 = connectA sock "sneaky2.example.org" 25 cap1 in
· · · (7)

This program passes C ’s type checker but is caught when it attempts to
reuse the initial capability cap1 at run time. This misbehavior is detected
because sneaky ’s interaction with A is mediated by a behavioral contract.

3 Implementing Stateful Contracts

In Findler and Felleisen’s formulation [4], a contract is an agreement between two
software components, or parties, about some property of a value. The positive
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party produces a value, which must satisfy the specified property. The negative
party consumes the value and is held responsible for treating it appropriately.
Contracts are concerned with catching violations of the property and blaming
the guilty party, which may help locate the source of a bug. For first-order
values the contract may be immediately checkable, but for functional values
nontrivial properties are undecidable, so the check must wait until the negative
party applies the function, at which point the negative party is responsible for
providing a suitable argument and the positive party for producing a suitable
result. Thus, for higher-order functions, checks are delayed until first-order values
are reached.

In our language, the parties to contracts are modules, which must be in
entirely one language or the other, and top-level functions, which we consider as
singleton modules.

Contracts on first-order values check assertions about their arguments, and
either return the argument or signal an error. Contracts on functions return
functions that defer checking until first-order values are reached. The result of
applying a contract should contextually approximate the argument. We represent
a contract for a type α as a function taking two parties and a value of type α,
and returning a value of the same type α:

type α contract = party × party → α → α (8)

A simple contract might assert something about a first-order value:

let evenContract (neg : party, pos: party) (x : int) =
if isEven x then x else blame pos (9)

The contract is instantiated with the identities of the contracted parties, and
then may be applied to a value. We may also construct contracts for functional
values, given contracts for the domain and codomain:

let makeFunctionContract[α, β] (dom: α contract, codom: β contract)
(neg : party, pos: party) (f : α→ β) =

fun (x : α) → codom (neg, pos) (f (dom (pos, neg) x)) (10)

When this contract is applied to a function, it can perform no checks immedi-
ately. Instead, it wraps the function so that, when the resulting function is ap-
plied, the domain contract is applied to the actual parameter and the codomain
contract to the actual result.

We follow this approach closely, but with one small change—contracts for
affine functions are stateful:

let makeAffineFunContract[α, β] (dom: α contract, codom: β contract)
(neg : party, pos: party) (f : α→ β) =

let stillGood = ref true in
fun (x : α) →

if ! stillGood
then stillGood ← false;

codom (neg, pos) (f (dom (pos, neg) x))
else blame neg (11)
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This approach works for functions because we can wrap a function to modify its
behavior. But what about for other affine values such as the socket capabilities
in Sect. 2? We must consider how non-functional values move between the two
sublanguages.

In order to understand the solution, we need to show in greater detail how
types are mapped between the two sublanguages. (The rest of the type system
appears in the next section.) We define mappings (·)A and (·)C from C types
to A types and A types to C types, respectively. Base types such as int and
bool, which may be duplicated without restriction in both languages, map to
themselves:

(B)A = B (B)C = B (12)

Function types convert to function types. C function types go to unlimited func-
tions in A , and both unlimited and affine A functions collapse to ordinary (→)
functions in C (where q ranges over a and u):

(τ1 → τ2)A = (τ2)A (u (τ2)A (σ1 (q σ2)C = (σ1)C → (σ2)C (13)

Quantified types map to quantified types, but they require renaming because
we distinguish type variables between the two languages. In particular, A lan-
guage type variables carry usage qualifiers, which indicate whether they may be
instantiated to any type or only to unlimited types. (All type variables in Sect. 2
were of the u kind.)

(∀α. τ)A = ∀βu. (τ1[{βu}/α])A (∀αq. σ)C = ∀β. (σ1[{β}/αq])C (14)

Finally, the remaining types are uninterpreted by the mapping, and merely en-
closed in {·}:

(τo)A = {τo}, otherwise (σo)C = {σo}, otherwise (15)

Values in this class of types are inert: they have no available operations other
than passing them back to their native sublanguage, which removes the {·}. (We
take {{τ}} to be equivalent to τ .)

This mapping implies that all non-functional, affine types in A map to
opaque types in C .2 Since all that the C language can do with values of opaque
type is pass them back to A , we are free to wrap such values when they flow
into C and unwrap them when they return to A . Specifically, when an affine
value v passes into C , we wrap it in a λ abstraction, fun ( : unit)→ v , and wrap
that thunk with an affine function contract. If the wrapped value flows back into

2 Opaque types may seem limiting, but Matthews and Findler [9] have shown that it is
possible, in what they call the “lump embedding,” for each sublanguage to marshal
its opaque values for the other sublanguage as desired. In practice, this amounts to
exporting a fold to the other sublanguage.
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CA JintK(n, p) = id

CA Jσ1(
u
σ2K(n, p) = makeFunctionContract (A C Jσ1K, CA Jσ2K) (n, p)

CA Jσ1(
a
σ2K(n, p) = makeAffineFunContract (A C Jσ1K, CA Jσ2K) (n, p)

CA JσoK(n, p) = fun (v : σo) → makeAffineFunContract (if σo is

(id, id) (n, p) (fun () → v) affine)

A C JintK(n, p) = id

A C Jσ1(
q
σ2K(n, p) = makeFunctionContract (CA Jσ1K, A C Jσ2K) (n, p)

A C JσoK(n, p) = fun (v : unit → σo) → v () (if σo is affine)

Fig. 5. Type-directed generation of coercions

A , we unwrap it by applying the thunk, which produces a contract error if we
attempt unwrapping it more than once.

After type checking, our implementation translates A modules to C and
wraps all interlanguage variable references with contracts that enforce the A
language’s view of the variable. In Fig. 5, we show several cases from a pair of
metafunctions A C J·K and CA J·K, which perform this wrapping. Metafunction
A C J·K produces the coercion for references to C values from A , and CA J·K is for
references to A values from C . Our formalization does not use this translation,
but gives a semantics to the multi-language system directly.

4 Formalization

We model our language with a pair of calculi corresponding to the two sublan-
guages in the implementation. In this section, we first describe the two calculi
independently, and then move on to explain how they interact.

To distinguish the two calculi, we typeset our affine calculus λA in a blue,
sans-serif font and our non-affine calculus λC in a bold, red, serif font.

4.1 The Calculi λA and λC

We model sublanguage C with calculus λC , which is merely call-by-value Sys-
tem F [7] equipped with singleton modules, each of which for simplicity declares
only one name bound to one value. The syntax of λC appears in Fig. 6, including
module names, which are disjoint from variable names. We include integer liter-
als, which serve as first-order values that should pass transparently into the affine
subcalculus. A program comprises a mutually recursive collection of modules M
and a main expression e. We give only the semantics relevant to modules, as the
rest is standard. The expression typing judgment has the form ∆; Γ `MC e : τ ,
and it carries a module context M , which rule TC-Mod uses to type module
expressions. To type a program, we must type each module with rule TM-C;



Stateful Contracts for Affine Types 11

variables x,y ∈ VarC

type variables α, β ∈ TVarC

module names f ,g ∈ MVarC

programs P ::= M e
module contexts M ::= m1 . . .mk

modules m ::= module f : τ = v

types τ ::= ∀α. τ | α
| τ → τ | int

expressions e ::= x | f | e[τ ] | e e
| Λα.v | dze | · · ·

TC-Mod
module f : τ = v ∈M · `C τ

∆; Γ `MC f : τ

TM-C
·; · `MC v : τ

`M module f : τ = v okay

C-Mod
(module f : τ = v) ∈M

f 7−→
M

v

Fig. 6. Selected syntax and semantics of λC

note that the whole module context is available to each module, allowing for
recursion. Finally, C-Mod shows that module names reduce to the value of the
module.

We model sublanguage A with calculus λA , which extends λC with affine
types. While λA includes all of λC , we choose not to embed λC in λA to empha-
size the generality of our approach, anticipating conventional language features
that we do not know how to type in an affine language. The syntax of λA may be
found in Fig. 7. Expressions are mostly conventional: values, which include λ and
Λ abstractions, constants, and pairs; variables; application and type application;
if expressions; pair construction; and pair elimination. Less conventionally, ex-
pressions also include module names (f), which reduce to the value of the named
module. We define the free variables of an expression in the usual way, but note
that this includes only regular variables (e.g., y), not module names (e.g., g),
which we assume are distinguished syntactically.

Types include integers, function types with qualifier q, universals, and the
syntactically distinguished opaque types, which include type variables, products,
and reference cells. Figure 8 defines a lattice on qualifiers, of which there are
only two: u is bottom and a is top. A qualifier is assigned to each type, with the
notation |σ| = q. Integers are always assigned the unlimited qualifier u, whereas
references always have the affine qualifier a. Function types and type variables
are annotated with their qualifiers, and products get the stronger qualifier of
either of their components. We define the qualifier of a value context Γ as well,
to be the maximum qualifier of any type bound in it; in other words, Γ is affine
if any variable is affine, but if none is then it is unlimited.

The subtyping relation appears in Fig. 8. It is reflexive and transitive, co-
variant on both pair components and function codomains, and contravariant on
function domains, as usual. Subtyping arises from the qualifier lattice in two
ways: an unlimited function may be used where an affine function is expected
(but not vice versa), and a universal type whose bound variable has qualifier a
may be instantiated by a type with qualifier u (but not vice versa).
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variables x, y ∈ VarA

qualifiers q ∈ {a, u}
type variables αq, βq ∈ TVarA

module names f, g ∈ MVarA

modules m ::= module f : σ = v
types σ ::= int | σ(q σ | ∀αq. σ | σo

opaque types σo ::= α | σ ⊗ σ | σ ref
expressions e ::= v | x | f | e e | e[σ] | if0 e e e

| 〈e, e〉 | let 〈x, x〉 = e in e
values v ::= c | λx:σ.e | Λαq. v | 〈v, v〉

constants c ::= new[σ] | swap[σ][σ] | dze | − | (z−) | · · ·
value contexts Γ ::= · | Γ, x:σ
type contexts ∆ ::= · | ∆, αq

Fig. 7. Syntax of λA

q v q , |τ | = q , |Γ| = q

u v q q v a |int| = u |σ1 (
q
σ2| = q |∀αq. σ| = |σ| |αq| = q

|σ1 ⊗ σ2| = |σ1| t |σ2| |σ ref | = a |Γ| =
G

x∈dom(Γ)

|Γ(x)|

σ <: σ

S-Refl

σ <: σ

S-Trans
σ1 <: σ2 σ2 <: σ3

σ1 <: σ3

S-Prod
σ1 <: σ′1 σ2 <: σ′2

σ1 ⊗ σ2 <: σ′1 ⊗ σ′2

S-Arrow
σ′1 <: σ1 σ2 <: σ′2 q v q′

σ1 (
q
σ2 <: σ′1 (

q′
σ′2

S-Forall
q2 v q1 σ1[βq2/αq1 ] <: σ2

∀αq1 . σ1 <: ∀βq2 . σ2

Γ � Γ = Γ

·� · = ·
Γ1 � Γ2 = Γ3 |σ| = a

Γ1 � Γ2, x:σ = Γ3, x:σ

Γ1 � Γ2 = Γ3 |σ| = a

Γ1, x:σ� Γ2 = Γ3, x:σ

Γ1 � Γ2 = Γ3 |σ| = u

Γ1, x:σ� Γ2, x:σ = Γ3, x:σ

Fig. 8. Statics of λA (qualifiers, subtyping, contexts)
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∆; Γ `MA e : σ

TA-Subsume
∆; Γ `MA e : σ σ <: σ′

∆; Γ `MA e : σ′

TA-Lam
∆; Γ, x : σ `MA e : σ′ ∆ `A σ

˛̨
Γ|FV(λx:σ. e)

˛̨
= q

∆; Γ `MA λx:σ. e : σ(
q
σ′

TA-TApp
∆; Γ `MA e : ∀αq. σ′ ∆ `A σ |σ| v q

∆; Γ `MA e[σ] : σ′[σ/αq]

TA-App
∆; Γ1 `MA e1 : σ′(

q
σ ∆; Γ2 `MA e2 : σ′

∆; Γ1 � Γ2 `MA e1 e2 : σ

TA-Mod
module f : σ = v ∈M · `A σ

∆; Γ `MA f : σ

TA-New

∆; Γ `MA new[σ] : σ(
u
σ ref

TA-Swap

∆; Γ `MA swap[σ1][σ2] : (σ1 ref ⊗ σ2)(
u

(σ1 ⊗ σ2 ref)

Fig. 9. Statics of λA (selected expressions)

Figure 8 defines context splitting, which is used by expression typing to
distribute affine assumptions to only one use in a term, but unlimited variables
to an unlimited number of mentions. When a value context must be split to type
two subexpressions, in an application expression, for example (Fig. 9), variables
of affine type are made available to either the operator or operand, but not both.

Selected expression typing rules appear in Fig. 9. Rules TA-Lam and TA-
App are the usual substructural rules for typing λ expressions and applications:
for λ expressions, the qualifier q given to the resulting (q type is the qualifier of
the context Γ limited to the free variables of the expression; thus, the function
is at least as restricted as any values it closes over. The type application rule
TA-TApp requires that a type variable be at least as restrictive as any type
with which it is instantiated.

Finally, rule TA-Swap takes a pair of a σ1 reference and a σ2, and returns a
σ1 and a σ2 reference. From the operational semantics, a small selection of which
appears in Fig. 10, it should be clear that swap swaps the σ2 argument into the
location and returns the value previously in the location. Since TA-Swap does
not require these two types to be the same, swap performs a strong update—
that is, it may change the type of the value residing in a reference cell. This is
why the qualifier given to references must be a: if a reference is aliased, then it
becomes possible to observe the type change in a way the destroys type safety.
This feature of the calculus is a stand-in for the variety of invariants that an
affine type system might enforce. In the mixed calculus, λC may gain access to
λA references. It has no operations available to read or write them, but it must
be prevented from passing an aliased reference cell back into λA where it can
cause trouble.
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locations ` ∈ Loc
values v ::= · · · | `
stores s ::= {` 7→ v, . . . , ` 7→ v}

configurations C ::= (s, e)
evaluation contexts E ::= [ ]A | E[σ] | E e | v E | 〈E, e〉 | 〈v,E〉 | · · ·

C 7−→M C

(A-New) (s, new[σ] v) 7−→
M

(s ] {` 7→ v}, `)

(A-Swap) (s ] {` 7→ v1}, swap[σ1][σ2] 〈`, v2〉) 7−→
M

(s ] {` 7→ v2}, 〈v1, `〉)

Fig. 10. Dynamics of λA (selected rules)

programs P ::= M e
module contexts M ::= m1 . . .mk

modules m ::= m | m
| interface f :> σ = g

λC expressions e ::= · · · | fg

λC types τ ::= · · · | {σ}
λA expressions e ::= · · · | f g

λA types σ ::= · · · | {τ}

Fig. 11. New syntax for λA
C

4.2 Mixing It Up with λA
C

The primary aim of this work is to construct (type-safe) programs by mixing
modules written in an affine language and modules written in a non-affine lan-
guage, and to have them interoperate as seamlessly as possible. We can then
model an affine program calling into a library written in a legacy language, or
a conventional program calling into code written in an affine language. In ei-
ther case, we must ensure that the non-affine portions of the program do not
break the affine portions’ invariants. As noted in Sect. 3, we accomplish this via
run-time checks in the style of higher-order contracts [4].

The additional syntax for mixed programs is in Fig. 11. The main expression
in a mixed program is in subcalculus λC . Modules now include λA modules, λC

modules, and interface modules, which are used to assert a λA type about a λC

module as we saw in Sect. 2.
We add to each subcalculus’s expressions a production referring to modules

from the other subcalculus. We decorate each such module name with the name
of the module in which it appears (e.g., fg for a reference to λC module f from
λA module g) and use this name as the negative party in contracts regulating
the intercalculus boundary, in order to assign blame.

Static Semantics. The type system for the mixed calculus is the union of the
type systems for λA and λC (Figs. 6, 8, and 9), along with additional typing
rules (Fig. 12) for λA module invocations in λC expressions and λC module
invocations in λA expressions.
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` P : τ , `M m okay

Prog
∀m ∈M,`M m okay ·; · `MC e : τ

`M e : τ

TM-I
(module g : (σ)C = v) ∈M |σ| = u

`M interface f :> σ = g okay

∆; Γ `MC e : τ , ∆; Γ `MA e : σ

TA-ModC
(module f : τ = v) ∈M · `C τ

∆; Γ `MA f : (τ)A

TC-ModA
(module f : σ = v) ∈M · `A σ

∆; Γ `MC f : (σ)C

TA-ModI
(interface f :> σ = g) ∈M · `A σ

∆; Γ `MA f : σ

Fig. 12. New statics for λA
C

Rule TC-ModA (Fig. 12) types occurrences of λA module names in λC ex-
pressions. The rule uses the type conversion function (·)C , defined in Sect. 3 (p. 9)
to give a λC type to the λA module invocation. Because λA types are richer
than λC types—λA function types carry extra information in the qualifier—the
conversion loses information, which may need to be recovered through dynamic
checks. For example, given a λA module g with type int (u int (a int, the con-
version rule assigns it the λC type int→ int→ int. Calculus λC ’s type system
cannot enforce that the result of applying g be applied at most once, which will
need to be checked at run time.

For a λC module with type τ invoked from a λA expression, we use the
module at type (τ)A . It would be reasonable for TA-ModC to give it any
λA type in the pre-image of the λA -to-λC mapping, but (·)A makes the most
permissive, statically safe choice, which is to map all λC arrows (→) to the
unlimited λA arrow ((u ). Consider:

– If f : int → int in λC , then int (u int is the right type in λA . There is no
reason to limit f to an affine function type, because λC does not impose that
requirement, and subtyping allows us to use it at int (a int, if necessary.

– If f : (int → int) → int in λC , then (int (u int) (u int will allow the
imported function to be passed unlimited functions but not affine functions.
This is a safe choice, because λC ’s type system does not tell us whether f
may call its argument more than once.

In the latter case, what if the programmer somehow knows that function f applies
its argument at most once, as in the example of threadForkC (p. 7)? It should
not violate λA ’s invariants to pass an affine function to threadForkC , but λA

cannot know this. Therefore, rule TA-ModC gives λC modules a conservative
λA type that requires no run-time checks. We can use an interface module to
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coerce a λC module’s type τ to a more permissive λA type in the pre-image of
τ , and this, too, requires a dynamic check.

Operational Semantics. We extend the syntax of our mixed language with
several new forms (Fig. 13). Whereas our source syntax segregates the two sub-
calculi into separate modules, module invocation reduces to the body of the
module, which leads expressions of both subcalculi to nest at run time. Rather
than allow λA terms to appear directly in λC , and vice versa, we need a way
to cordon off terms from one calculus embedded in the other and to ensure that
the interaction is well-behaved. We call these new expression forms boundaries.

The new run-time syntax includes both boundary expressions σ
f ACg(e) for

embedding λC expressions in λA and boundary expressions fCAσ
g (e) for embed-

ding λA expressions in λC . Each of these forms has a superscript σ, written on
the λA side, which represents a contract between the two modules that gave rise
to the nested expression. Some contracts, for example int, are fully enforced by
both type systems. Other contracts, such as int (a int, require dynamic checks.
The type system guarantees that such a function receives and returns only in-
tegers, but this type also imposes an obligation on the negative party to apply
the function at most once, which the λC type system alone does not enforce.

The right subscript of a boundary is a module name in the inner subcalculus,
representing the positive party to the contract: It promises that if the enclosed
subexpression reduces to a value, then the value will obey contract σ. The left
subscript is the negative party, which promises to treat the resulting value prop-
erly. In particular, if the contract is affine, then the negative party promises to
use the resulting value at most once.

Boundaries first arise when a module in one calculus refers to a module in
the other calculus. When the name of a λC module appears in a λA term, A-
ModC wraps the module name with an AC boundary, using the λA -conversion
of the module’s type τ as the contract. For interface modules, the contract is as
declared by the interface, and the name of the interface is the positive party (A-
ModI). From the other direction, a λA module invoked from a λC expression
is wrapped in a CA boundary by rule C-ModA.

We add evaluation contexts for reduction under boundaries, which means it
is now possible to construct a λC evaluation context with a λA hole, and vice
versa. If the expression under a boundary reduces to a value, it is time to apply
the boundary’s contract to the value. There are three possibilities:

– Some values, such as integers, always satisfy the contract, so the boundary
is discarded.

– Functional values and opaque affine values must have their checks deferred:
functions until application time, and opaque values until they pass back
into their original subcalculus. For deferred checks, we leave the value in a
“sealed” boundary, fCA[`]σg (v) or σf AC[ ]g(v), which is itself a value form.

– When a previously sealed opaque value reaches a boundary back to its origi-
nal subcalculus, both that boundary and the sealed boundary are discarded.
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λC terms e ::= · · · | CA
f f

σ(e)

λC values v ::= · · · | CA
f f

[`]σ(v)

λC eval. cxts. E ::= · · · | CA
f f

σ(E)

λA terms e ::= · · · | σ AC
f f

(e)

λA values v ::= · · · | σ AC
f f

[ ](v)

λA eval. cxts. E ::= · · · | σ AC
f f

(E)

configurations C ::= (s, e) | blame f

answers A ::= (s,v) | blame f

stores s ::= {} | s ] {` 7→ v} | s ] {` 7→ v}

(C-ModA) (s, fg) 7−→
M

(s, CA
g f

σ(f)) (module f : σ = v) ∈M

(A-ModC) (s, f g) 7−→
M

(s, (τ)
A

AC
g f

(f)) (module f : τ = v) ∈M

(A-ModI) (s, f g) 7−→
M

(s, σ AC
g f

`
f ′
´
) (interface f :> σ = f ′) ∈M

(C-Wrap) (s, CA
f g

σ(v)) 7−→
M

coerceC (s, σ, v, f , g)

(A-Wrap) (s, σ AC
f g

(v)) 7−→
M

coerceA (s, σ,v, f,g)

(C-B-A) (s, CA
f g

[`]∀α
q.σ(v)[τ ]) 7−→

M
check(s, `, |σ|, CA

f g

σ[(τ)A /αq]
“

v[(τ)A ]
”
, f)

(C-β-A) (s, CA
f g

[`]σ1(
q
σ2 (v1) v2) 7−→

M
check(s, `, q, CA

f g

σ2

„
v1

σ1 AC
g f

(v2)

«
, f)

(A-B-C) (s, ∀α
q.σ AC

f g
[ ](v)[σa]) 7−→

M
(s, σ[σa/α

q] AC
f g

“
v[(σa)

C ]
”

)

(A-β-C) (s, σ1(
q
σ2 AC

f g
[ ](v1) v2) 7−→

M
(s, σ2 AC

f g

„
v1 CA

g f

σ1 (v2)

«
)

coerceC (s, σ, v, f , g) =

8>><>>:
(s, dze) if v = dze
(s,v′) if v =

{τo}
g′ AC[ ]f ′(v

′)

(s ] {` 7→ blssd}, CA
f g

[`]σ(v)) otherwise

coerceA (s, σ,v, f,g) =

8>><>>:
(s, dze) if v = dze
check(s, `, |σo|, v′,g′) if v = g′CA[`]σ

o

f′ (v′)

(s, σ AC
f g

[ ](v)) otherwise

check(s, `, q, e, f) =

8><>:
(s, e) if q = u

(s′ ] {` 7→ dfnct}, e) if s = s′ ] {` 7→ blssd}
(s,blame f) otherwise

Fig. 13. Dynamics of λA
C (run-time syntax and reduction rules)
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Rule C-Wrap implements contract application for λA values embedded in
λC expressions, as indicated by metafunction coerceC . The first case of coerceC

handles immediate checks, and its second case unseals previously sealed λC val-
ues that have returned home. The second case of coerceC seals and blesses a λA

value, by allocating a location `, to which it stores a distinguished value blssd;
it adds this location to the boundary, which marks the sealed value as not yet
used. This corresponds directly to the reference cell allocated by makeAffineFun-
Contract in Sect. 3.

Rule A-Wrap implements contracts for λC values in λA expressions. Meta-
function coerceA ’s first case is the same as coerceC ’s, and the third case seals a
value for deferred checking; it need not allocate a location to track the usage of a
λC value. The third case unseals a previously sealed λA value on its way back to
λA , and this requires checking that an affine value has not been previously un-
sealed. This step is specified by metafunction check , which also has three cases.
Unlimited values are unsealed with no check. If an affine value remains blessed,
check updates the store to mark it “defunct” and returns the unsealed value. If,
on the other hand, there is an attempt to unseal a defunct affine value, check
blames the negative party. This is the key dynamic check that enforces the affine
invariant for non-functional values.

Rules C-B-A, C-β-A, A-B-C, and A-β-C all handle sealed abstractions,
which are unsealed when they are applied. For sealed λA abstractions, the seal
location ` must be checked, to ensure that an affine function or type abstraction
is not unsealed and applied more than once. This is the dynamic check that
enforces the affine invariant for functions.

Type Soundness. The presence of strong updates means that aliasing a loca-
tion can result in a program getting “stuck”: if an aliased location is updated
at a different type, reading from the alias produces a value of unexpected type.
Calculus λA ’s type system prevents this, but adding λC means that a λA value
may be aliased outside λA . Our soundness criterion is that no program that
gets stuck is assigned a type. In particular, all aliasing of affine values is either
prevented by λA ’s type system or detected by a contract at run time.

In order to prove a Wright-Felleisen–style type soundness theorem [21], we
identify precisely what property is preserved by subject reduction. We use an
internal type system to track which portions of the store are reachable from
λA values that have flowed into λC . Under this type system, configurations
enjoy standard progress and preservation, which allows us to state and prove a
syntactic type soundness theorem using the internal type system’s configuration
typing judgment .M C : τ :

Theorem (Type Soundness). If `M e : τ and ({}, e) 7−→M
∗ C such that

configuration C cannot take another step, then C is an answer with .M C : τ .

Our full formalization, including complete definitions of the calculi and proofs,
is available at http://www.ccs.neu.edu/~tov/pubs/affine-contracts/.
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5 Conclusion

Our work is part of an ongoing program to investigate practical aspects of sub-
structural type systems, and this paper describes one step in that program.
Here, we have focused on the problem of interaction between substructural and
non-substructural code, each governed by its own type system, and explored the
use of higher-order contracts to prevent the conventional language from break-
ing the substructural language’s invariants. Our answer to the problem at hand
naturally raises more questions.

Exceptions. In a production language with a contract system, contract vio-
lations should not always terminate the program. Real programs may catch an
exception and either try to mitigate the condition that caused it, try something
easier instead, or report an error and go on with some other task. To ensure
soundness, it suffices to prevent the questionable actions from occurring.

On one hand, we believe that ML-style exceptions should not provide too
much difficulty in an affine setting. In our prototype, try-with expressions are
multiplicative, in the sense that the type environment needs to be split between
an expression and its exception handler, not given in whole to both.

On the other hand, we do not know how exceptions or any sort of blame might
work in a linear setting—this is one reason why we chose an affine calculus.
Terminating the program is problematic because of the implicit discarding of
linear values, but catching an exception once part of a continuation containing
linear values has been discarded seems even worse. Exceptions in linear languages
remain an open question.

Linearity. Our work emphasizes contract-based interaction with affine type sys-
tems rather than linear type systems because it remains unclear to us what linear
contracts ought to mean. We may want a conventional language to interoperate
with a language that (at least sometimes) prohibits discarding values. However,
unlike affine guarantees, which are safety properties, relevance guarantees—that
a value is used at some point in the future—are a form of liveness property.

One approximation is to consider a contract representing a relevance guaran-
tee to be violated if at any point we can determine that the contract necessarily
will be violated. Detecting the violation of such a liveness property is undecidable
in general, but tracing garbage collection approximates a liveness property very
close to the one we desire. In an idealized semantics, we might garbage collect
the store after each reduction step and signal a violation if the seal location of
a not-yet-used linear value has become unreachable. In a real implementation,
finalizers on linear values could detect discarding. If we detect a violation, we
probably could do nothing to prevent it, but at worst we could file a bug report.

Our work suggests that adding substructural libraries to a conventional pro-
gramming language such as ML does not require a particularly complicated
implementation, and our results yield a realistic contract-based design.
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