
Stateful Contracts for Affine Types∗

Jesse A. Tov Riccardo Pucella
Northeastern University, Boston, MA 02115, USA

{tov,riccardo}@ccs.neu.edu

Abstract

Affine type systems manage resources by preventing some values from being used more than once.
This offers expressiveness and performance benefits, but difficulty arises in interacting with com-
ponents written in a conventional language whose type system provides no way to maintain the
affine type system’s aliasing invariants. We propose and implement a technique that uses be-
havioral contracts to mediate between code written in an affine language and code in a conven-
tional typed language. We formalize our approach via a typed calculus with both affine-typed
and conventionally-typed modules. We show how to preserve the guarantees of both type systems
despite both languages being able to call into each other and exchange higher-order values.

This is the extended version of a paper that appeared in ESOP 2010.

∗Our prototype implementation and related material may be found at http://www.ccs.neu.edu/
~tov/pubs/affine-contracts/.

i

http://www.ccs.neu.edu/~tov/pubs/affine-contracts/
http://www.ccs.neu.edu/~tov/pubs/affine-contracts/

Contents Contents

Contents

1 Introduction 2
2 An Example 4
3 Implementing Stateful Contracts 8
4 Formalization 11

4.1 The Calculi λC and λA . 11
4.2 Mixing It Up with λA

C . 17
5 Proving Type Soundness 21

5.1 The Internal Type System . 22
5.2 Properties of Types and Stores . 27
5.3 External Typing Implies Internal Typing . 32
5.4 Evaluation Contexts and Substitution . 37
5.5 Preservation . 64
5.6 Progress . 80
5.7 Type Soundness . 93

6 Conclusion 93
References . 94
List of Figures . 95

A The Affine Sockets Library 96
B Semantics of λC 100

ii

1 INTRODUCTION

1 Introduction

Substructural type systems augment conventional type systems with the ability to control
the number and order of uses of a data structure or operation (Walker 2005). Linear type
systems (Wadler 1990; Plotkin 1993; Benton 1995; Ahmed et al. 2004), for example, ensure
that values with linear type cannot be duplicated or dropped, but must be eliminated exactly
once. Other substructural type systems refine these constraints. Affine type systems, which
we consider here, prevent values from being duplicated but allow them to be dropped: a
value of affine type may be used once or not at all.

Affine types are useful to support language features that rely on avoidance of aliasing.
One example is session types (Gay and Hole 1999), which are a method to represent and
statically check communication protocols. Suppose that the type declared by

typeA prot = (int send → string recv → unit) chan (1)

represents a channel whose protocol allows us to to send an integer, then receive a string, and
finally end the session. Further, suppose that send and recv consume a channel whose type
allows sending or receiving, as appropriate, and return a channel whose type is advanced to
the next step in the protocol. Then we might write a function that takes two such channels
and runs their protocols in parallel:

letA twice (c1 : prot, c2 : prot, z : int): string ⊗ string =
let once (c : prot) (: unit) =
let c = send c z in
let (s, _) = recv c in s

in (once c1) ||| (once c2) (2)

The protocol is followed correctly provided that c1 and c2 are different channels. Calling
twice(c, c, 5), for instance, would violate the protocol. An affine type system can prevent
this.

In addition to session types and other forms of typestate (Strom and Yemini 1986), sub-
structural types have been used for memory management (Jim et al. 2002), for optimization
of lazy languages (Turner et al. 1995), and to handle effects in pure languages (Barendsen
and Smetsers 1996). Given this range of features, a programmer may wish to take advantage
of substructural types in real-world programs. Writing real systems, however, often requires
access to comprehensive libraries, which mainstream programming languages usually provide
but experimental implementations often do not. The prospect of rewriting a large library to
work in a substructural language strikes these authors as unappealing.

It is therefore compelling to allow conventional and substructural languages to interop-
erate. We envision complementary scenarios:
• A programmer wishes to import legacy code for use by affine-typed client code. Un-

fortunately, legacy code unaware of the substructural conditions may duplicate values
received from the substructural language.

• A programmer wishes to export substructural library code for access from a conven-
tional language. A client may duplicate values received from the library and resubmit
them, causing aliasing that the library could not produce on its own and bypassing the
substructural type system’s guarantees.

2

1 INTRODUCTION

Our Contributions. We present a novel approach to regulating the interaction between an
affine language and a conventionally-typed language and implement a multi-language system
having several notable features:

• The non-affine language may gain access to affine values and may apply affine-language
functions.

• The non-affine type system is utterly standard, making no concessions to the affine
type system.

• And yet, the composite system preserves the affine language’s invariants.

We model the principal features of our implementation in a multi-language calculus that
enjoys type soundness. In particular, the conventional language, although it has access to
the affine language’s functions and values, cannot be used to subvert the affine type system.

Our solution is to wrap each exchanged value in a software contract (Findler and Felleisen
2002), which uses one bit of state to track when an affine value has been used. While this
idea is simple, the details can be subtle.

Design Rationale and Background. Our multi-language system combines two sublan-
guages with different type systems. The C (“conventional”) language is based on the call-by-
value, polymorphic λ calculus (Girard 1972; Reynolds 1974) with algebraic datatypes and
SML-style abstype (Milner et al. 1997). The A (“affine”) language adds affine types and the
ability to declare new abstract affine types, allowing us to implement affine abstractions such
as session types and static read-write locks.

A program in our language consists of top-level module, value, and type definitions, each
of which may be written in either of the two sublanguages. (In the example above (2), the
subscripts on typeA and letA indicate the A language.) Each language has access to modules
written in the other language, although they view foreign types through a translation into
the native type system. Affine modules are checked by an affine type system, and non-
affine modules are checked by a conventional type system. Notably, non-functional affine
types appear as abstract types to the conventional type system, which requires no special
knowledge about affine types other than comparing them for equality.

In our introductory example, a protocol violation occurs only if the two arguments to
twice are aliases for the same session-typed channel, which the A language type system
prevents. Problems would arise if we could use the C language to subvert A language’s
type system non-aliasing invariants. To preserve the safety properties guaranteed by each
individual type system and allow the two sublanguages to invoke one another and exchange
values, we need to perform run-time checks in cases where the non-affine type system is
too weak to express the affine type system’s invariants. Because the affine type system can
enforce all of the conventional type system’s invariants, we may dispense with checks in the
other direction.

For instance, the affine type system guarantees that an affine value created in an affine
module will not be duplicated within the affine sublanguage. If, however, the value flows
into a non-affine module, then static bets are off. In that case, we resort to a dynamic check
that prevents the value from flowing back into an affine context more than once. Since our

3

2 AN EXAMPLE

client__ __

server
both

⊕

� ��

send(),
recv()

socket (0�� ��
�� ��initial

bind()

6>

`a�

�

bc

connect()

OO�

�

�� ��
�� ��bound

listen()

99

`a�

�

bc

�

�

�� ��
�� ��listening

accept()
⊗

88

�� �� ��
�� ��connected

close()

4<

�� ��
�� ��closed

Figure 2.1: States and transitions for TCP (simplified)

language is higher-order, we use a form of higher-order contract (Findler and Felleisen 2002)
to keep track of each module’s obligations toward maintaining the affine invariants.

Our approach to integrating affine and conventional types borrows heavily from recent
literature on multi-language interoperability (Flanagan 2006; Siek and Taha 2006). Our
approach borrows from that of Typed Scheme (Tobin-Hochstadt and Felleisen 2008, 2006)
and of Matthews and Findler (2007), both of which use contracts to mediate between an
untyped, Scheme-like language and a typed language.

2 Example: Taming the Berkeley Sockets API

The key feature of our system is the ability to write programs that safely mix code written in
an affine-typed language and a conventionally-typed language. As an example, we develop a
small networking library and application, using both of our sublanguages where appropriate.

The Berkeley sockets API is the standard C language interface to network communication
(Stevens 1990). Transmission Control Protocol (TCP), which provides reliable byte streams,
is the standard transport layer protocol used by most internet applications (e.g., SMTP,
HTTP, and SSH). Setting up a TCP session using Berkeley sockets is a multi-step process
(figure 2.1). A client must first create a communication end-point, called a socket, via the
socket system call. It may optionally select a port to use with bind, and then it establishes
a connection with connect. Once a connection is established, the client may send and
recv until either the client or the other side closes the connection.

For a server, the process is more involved: it begins with socket and bind as the
client does, and then it calls listen to allow connection requests to begin queuing. The
server calls accept to accept a connection request. When accept succeeds, it returns a
new socket that is connected to a client, and the old, listening socket is available for further
accept calls. (For simplicity, we omit error transitions, except for failure of send and
recv.)

Our C sublanguage provides the interface to sockets shown in figure 2.2. The socket
operations are annotated with their pre- and post-conditions, but the implementation detects
and signals state errors dynamically. For example, calling listen on a socket in state initial
or calling connect on a socket that is already connected will raise an exception. If the other

4

2 AN EXAMPLE

moduleCSocket : sig
type socket
val socket : unit → socket (* ∅ ⇒ initial *)
val bind : socket → port → unit (* initial ⇒ bound *)
val listen : socket → unit (* bound ⇒ listening *)
val accept : socket → socket (* listening ⇒ connected ⊗ listening *)
val send : socket → string → bool (* connected ⇒ connected ⊕ closed *)
· · · end

Figure 2.2: Selected C language socket operations, annotated with state transitions

side hangs up, send and recv raise exceptions, but nothing in this interface prevents further
communication attempts that are bound to fail.1

By reimplementing the sockets API in language A , we can use language A ’s type system
to move the state transition information from comments into the type system itself. For
example, we give listen in sublanguage A the type

∀α. α socket → α bound → α listening , (3)

which means that given a socket and evidence that the socket is bound, listen changes the state
to listening and returns evidence to that effect. These evidence tokens are capabilities, and
the type parameter on each capability ties it to the particular socket whose state it describes.
These capabilities have affine type so that when listen consumes the bound capability, we
cannot call listen again on the same socket.

We reimplement the sockets API in language A in terms of the language C operations.
From the vantage of language A , C function types are mapped to A function types, but
the C type Socket.socket is mapped to an opaque type {Socket.socket}. Some types are auto-
matically converted between the two sublanguages, but for the remainder, type constructor
{·} delimits foreign types referenced from the other sublanguage.

We declare a new abstract type for sockets in language A , along with a type to represent
each of the states:

abstypeA α socket = Sock of {Socket.socket}
and α initial qualifier A = Initial
and α bound qualifier A = Bound
and α listening qualifier A = Listening
and α connected qualifier A = Connected

with · · · (* operations detailed below *) · · · end (4)

Several aspects of this abstype declaration bear further explanation:

• Each type has a phantom parameter α, which is used to associate a socket with the
type witnessing its state.

1 This simplifies the Berkeley sockets API by omitting address families, protocols, half-closed sockets,
non-blocking IO, etc., but the stateful essence remains.

5

2 AN EXAMPLE

val socket : unit → ∃α. α socket ⊗ α initial
val bind : ∀α. α socket → port → α initial → α bound
val listen : ∀α. α socket → α bound → α listening
val accept : ∀α. α socket → α listening → (α listening ⊗ ∃β. β socket ⊗ β initial)
val connect : ∀α. α socket → host → port → (α initial ⊕ α bound) → α connected
val send : ∀α. α socket → string → α connected → α connected
val recv : ∀α. α socket → int → α connected → string ⊗ α connected
val close : ∀α. α socket → α connected → unit

Figure 2.3: The A language sockets API

• The syntax qualifier A on each the state type declares that outside the abstraction
boundary, values of those types will appear as affine. Code inside the abstype decla-
ration sees that they are ordinary, non-affine data types.

• Because each of the capabilities has only one constructor with no values, they need not
be represented at run time.

The A language sockets interface appears in figure 2.3. The A sockets implementation
relies on delegating to C language functions. From within A , C types are viewed through
a simple translation: function types, quantified types, and a few base types such as int
pass through transparently, whereas other types are wrapped opaquely as Socket.socket was
above. Thus, the type of Socket.socketC becomes unit → {Socket.socket} when viewed from
A . Each A function is a minimal wrapper around its C counterpart:

letA socket () =
let sock = Socket.socketC () in
in Pack(unit, (Sock[unit] sock, Initial[unit])) as ∃β. β socket ⊗ β initial

letA listen[α] (Sock sock as s: α socket) (: α bound) =
try
Socket.listenC sock ;
Listening[α]

with IOError msg → raise (StillBound (freezeBound s cap, msg)) (5)

For socketA , we call Socket.socketC to create the new socket, which we wrap in the Sock
constructor and pack into an existential with a new initial capability. (The type abstracted
by the existential is immaterial; unit will do.) Function listenA calls its C counterpart on
the socket and on success returns a listening capability tied by α to the socket. On failure,
the socket is still in state bound, so it raises an exception containing the bound capability.
The remaining functions are equally straightforward, but when we’re done, provided we got
this trusted kernel correct, we have an A library that enforces the correct ordering of socket
operations. (The full code of the sockets library may be found in §A.)

Calling the various C socket operations from A is safe because none has a type that
enables it to gain access to an A language value. Other situations are not as simple.
Figure 2.4 shows an implementation of an echo server in language A . (The working code
is included with our prototype implementation on our web site.) The server sends back

6

2 AN EXAMPLE

letA clientLoop[α] (sock : α socket) (f : string → string) (cap: α connected) =
let rec loop (cap: α connected): unit =

let (str, cap) = recv sock 1024 cap in
let cap = send sock (f str) cap in
loop cap

in try
loop cap

with SocketError → ()

let interface threadFork :> (unit(a unit) → {thread}C = threadForkC

let recA acceptLoop[α] (sock : α socket) (f : string → string) (cap: α listening): unit =
let (cap, Pack(β, (clientsock, clientcap))) = accept sock cap in
threadFork (fun () → clientLoop clientsock f clientcap);
acceptLoop sock f cap

letA echoServe (port: int) (f : string → string) =
let Pack(α, (sock, cap)) = socket () in
let cap = bind sock port cap in
let cap = listen sock cap in
acceptLoop sock f cap

Figure 2.4: An echo server in language A

the data it receives from each client after passing it through an unspecified string → string
function f . The main function echoServe creates a socket, binds it to the requested port, and
begins to listen. The type system ensures that echoServe performs these operations in the
right order, and because the capabilities have affine types, it disallows referring to any one of
them more then once. Function echoServe calls acceptLoop, which blocks in accept waiting
for clients. For each client, it spawns a thread to handle that client and continues waiting for
another client. Spawning the thread is where the multi-language interaction becomes tricky.

As in other substructural type systems, A requires that a function be given a type whose
usage (unlimited or affine) is at least as restrictive as any variable that it closes over. Thus
far, we have seen only unlimited function types (→), also written(u . Language A also has
affine function types, written(a .

The new client capability clientcap, returned by accept, has affine type β connected.
Because the thunk for the new thread, (fun () → clientLoop clientsock f clientcap), closes
over clientcap, it has affine type as well: unit (a unit. This causes a problem: To create a
new thread, we must pass the thunk to the C function threadForkC , whose type as viewed
from A is (unit → unit) → {thread}C . Such a type makes no guarantee about how many
times threadForkC applies its argument. In order to pass the affine thunk to it, we assert
that threadForkC has the desired behavior:

let interface threadFork :> (unit(a unit) → {thread}C = threadForkC (6)

This constitutes a checked assertion that the C value actually behaves according to the given

7

3 IMPLEMENTING STATEFUL CONTRACTS

A type. This gets the program past A ’s type checker, and if threadForkC attempts to apply
its argument twice at run time, a dynamic check prevents it from doing so and signals an
error.

The two sublanguages can interact in other ways:

• We may call echoServeA from the C language, passing it a C function for f . This is
safe because function f has type string → string, and thus can never gain access to an
affine value.

• We may use the A language sockets library from a C program:

letC sneaky () =
let Pack(α, (sock, cap1)) = socketA () in
let cap2 = connectA sock "sneaky.example.org" 25 cap1 in
let cap3 = connectA sock "sneaky2.example.org" 25 cap1 in
· · · (7)

This program passes C ’s type checker but is caught when it attempts to reuse the initial
capability cap1 at run time. This misbehavior is detected because sneaky ’s interaction
with A is mediated by a behavioral contract.

3 Implementing Stateful Contracts

In Findler and Felleisen’s formulation (2002), a contract is an agreement between two soft-
ware components, or parties, about some property of a value. The positive party produces
a value, which must satisfy the specified property. The negative party consumes the value
and is held responsible for treating it appropriately. Contracts are concerned with catching
violations of the property and blaming the guilty party, which may help locate the source of
a bug. For first-order values the contract may be immediately checkable, but for functional
values nontrivial properties are undecidable, so the check must wait until the negative party
applies the function, at which point the negative party is responsible for providing a suit-
able argument and the positive party for producing a suitable result. Thus, for higher-order
functions, checks are delayed until first-order values are reached.

In our language, the parties to contracts are modules, which must be in entirely one
language or the other, and top-level functions, which we consider as singleton modules.

Contracts on first-order values check assertions about their arguments, and either return
the argument or signal an error. Contracts on functions return functions that defer checking
until first-order values are reached. The result of applying a contract should contextually
approximate the argument. We represent a contract for a type α as a function taking two
parties and a value of type α, and returning a value of the same type α:

type α contract = party × party → α → α (8)

A simple contract might assert something about a first-order value:

let evenContract (neg : party, pos: party) (x : int) =
if isEven x then x else blame pos (9)

8

3 IMPLEMENTING STATEFUL CONTRACTS

The contract is instantiated with the identities of the contracted parties, and then may be
applied to a value. We may also construct contracts for functional values, given contracts
for the domain and codomain:

let makeFunctionContract[α, β] (dom: α contract, codom: β contract)
(neg : party, pos: party) (f : α→ β) =

fun (x : α) → codom (neg, pos) (f (dom (pos, neg) x)) (10)

When this contract is applied to a function, it can perform no checks immediately. Instead,
it wraps the function so that, when the resulting function is applied, the domain contract is
applied to the actual parameter and the codomain contract to the actual result.

We follow this approach closely, but with one small change—contracts for affine functions
are stateful:

let makeAffineFunContract[α, β] (dom: α contract, codom: β contract)
(neg : party, pos: party) (f : α→ β) =

let stillGood = ref true in
fun (x : α) →
if ! stillGood
then stillGood ← false;

codom (neg, pos) (f (dom (pos, neg) x))
else blame neg (11)

This approach works for functions because we can wrap a function to modify its behavior.
But what about for other affine values such as the socket capabilities in §2? We must consider
how non-functional values move between the two sublanguages.

In order to understand the solution, we need to show in greater detail how types are
mapped between the two sublanguages. (The rest of the type system appears in the next
section.) We define mappings (·)A and (·)C from C types to A types and A types to
C types, respectively. Base types such as int and bool, which may be duplicated without
restriction in both languages, map to themselves:

(B)A = B (B)C = B (12)

Function types convert to function types. C function types go to unlimited functions in A ,
and both unlimited and affine A functions collapse to ordinary (→) functions in C (where
q ranges over a and u):

(τ1 → τ2)
A = (τ2)

A (u (τ2)
A (σ1 (

q
σ2)

C = (σ1)
C → (σ2)

C (13)

Quantified types map to quantified types, but they require renaming because we distinguish
type variables between the two languages. In particular, A language type variables carry
usage qualifiers, which indicate whether they may be instantiated to any type or only to
unlimited types. (All type variables in §2 were of the u kind.)

(∀α. τ)A = ∀βu. (τ1[{βu}/α])A (∀αq. σ)C = ∀β. (σ1[{β}/αq])C (14)

9

3 IMPLEMENTING STATEFUL CONTRACTS

CA JintK(n, p) = id
CA Jσ1 (

u
σ2K(n, p) = makeFunctionContract (A C Jσ1K, CA Jσ2K) (n, p)

CA Jσ1 (
a
σ2K(n, p) = makeAffineFunContract (A C Jσ1K, CA Jσ2K) (n, p)

CA JσoK(n, p) = fun (v : σo) → makeAffineFunContract (if σo is
(id, id) (n, p) (fun () → v) affine)

A C JintK(n, p) = id
A C Jσ1(

q
σ2K(n, p) = makeFunctionContract (CA Jσ1K, A C Jσ2K) (n, p)

A C JσoK(n, p) = fun (v : unit → σo) → v () (if σo is affine)

Figure 3.1: Type-directed generation of coercions

Several algebraic data types, such as α option, map transparently when they are unlimited:

((τi) c)
A = (((τi)A) c ((σi) c)

C = (((σi)C) c if |(σi) c| = u (15)

Finally, the remaining types are uninterpreted by the mapping, and merely enclosed in {·}:

(τ o)A = {τ o}, otherwise (σo)C = {σo}, otherwise (16)

Values in this class of types are inert: they have no available operations other than passing
them back to their native sublanguage, which removes the {·}. (We take {{τ}} to be
equivalent to τ .)

This mapping implies that all non-functional, affine types in A map to opaque types in
C .2 Since all that the C language can do with values of opaque type is pass them back to A ,
we are free to wrap such values when they flow into C and unwrap them when they return
to A . Specifically, when an affine value v passes into C , we wrap it in a λ abstraction, fun
(: unit) → v , and wrap that thunk with an affine function contract. If the wrapped value
flows back into A , we unwrap it by applying the thunk, which produces a contract error if
we attempt unwrapping it more than once.

After type checking, our implementation translates A modules to C modules and wraps
all interlanguage variable references with contracts that enforce the A language’s view of the
variable. In figure 3.1, we show several cases from a pair of metafunctions A C J·K and CA J·K,
which perform this wrapping. Metafunction A C J·K produces the coercion for references to
C values from A , and CA J·K is for references to A values from C . Our formalization does
not use this translation, but gives a semantics to the multi-language system directly.

2 Opaque types may seem limiting, but Matthews and Findler (2007) have shown that it is possible,
in what they call the “lump embedding,” for each sublanguage to marshal its opaque values for the other
sublanguage as desired. In practice, this amounts to exporting a fold to the other sublanguage.

10

4 FORMALIZATION

variables x,y ∈ VarC

type variables α, β ∈ TVarC

module names f ,g ∈ MVarC

integers z ∈ Z

programs P ::= M e
module contexts M ::= m1 . . .mk

modules m ::= module f : τ = v

types τ ::= int | τ → τ
| ∀α. τ | α

expressions e ::= v | x | f | e[τ]
| e e | if0 e e e

values v ::= Λα.v | λx:τ. e | c
constants c ::= dze | − | (z−)

type contexts ∆ ::= · | ∆, α
value contexts Γ ::= · | Γ,x:τ

∆; Γ `MC e : τ

TC-Mod
module f : τ = v ∈M · `C τ

∆; Γ `MC f : τ

`M m okay

TM-C
·; · `MC v : τ

`M module f : τ = v okay

e 7−→M e

C-Mod
(module f : τ = v) ∈M

f 7−→
M

v

Figure 4.1: Selected syntax and semantics of λC (full semantics in §B)

4 Formalization

We model our language with a pair of calculi corresponding to the two sublanguages in the
implementation. In this section, we first describe the two calculi independently, and then
move on to explain how they interact.

To distinguish the two calculi, we typeset our affine calculus λA in a blue, sans-serif font
and our non-affine calculus λC in a bold, red, serif font.

4.1 The Calculi λC and λA

We model sublanguage C with calculus λC , which is merely call-by-value System F (Girard
1972) equipped with singleton modules, each of which for simplicity declares only one name
bound to one value. The syntax of λC appears in figure 4.1, including module names, which
are disjoint from variable names. We include integer literals, which serve as first-order values
that should pass transparently into the affine subcalculus. A program comprises a mutually
recursive collection of modules M and a main expression e. We give only the semantics
relevant to modules, as the rest is standard. The expression typing judgment has the form
∆; Γ `MC e : τ , and it carries a module context M , which rule TC-Mod uses to type module
expressions. To type a program, we must type each module with rule TM-C; note that the
whole module context is available to each module, allowing for recursion. Finally, C-Mod
shows that module names reduce to the value of the module.

We model sublanguage A with calculus λA , which extends λC with affine types. While
λA includes all of λC , we choose not to embed λC in λA to emphasize the generality of our
approach, anticipating conventional language features that we do not know how to type in

11

4.1 The Calculi λC and λA 4 FORMALIZATION

variables x, y ∈ VarA

qualifiers q ∈ {a, u}
type variables αq, βq ∈ TVarA

module names f, g ∈ MVarA

integers z ∈ Z

modules m ::= module f : σ = v
types σ ::= int | σ(q σ | ∀αq. σ | σo

opaque types σo ::= α | σ ⊗ σ | σ ref
expressions e ::= v | x | f | e e | e[σ] | if0 e e e

| 〈e, e〉 | let 〈x, x〉 = e in e
values v ::= c | λx:σ.e | Λαq. v | 〈v, v〉

constants c ::= new[σ] | swap[σ][σ] | dze | − | (z−)

value contexts Γ ::= · | Γ, x:σ
type contexts ∆ ::= · | ∆, αq

Figure 4.2: Syntax of λA

q v q

QRefl

q v q

QSubsume

u v a

|τ | = q

|int| = u |σ1 (
q
σ2| = q |∀αq′

. σ| = |σ|

|αq| = q |σ1 ⊗ σ2| = |σ1| t |σ2| |σ ref | = a

|Γ| = q

|Γ| =
⊔

x∈dom(Γ)

|Γ(x)|

Figure 4.3: Statics of λA : qualifiers (i)

12

4 FORMALIZATION 4.1 The Calculi λC and λA

Γ� Γ = Γ

·� · = ·
Γ1 � Γ2 = Γ3 |σ| = a

Γ1 � Γ2, x:σ = Γ3, x:σ

Γ1 � Γ2 = Γ3 |σ| = a

Γ1, x:σ � Γ2 = Γ3, x:σ

Γ1 � Γ2 = Γ3 |σ| = u

Γ1, x:σ � Γ2, x:σ = Γ3, x:σ

Figure 4.4: Statics of λC : context splitting (ii)

∆ `A σ

∆ `A int
∆ `A σ1 ∆ `A σ2

∆ `A σ1 (
q
σ2

∆, αq `A σ

∆ `A ∀αq. σ

αq ∈ ∆

∆ `A αq

∆ `A σ

∆ `A σ ref

∆ `A σ1 ∆ `A σ2

∆ `A σ1 ⊗ σ2

σ <: σ

S-Refl

σ <: σ

S-Trans
σ1 <: σ2 σ2 <: σ3

σ1 <: σ3

S-Prod
σ1 <: σ′1 σ2 <: σ′2
σ1 ⊗ σ2 <: σ′1 ⊗ σ′2

S-Arrow
σ′1 <: σ1 σ2 <: σ′2 q v q′

σ1 (
q
σ2 <: σ′1 (

q′
σ′2

S-Forall
q2 v q1 σ1[βq2/αq1] <: σ2

∀αq1 . σ1 <: ∀βq2 . σ2

Figure 4.5: Statics of λA : types and subtyping (iii)

13

4.1 The Calculi λC and λA 4 FORMALIZATION

∆; Γ `MA e : σ

TA-Subsume
∆; Γ `MA e : σ σ <: σ′

∆; Γ `MA e : σ′

TA-TLam
∆, αq; Γ `MA e : σ

∆; Γ `MA Λαq. v : ∀αq. σ

TA-TApp
∆; Γ `MA e : ∀αq. σ′ ∆ `A σ |σ| v q

∆; Γ `MA e[σ] : σ′[σ/αq]

TA-Lam
∆; Γ, x : σ `MA e : σ′ ∆ `A σ

∣∣Γ|FV(λx:σ. e)

∣∣ = q

∆; Γ `MA λx:σ. e : σ(
q
σ′

TA-App
∆; Γ1 `MA e1 : σ′(

q
σ ∆; Γ2 `MA e2 : σ′

∆; Γ1 � Γ2 `MA e1 e2 : σ

TA-Pair
∆; Γ1 `MA e1 : σ1 ∆; Γ2 `MA e2 : σ2

∆; Γ1 � Γ2 `MA 〈e1, e2〉 : σ1 ⊗ σ2

TA-Let
∆; Γ1 `MA e1 : σx ⊗ σy ∆; Γ2, x : σx, y : σy `MA e2 : σ

∆; Γ1 � Γ2 `MA let 〈x, y〉 = e1 in e2 : σ

TA-Con

∆; Γ `MA c : tyA (c)

TA-If0
∆; Γ1 `MA e1 : int ∆; Γ2 `MA e2 : σ ∆; Γ2 `MA e3 : σ

∆; Γ1 � Γ2 `MA if0 e1 e2 e3 : σ

TA-Var

∆; Γ, x : σ, Γ′ `MA x : σ

TA-Mod
module f : σ = v ∈M · `A σ

∆; Γ `MA f : σ

tyA (c) = σ

tyA (−) = int(u int(u int tyA ((z−)) = int(u int tyA (dze) = int

tyA (new[σ]) = σ(u σ ref tyA (swap[σ1][σ2) = (σ1 ref⊗ σ2)(u (σ1 ⊗ σ2 ref)

Figure 4.6: Statics of λA : expressions and constants (iv)

14

4 FORMALIZATION 4.1 The Calculi λC and λA

`M m okay

TM-A
·; · `MA v : σ |σ| = u

`M module f : σ = v okay

Figure 4.7: Statics of λA : modules (v)

locations ` ∈ Loc

values v ::= · · · | `
stores s ::= {` 7→ v, . . . , ` 7→ v}

configurations C ::= (s, e)
evaluation contexts E ::= []A | E[σ] | E e | v E | 〈E, e〉 | 〈v,E〉

| if0E e e | let 〈x, y〉 = E in e

C 7−→M C

(A-δ) (s, c v) 7−→
M

δA (s, c, v)

(A-B) (s, (Λαq. v)[σ]) 7−→
M

(s, v[σ/αq])

(A-β) (s, (λx:σ. e) v) 7−→
M

(s, e[v/x])

(A-Let) (s, let 〈x1, x2〉 = 〈v1, v2〉 in e) 7−→
M

(s, e[v2/x2][v1/x1])

(A-If0) (s, if0d0e et ef) 7−→
M

(s, et)

(A-IfZ) (s, if0dze et ef) 7−→
M

(s, ef) z 6= 0

(A-Mod) (s, f) 7−→
M

(s, v) (module f : σ = v) ∈M

(A-Cxt) (s,E[e]A) 7−→
M

(s′,E[e′]A) if (s, e) 7−→
M

(s′, e′)

δA (s,−, dze) = (s, (z−))

δA (s, (z1−), dz2e) = (s, dz1 − z2e)
δA (s, new[σ], v) = (s] {` 7→ v}, `) ` fresh

δA (s] {` 7→ v1}, swap[σ1][σ2], 〈`, v2〉) = (s] {` 7→ v2}, 〈v1, `〉)

Figure 4.8: Dynamics of λA

15

4.1 The Calculi λC and λA 4 FORMALIZATION

an affine language. The syntax of λA may be found in figure 4.2. Expressions are mostly
conventional: values, which include λ and Λ abstractions, constants, and pairs; variables;
application and type application; if expressions; pair construction; and pair elimination. Less
conventionally, expressions also include module names (f), which reduce to the value of the
named module. We define the free variables of an expression in the usual way, but note that
this includes only regular variables (e.g., y), not module names (e.g., g), which we assume
are distinguished syntactically.

Types include integers, function types with qualifier q, universals, and the syntactically
distinguished opaque types, which include type variables, products, and reference cells. Fig-
ure 4.3 defines a lattice on qualifiers, of which there are only two: u is bottom and a is top.
A qualifier is assigned to each type, with the notation |σ| = q. Integers are always assigned
the unlimited qualifier u, whereas references always have the affine qualifier a. Function
types and type variables are annotated with their qualifiers, and products get the stronger
qualifier of either of their components. We define the qualifier of a value context Γ as well, to
be the maximum qualifier of any type bound in it; in other words, Γ is affine if any variable
is affine, but if none is then it is unlimited.

Figure 4.4 defines context splitting, which is used by expression typing to distribute affine
assumptions to only one use in a term, but unlimited variables to an unlimited number of
mentions. When a value context must be split to type two subexpressions, in an application
expression, for example (figure 4.6), variables of affine type are made available to either the
operator or operand, but not both.

The subtyping relation appears in figure 4.5. It is reflexive and transitive, covariant on
both pair components and function codomains, and contravariant on function domains, as
usual. Subtyping arises from the qualifier lattice in two ways: an unlimited function may be
used where an affine function is expected (but not vice versa), and a universal type whose
bound variable has qualifier a may be instantiated by a type with qualifier u (but not vice
versa).

Selected expression typing rules appear in figure 4.6. Rules TA-Lam and TA-App are
the usual substructural rules for typing λ expressions and applications: for λ expressions,
the qualifier q given to the resulting (q type is the qualifier of the context Γ limited to the
free variables of the expression; thus, the function is at least as restricted as any values it
closes over. The type application rule TA-TApp requires that a type variable be at least as
restrictive as any type with which it is instantiated.

Finally, the constant swap (figure 4.6) takes a pair of a σ1 reference and a σ2, and returns
a σ1 and a σ2 reference. From the operational semantics, which appears in figure 4.8, it
should be clear that swap swaps the σ2 argument into the location and returns the value
previously in the location. Since the type of swap does not require these two types to be the
same, swap performs a strong update—that is, it may change the type of the value residing
in a reference cell. This is why the qualifier given to references must be a: if a reference
is aliased, then it becomes possible to observe the type change in a way the destroys type
safety. This feature of the calculus is a stand-in for the variety of invariants that an affine
type system might enforce. In the mixed calculus, λC may gain access to λA references. It
has no operations available to read or write them, but it must be prevented from passing an
aliased reference cell back into λA where it can cause trouble.

16

4 FORMALIZATION 4.2 Mixing It Up with λA
C

programs P ::= M e
module contexts M ::= m1 . . .mk

modules m ::= m | m | interface f :> σ = g

λC types τ ::= · · · | {σ}
λC expressions e ::= · · · | fg

λA types σ ::= · · · | {τ}
λA expressions e ::= · · · | fg

Figure 4.9: New syntax for λA
C

(τ)A = σ , (σ)C = τ

(int)A = int (int)C = int

(τ1 → τ2)A = (τ1)A (u (τ2)A (σ1 (
q
σ2)C = (σ1)C → (σ2)C

(∀α. τ)A = ∀βu. (τ [{βu}/α])A (∀αq. σ)C = ∀β. (σ[{β}/αq])C

({σo})A = σo ({τo})C = τo

(τo)A = {τo} (σo)C = {σo}

|σ| = A

|{τ}| = u

Figure 4.10: New statics for λA
C : type translation and qualifiers (i)

4.2 Mixing It Up with λA
C

The primary aim of this work is to construct (type-safe) programs by mixing modules writ-
ten in an affine language and modules written in a non-affine language, and to have them
interoperate as seamlessly as possible. We can then model an affine program calling into
a library written in a legacy language, or a conventional program calling into code written
in an affine language. In either case, we must ensure that the non-affine portions of the
program do not break the affine portions’ invariants. As noted in §3, we accomplish this via
run-time checks in the style of higher-order contracts (Findler and Felleisen 2002).

The additional syntax for mixed programs is in figure 4.9. The main expression in a
mixed program is in subcalculus λC . Modules now include λA modules, λC modules, and
interface modules, which are used to assert a λA type about a λC module as we saw in §2.

We add to each subcalculus’s expressions a production referring to modules from the
other subcalculus. We decorate each such module name with the name of the module in
which it appears (e.g., fg for a reference to λC module f from λA module g) and use this
name as the negative party in contracts regulating the intercalculus boundary, in order to
assign blame.

17

4.2 Mixing It Up with λA
C 4 FORMALIZATION

` P : τ , `M m okay

Prog
(∀m ∈M) `M m okay ·; · `MC e : τ

`M e : τ

TM-I
(module g : (σ)C = v) ∈M |σ| = u

`M interface f :> σ = g okay

∆; Γ `MC e : τ , ∆; Γ `MA e : σ

TA-ModC
(module f : τ = v) ∈M · `C τ

∆; Γ `MA fg : (τ)A

TC-ModA
(module f : σ = v) ∈M · `A σ

∆; Γ `MC fg : (σ)C

TA-ModI
(interface f :> σ = f ′) ∈M · `A σ

∆; Γ `MA fg : σ

Figure 4.11: New statics for λA
C : programs, modules, and expressions (ii)

Static Semantics. The type system for the mixed calculus is the union of the type systems
for λA and λC (figures 4.1, B.1–B.3, and 4.3–4.7), along with additional typing rules for
converting types between λA and λC (figure 4.10), for typing λA module invocations in λC

expressions, and for typing λC module invocations in λA expressions (figure 4.11).
Rule TC-ModA (figure 4.11) types occurrences of λA module names in λC expressions.

The rule uses the type conversion function (·)C , defined in §3 (p. 9) to give a λC type to
the λA module invocation. Because λA types are richer than λC types—λA function types
carry extra information in the qualifier—the conversion loses information, which may need
to be recovered through dynamic checks. For example, given a λA module g with type
int(u int(a int, the conversion rule assigns it the λC type int→ int→ int. Calculus λC ’s
type system cannot enforce that the result of applying g be applied at most once, which will
need to be checked at run time.

For a λC module with type τ invoked from a λA expression, we use the module at type
(τ)A . It would be reasonable for TA-ModC to give it any λA type in the pre-image of the
λA -to-λC mapping, but (·)A makes the most permissive, statically safe choice, which is to
map all λC arrows (→) to the unlimited λA arrow ((u). Consider:

• If f : int → int in λC , then int (u int is the right type in λA . There is no reason to
limit f to an affine function type, because λC does not impose that requirement, and
subtyping allows us to use it at int(a int, if necessary.

• If f : (int→ int)→ int in λC , then (int(u int)(u int will allow the imported function
to be passed unlimited functions but not affine functions. This is a safe choice, because
λC ’s type system does not tell us whether f may call its argument more than once.

In the latter case, what if the programmer somehow knows that function f applies its ar-
gument at most once, as in the example of threadForkC (p. 7)? It should not violate λA ’s

18

4 FORMALIZATION 4.2 Mixing It Up with λA
C

λC terms e ::= · · · | CA
f f

σ(e)

λA terms e ::= · · · | σ AC
f f

(e)

λC values v ::= · · · | CA
f f

[`]σ(v)

λA values v ::= · · · | σ AC
f f

[](v)

λC evaluation contexts E ::= · · · | CA
f f

σ(E)

λA evaluation contexts E ::= · · · | σ AC
f f

(E)

configurations C ::= (s, e) | blame f

answers A ::= (s,v) | blame f

stores s ::= {} | s] {` 7→ v} | s] {` 7→ v}

Figure 4.12: Dynamics of λA
C : run-time syntax (i)

invariants to pass an affine function to threadForkC , but λA cannot know this. Therefore,
rule TA-ModC gives λC modules a conservative λA type that requires no run-time checks.
We can use an interface module to coerce a λC module’s type τ to a more permissive λA

type in the pre-image of τ , and this, too, requires a dynamic check.

Operational Semantics. We extend the syntax of our mixed calculus with several new
forms (figure 4.12). Whereas our source syntax segregates the two subcalculi into separate
modules, module invocation reduces to the body of the module, which leads expressions
of both subcalculi to nest at run time. Rather than allow λA terms to appear directly in
λC , and vice versa, we need a way to cordon off terms from one calculus embedded in the
other and to ensure that the interaction is well-behaved. We call these new expression forms
boundaries.

The new run-time syntax includes both boundary expressions σ
f ACg(e) for embedding

λC expressions in λA and boundary expressions fCA
σ
g (e) for embedding λA expressions in

λC . Each of these forms has a superscript σ, written on the λA side, which represents a
contract between the two modules that gave rise to the nested expression. Some contracts,
for example int, are fully enforced by both type systems. Other contracts, such as int(a int,
require dynamic checks. The type system guarantees that such a function receives and
returns only integers, but this type also imposes an obligation on the negative party to
apply the function at most once, which the λC type system alone does not enforce.

The right subscript of a boundary is a module name in the inner subcalculus, representing
the positive party to the contract: It promises that if the enclosed subexpression reduces to
a value, then the value will obey contract σ. The left subscript is the negative party, which
promises to treat the resulting value properly. In particular, if the contract is affine, then
the negative party promises to use the resulting value at most once.

Boundaries first arise when a module in one calculus refers to a module in the other
calculus. When the name of a λC module appears in a λA term, A-ModC (figure 4.13)

19

4.2 Mixing It Up with λA
C 4 FORMALIZATION

(C-CxtA) (s,E[e]A) 7−→
M

(s′,E[e′]A) if (s, e) 7−→
M

(s′, e′)

(C-ModA) (s, fg) 7−→
M

(s, CA
g f

σ(f)) (module f : σ = v) ∈M

(A-ModC) (s, fg) 7−→
M

(s, (τ)
A

AC
g f

(f)) (module f : τ = v) ∈M

(A-ModI) (s, fg) 7−→
M

(s, σ AC
g f

(f ′)) (interface f :> σ = f ′) ∈M

(C-Wrap) (s, CA
f g

σ(v)) 7−→
M

coerceC (s, σ, v, f , g)

(A-Wrap) (s, σ AC
f g

(v)) 7−→
M

coerceA (s, σ,v, f,g)

(C-B-A) (s, CA
f g

[`]∀α
q.σ(v)[τ]) 7−→

M
check(s, `, |σ|, CA

f g

σ[(τ)A /αq]
(
v[(τ)A]

)
, f)

(C-β-A) (s, CA
f g

[`]σ1(
q
σ2(v1) v2) 7−→

M
check(s, `, q, CA

f g

σ2

(
v1

σ1 AC
g f

(v2)

)
, f)

(A-B-C) (s, ∀α
q.σ AC

f g
[](v)[σa]) 7−→

M
(s, σ[σa/αq] AC

f g

(
v[(σa)

C]
)
)

(A-β-C) (s, σ1(
q
σ2 AC

f g
[](v1) v2) 7−→

M
(s, σ2 AC

f g

(
v1 CA

g f

σ1(v2)

)
)

coerceC (s, σ, v, f , g) =


(s, dze) if v = dze
(s,v′) if v =

{τo}
g′ AC[]f ′(v′)

(s] {` 7→ blssd}, CA
f g

[`]σ(v)) otherwise

coerceA (s, σ,v, f,g) =


(s, dze) if v = dze
check(s, `, |σo|, v′,g′) if v = g′CA[`]σ

o

f′ (v′)

(s, σ AC
f g

[](v)) otherwise

check(s, `, q, e, f) =


(s, e) if q = u

(s′] {` 7→ dfnct}, e) if s = s′] {` 7→ blssd}
(s,blame f) otherwise

Figure 4.13: Dynamics of λA
C : reduction relation (ii)

20

5 PROVING TYPE SOUNDNESS

wraps the module name with an AC boundary, using the λA -conversion of the module’s type
τ as the contract. For interface modules, the contract is as declared by the interface, and
the name of the interface is the positive party (A-ModI). From the other direction, a λA

module invoked from a λC expression is wrapped in a CA boundary by rule C-ModA.
We add evaluation contexts for reduction under boundaries, which means it is now pos-

sible to construct a λC evaluation context with a λA hole, and vice versa. If the expression
under a boundary reduces to a value, it is time to apply the boundary’s contract to the
value. There are three possibilities:

• Some values, such as integers, always satisfy the contract, so the boundary is discarded.

• Functional values and opaque affine values must have their checks deferred: functions
until application time, and opaque values until they pass back into their original sub-
calculus. For deferred checks, we leave the value in a “sealed” boundary, fCA[`]σg (v) or
σ
f AC[]g(v), which is itself a value form.

• When a previously sealed opaque value reaches a boundary back to its original subcal-
culus, both that boundary and the sealed boundary are discarded.

Rule C-Wrap implements contract application for λA values embedded in λC expres-
sions, as indicated by metafunction coerceC . The first case of coerceC handles immediate
checks, and its second case unseals previously sealed λC values that have returned home.
The second case of coerceC seals and blesses a λA value, by allocating a location `, to which
it stores a distinguished value blssd; it adds this location to the boundary, which marks
the sealed value as not yet used. This corresponds directly to the reference cell allocated by
makeAffineFunContract in §3.

Rule A-Wrap implements contracts for λC values in λA expressions. Metafunction
coerceA ’s first case is the same as coerceC ’s, and the third case seals a value for deferred
checking; it need not allocate a location to track the usage of a λC value. The third case
unseals a previously sealed λA value on its way back to λA , and this requires checking that
an affine value has not been previously unsealed. This step is specified by metafunction
check , which also has three cases. Unlimited values are unsealed with no check. If an affine
value remains blessed, check updates the store to mark it “defunct” and returns the unsealed
value. If, on the other hand, there is an attempt to unseal a defunct affine value, check
blames the negative party. This is the key dynamic check that enforces the affine invariant
for non-functional values.

Rules C-B-A, C-β-A, A-B-C, and A-β-C all handle sealed abstractions, which are
unsealed when they are applied. For sealed λA abstractions, the seal location ` must be
checked, to ensure that an affine function or type abstraction is not unsealed and applied
more than once. This is the dynamic check that enforces the affine invariant for functions.

5 Proving Type Soundness

The presence of strong updates means that aliasing a location can result in a program getting
“stuck”: if an aliased location is updated at a different type, reading from the alias produces
a value of unexpected type. Calculus λA ’s type system prevents this, but adding λC means

21

5.1 The Internal Type System 5 PROVING TYPE SOUNDNESS

that a λA value may be aliased outside λA . Our soundness criterion is that no program that
gets stuck is assigned a type. In particular, all aliasing of affine values is either prevented by
λA ’s type system or detected by a contract at run time.

In order to prove a Wright-Felleisen–style type soundness theorem (1994), we must iden-
tify precisely what property is preserved by subject reduction. We use an internal type
system to track which portions of the store are reachable from λA values that have flowed
into λC . Under this type system, configurations enjoy standard progress and preservation,
which allows us to state and prove a syntactic type soundness theorem using the internal
type system’s configuration typing judgment.

Figure 5.1 shows the new syntax for the internal type system. A store type (Σ) maps
locations to types in either subcalculus, or to “protected” types of the form [σ]`

′ . A location
` mapped to a protected type [σ]`

′ means that location ` may appear only under blessed
CA boundaries sealed by `′. In particular, the store-splitting partial function (�) defined
in figure 5.2 allows protected locations to be duplicated arbitrarily; but as we will see, they
can only be used to type locations in terms that are protected by a contract. Store splitting
also duplicates locations containing λC values, but it requires locations containing λA values,
both unlimited and affine, to go only one way or the other. This ensures that such locations
appear only once in a well-typed term, which ensures the safety of strong updates.

5.1 The Internal Type System
Figure 5.2 also defines store typing. The type of a store contains the types of all its locations.
Additionally, each location ` containing a λA value with type σ may appear in the store type,
non-deterministically, as `:σ or as `:[σ]`

′ for any location `′.
We may apply protection to a whole store, as in figure 5.3, in which case it protects a

λA locations that are not already protected. We also define the qualifier of a store type: if
it maps any location to a λA type, then the qualifier is a; otherwise it is u.

The new expression type judgments Σ; ∆; Γ .MC e : τ and Σ; ∆; Γ .MA e : σ (figure 5.4)
add a store type to the context, which is used to type locations that appear in run-time
expressions, by rule RTA-Loc. We type boundary expressions by rules RTC-Boundary
and RTA-Boundary, each of which requires the λA type σ in the premiss (resp., conclusion)
to convert to the λC type (σ)C in the conclusion (resp., premiss). Also, notably, both drop
the type and value contexts ∆ and Γ (resp. ∆ and Γ) in the premiss. Rule RTA-Sealed
is used to type sealed AC boundaries; beyond RTA-Boundary, it requires that the sealed
value have a “wrappable” type τw. which includes functions, type functions, and opaque
types; this ensures that transparent values such as integers cannot be typed under sealed
boundaries.

Three rules are used to type sealed λA values. For unlimited values, RTC-Sealed
requires that the type of the λA value be a wrappable type. For sealed boundaries fCA[`]σg (v),
which contain values of affine type, either rule RTC-Blessed or RTC-Defunct applies,
depending on the type of the λC value stored at the seal location `. In particular, we assume
distinct types B and D for the special seal values blssd and dfnct. If location ` maps to
B—that is, it contains blssd—then we expose any locations protected by that same location
` when typing the value v that appears under the seal. This means that when a sealed, affine
value is duplicated by λC , all locations appearing in that value may still type, provided they

22

5 PROVING TYPE SOUNDNESS 5.1 The Internal Type System

store contexts Σ ::= · | Σ, `:τ | Σ, `:σ | Σ, `:[σ]`
′

wrappable λC types τw ::= ∀α. τ | τ1 → τ2 | τo

wrappable λA types σw ::= ∀αq. σ | σ1 (
q
σ2 | σo

Figure 5.1: Internal type system: new syntax (i)

Σ� Σ = Σ

Σ1 � Σ2 = Σ3

Σ1, `:τ � Σ2, `:τ = Σ3, `:τ

Σ1 � Σ2 = Σ3

Σ1, `:σ � Σ2 = Σ3, `:σ

Σ1 � Σ2 = Σ3

Σ1 � Σ2, `:σ = Σ3, `:σ

Σ1 � Σ2 = Σ3

Σ1, `:[σ]`
′
� Σ2, `:[σ]`

′
= Σ3, `:[σ]`

′

Σ .M s : Σ

S-Empty

Σ .M {} : ·

S-CLoc
Σ1 .

M s : Σ′ Σ2; ·; · .MC v : τ

Σ1 � Σ2 .
M s] {` 7→ v} : (Σ′, `:τ)

S-ALoc
Σ1 .

M s : Σ′ Σ2; ·; · .MA v : σ

Σ1 � Σ2 .
M s] {` 7→ v} : (Σ′, `:σ)

S-ALocProt
Σ1 .

M s : Σ′ Σ2; ·; · .MA v : σ

Σ1 � Σ2 .
M s] {` 7→ v} : (Σ′, `:[σ]`

′
)

Figure 5.2: Internal type system: store splitting and typing (ii)

[Σ]` = Σ

[·]` = · [Σ, `′:τ]` = [Σ]`, `′:τ [Σ, `′:σ]` = [Σ]`, `′:[σ]` [Σ, `′:[σ]`
′′
]` = [Σ]`, `′:[σ]`

′′

∣∣Σ∣∣ = q

|·| = u |Σ, `:σ| = a |Σ, `:[σ]`
′ | = |Σ| |Σ, `:τ | = |Σ|

Figure 5.3: Internal type system: store protection and qualifiers (iii)

23

5.1 The Internal Type System 5 PROVING TYPE SOUNDNESS

Σ; ∆; Γ .MC e : τ

RTC-Boundary
Σ; ·; · .MA e : σ

Σ; ∆; Γ .MC CA
f g

σ(e) : (σ)C

RTC-Sealed
Σ; ·; · .MA v : σw |σw| = u

Σ; ∆; Γ .MC CA
f g

[`]σ
w

(v) : (σw)C

RTC-Blessed
Σ1,Σ2; ·; · .MA v : σw |σw| = a

[Σ1]
`, `:B, [Σ2]

`; ∆; Γ .MC CA
f g

[`]σ
w

(v) : (σw)C

RTC-Defunct
|σw| = a

[Σ1]
`, `:D, [Σ2]

`; ∆; Γ .MC CA
f g

[`]σ
w

(v) : (σw)C

Σ; ∆; Γ .MA e : σ

RTA-Loc

Σ1, `:σ,Σ2; ∆; Γ .MA ` : σ ref

RTA-Boundary
Σ; ·; · .MC e : (σ)C

Σ; ∆; Γ .MA
σ AC

f g
(e) : σ

RTA-Sealed
Σ; ·; · .MC v : (σ)C (σ)C = τw

Σ; ∆; Γ .MA
σ AC

f g
[](v) : σ

tyC (c) = τ

tyC (blssd) = B tyC (dfnct) = D

Figure 5.4: Internal type system: new expressions and constants (iv)

24

5 PROVING TYPE SOUNDNESS 5.1 The Internal Type System

Σ; ∆; Γ .MA e : σ

RTA-Subsume
Σ; ∆; Γ .MA e : σ σ <: σ′

Σ; ∆; Γ .MA e : σ′

RTA-TLam
Σ; ∆, αq; Γ .MA v : σ

Σ; ∆; Γ .MA Λαq. v : ∀αq. σ

RTA-TApp
Σ; ∆; Γ .MA e : ∀αq. σ′ ∆ `A σ |σ| v q

Σ; ∆; Γ .MA e[σ] : σ′[σ/αq]

RTA-Lam
Σ; ∆; Γ, x : σ .MA e : σ′ ∆ `A σ

∣∣Γ|FV(λx:σ. e)

∣∣ t ∣∣Σ|FL(λx:σ. e)

∣∣ = q

Σ; ∆; Γ .MA λx:σ. e : σ(
q
σ′

RTA-App
Σ1; ∆; Γ1 .

M
A e1 : σ′(

q
σ Σ2; ∆; Γ2 .

M
A e2 : σ′

Σ1 � Σ2; ∆; Γ1 � Γ2 .
M
A e1 e2 : σ

RTA-Pair
Σ2; ∆; Γ1 .

M
A e1 : σ1 Σ2; ∆; Γ2 .

M
A e2 : σ2

Σ1 � Σ2; ∆; Γ1 � Γ2 .
M
A 〈e1, e2〉 : σ1 ⊗ σ2

RTA-Let
Σ1; ∆; Γ1 .

M
A e1 : σx ⊗ σy Σ2; ∆; Γ2, x : σx, y : σy .

M
A e2 : σ

Σ1 � Σ2; ∆; Γ1 � Γ2 .
M
A let 〈x, y〉 = e1 in e2 : σ

RTA-Con

Σ; ∆; Γ .MA c : tyA (c)

RTA-If0
Σ1; ∆; Γ1 .

M
A e1 : int Σ2; ∆; Γ2 .

M
A e2 : τ Σ1; Γ2 .

M
A e3 : τ

Σ1 � Σ2; ∆; Γ1 � Γ2 .
M
A if0 e1 e2 e3 : τ

RTA-Var
Γ(x) = σ

Σ; ∆; Γ .MA x : σ

RTA-Mod
module f : σ = v ∈M · `A σ

Σ; ∆; Γ .MA f : σ

RTA-ModC
module f : τ = v ∈M · `C τ

Σ; ∆; Γ .MA f : (τ)A

RTA-ModI
interface f :> σ = g ∈M · `A σ

Σ; ∆; Γ .MA f : σ

Figure 5.5: Internal type system: old λA expressions (v)

25

5.1 The Internal Type System 5 PROVING TYPE SOUNDNESS

Σ; ∆; Γ .MC e : τ

RTC-TLam
Σ; ∆, α; Γ .MC v : τ

Σ; ∆; Γ .MC Λα.v : ∀α. τ

RTC-TApp
Σ; ∆; Γ .MC e : ∀α. τ ′ ∆ `C τ

Σ; ∆; Γ .MC e[τ] : τ ′[τ/α]

RTC-Lam
Σ; ∆; Γ,x:τ .MC e : τ ′ ∆ `C τ

∣∣Σ|FL(λx:τ. e)

∣∣ = u

Σ; ∆; Γ .MC λx:τ. e : τ → τ ′

RTC-App
Σ1; ∆; Γ .MC e1 : τ ′ → τ Σ2; ∆; Γ .MC e2 : τ ′

Σ1 � Σ2; ∆; Γ .MC e1 e2 : τ

RTC-Con

Σ; ∆; Γ .MC c : tyC (c)

RTC-If0
Σ1; ∆; Γ .MC e1 : int Σ2; ∆; Γ .MC e2 : τ Σ2; ∆; Γ .MC e3 : τ

Σ1 � Σ2; ∆; Γ .MC if0 e1 e2 e3 : τ

RTC-ModA
module f : σ = v ∈M · `A σ

Σ; ∆; Γ .MC f : (σ)C

RTC-Var
Γ(x) = τ

Σ; ∆; Γ .MC x : τ

RTC-Mod
module f : τ = v ∈M · `C τ

Σ; ∆; Γ .MC f : τ

Figure 5.6: Internal type system: old λC expressions (vi)

.M C : τ

Conf
(∀m ∈M) `M m okay Σ1 .

M s : Σ1 � Σ2 Σ2; ·; · .MC e : τ

.M (s, e) : τ

Blame

.M blame f : τ

Figure 5.7: Internal type system: configurations (vii)

26

5 PROVING TYPE SOUNDNESS 5.2 Properties of Types and Stores

all remain sealed. When one instance of the sealed value is unwrapped, location ` is updated
to have type D, which means that we no longer attempt to type other instances of the sealed
value at all, and just give them the type indicated by the boundary. This is safe because
the contract checking in the operational semantics ensures that such values can never be
unwrapped.

Figures 5.5 and 5.6 update the type rules for the old expression forms for the internal
type system. These rules extend each of the old rules with a store context, which is split for
multiplicative forms such as application in λC as well as λA . The only other change is for
typing λ abstractions. For λA (RTA-Lam), we use not only the value context but the store
context to determine the qualifier q in the arrow ((q) type. For λC , rule RTC-Lam requires
that the term contain no unprotected locations containing λA values.

Finally, figure 5.7 gives the type rule for configurations. It requires that the store s have
some type Σ1 � Σ2, where Σ1 is sufficient context for that store typing, and Σ2 is used to
type the configuration’s expression e.

Conventions. We define the free variables of an expression e, written FV(e) inductively
in the conventional way (and likewise for λA); however, we consider the module names in a
program to be syntactically distinct from the λ- and let-bound variables, and we take the
free variables to exclude module names.

The free locations of an expression e, written FL(e), is the set of locations (`) that occur
in e (and likewise for λA). Note that there are no binders for locations at the expression
level.

We note that exchange and weakening of store, type, and value contexts is implicit in
our type syste, by inspection of the type rules: All variable, type variable, and location
lookup rules look anywhere in the environment, and ignore the rest. Conversely, it should
be apparent that any assumption in an environment that is not free in the subject is not
needed to type the subject. We are justified in discarding such assumptions.

We follow Barendregt’s convention for evasive relettering.

Road Map. In §5.2, we prove several simple properties of types, type conversion, stores,
and store contexts. In §5.3, we relate the external type system from §4.2 with the internal
type system, showing that programs and expressions that type in the external type system
also type in the internal type system. Section 5.4 contains several lemmas about evaluation
contexts and typing of terms in the hole, and about substitution. In §5.5, we prove our
presevation theorem, followed by our progress theorem in §5.6. We finish with our main
theorem in §5.7.

5.2 Properties of Types and Stores
Lemma 5.2.1 (Type conversion is faithful).

(i) For any type τ , ((τ)A)C = τ .

(ii) For any opaque type σo, ((σo)C)A = σo.

(iii) For any type σ, |((σ)C)A | v |σ|.

27

5.2 Properties of Types and Stores 5 PROVING TYPE SOUNDNESS

(iv) For any types σ and σo, if (σ)C = (σo)C then σ = σo.

Proof.

(i) By induction on the structure of τ .

(ii) ((σo)C)A = ({σo})A = σo.

(iii) By induction on the structure of σ:

Case int.

|((int)C)A | = |int| = u.

Case σ1 (
q
σ2.

|((σ1 (
q
σ2)C)A | = |((σ1)C → (σ2)C)A | = |((σ1)C)A (u ((σ2)C)A | = u v q.

Case ∀αq. σ1.

|((∀αq. σ1)C)A | = |(∀β.(σ1[{β}/αq])C)A |
= |∀γu. ((σ1[{β}/αq])C [{γu}/β])A |
= |∀γu. ((σ1[{{γu}}/αq])C)A |
= |∀γu. ((σ1[γu/αq])C)A |
= |∀αu. ((σ1)C)A |
= |((σ1)C)A |
v |σ1| by i.h.
= |∀αq. σ1|

Case αq, σ1 ref, σ1 ⊗ σ2.

Since σ is opaque, then ((σ)C)A = σ by part (ii), so |σ| v |σ|.

Case {τo}.
|(({τo})C)A | = |(τo)A | = |{τo}| = u.

(iv) By cases on σo:

Case αq.

Then (αq)C = {αq}. By inspection of the translation function, the only σ such
that (σ)C = {αq} is αq.

Case σ′ ref.

Then (σ′ ref)C = {σ′ ref}. By inspection of the translation function, the only σ
such that (σ)C = {σ′ ref} is σ′ ref.

Case σ1 ⊗ σ2.

Then (σ1 ⊗ σ2)C = {σ1 ⊗ σ2}. By inspection of the translation function, the only
σ such that (σ)C = {σ1 ⊗ σ2} is σ1 ⊗ σ2.

Lemma 5.2.2 (Type translation preserves well-formedness).

28

5 PROVING TYPE SOUNDNESS 5.2 Properties of Types and Stores

(i) ∆ `C τ if and only if ∆ `A (τ)A .

(ii) ∆ `A σ if and only if ∆ `C (σ)C .

Proof. By inspection of the type well-formedness rules, ∆ `C τ if and only if FTV(τ) ⊆ ∆.
Likewise, ∆ `A σ if and only if FTV(σ) ⊆ ∆. Thus, it suffices to show that FTV(τ) =
FTV((τ)A) and FTV(σ) = FTV((σ)C).

We use an alternative induction measure to map types into the naturals:

H(int) = 0 H(int) = 0

H(τ1 → τ2) = max(H(τ1),H(τ2)) + 1 H(σ1 (
q
σ2) = max(H(σ1),H(σ2)) + 1

H(∀β.τ ′) = H(τ ′) + 1 H(∀βq.σ′) = H(σ′) + 1

H(β) = 0 H(βq) = 0

H({σo}) = 2 · H(σo) H({τo}) = 2 · H(τo)

H(σ1 ⊗ σ2) = max(H(σ1),H(σ2)) + 1

H(σ′ ref) = H(σ′) + 1

We proceed by induction using H.

(i) By cases on τ :

Case int.

Then FTV((int)C) = FTV(int) = ∅ = FTV(int).

Case τ1 → τ2.

Then FTV((τ1 (
u
τ2)C) = FTV((τ1)C → (τ2)C) = FTV((τ1)C) ∪ FTV((τ2)C) =

FTV(τ1) ∪ FTV(τ2) = FTV(τ1 (
u
τ2).

Case ∀β. τ ′.

FTV((∀β. τ ′)C) = FTV(∀αu. (τ ′[{αu}/β])C)

= FTV((τ ′[{αu}/β])C)− {αu}
= FTV(τ ′[{αu}/β])− {αu} induction hypothesis
= FTV(τ ′)− {β}
= FTV(∀β. τ ′).

Note that we can apply the induction hypothesis at τ ′[{αu}/β] becauseH({αu}) =
0 = H(β), which means that H(τ ′[{αu}/β]) = H(τ ′) < H(∀β. τ ′).

Case β.

Then FTV((β)C) = FTV({β}) = FTV(β).

Case {σo}.
Then FTV(({σo})C) = FTV(σo) = FTV({σo}).

(ii) By cases on σ:

29

5.2 Properties of Types and Stores 5 PROVING TYPE SOUNDNESS

Case int.

Then FTV((int)C) = FTV(int) = ∅ = FTV(int).

Case σ1 (
q
σ2.

Then FTV((σ1 (
q
σ2)C) = FTV((σ1)C → (σ2)C) = FTV((σ1)C) ∪ FTV((σ2)C) =

FTV(σ1) ∪ FTV(σ2) = FTV(σ1 (
q
σ2).

Case ∀βq. σ′.
FTV((∀βq. σ′)C) = FTV(∀α. (σ′[{α}/βq])C)

= FTV((σ′[{α}/βq])C)− {α}
= FTV(σ′[{α}/βq])− {α} induction hypothesis
= FTV(σ′)− {βq}
= FTV(∀βq. σ′).

Note that we can apply the induction hypothesis at σ′[{α}/βq] because H({α}) =
0 = H(βq), which means that H(σ′[{α}/βq]) = H(σ′) < H(∀βq. σ′).

Case βq.

Then FTV((βq)C) = FTV({βq}) = FTV(βq).

Case {τo}.
Then FTV(({τo})C) = FTV(τo) = FTV({τo}).

Case σ′ ref.

Then FTV((σ′ ref)C) = FTV({σ′ ref}) = FTV(σ′ ref).

Case σ1 ⊗ σ2.

Then FTV((σ1 ⊗ σ2)C) = FTV({σ1 ⊗ σ2}) = FTV(σ1 ⊗ σ2).

Definition 5.2.3 (Unlimited and affine restriction). We define the unlimited restriction
of Γ, denoted Γ|u, to be Γ restricted to the portion of its domain that it does not map to affine
σ types. We define the unlimited restriction of Σ, denoted Σ|u, to be Σ restricted to the
portion of its domain that it doesn’t take to σ types, affine or unlimited.

That is,

·|u = ·

Γ, x:σ|u =

{
Γ|u, x:σ if |σ| = u

Γ|u if |σ| = a

Σ, `:τ |u = Σ|u, `:τ
Σ, `:[σ]`

′|u = Σ|u, `:[σ]`
′

Σ, `:σ|u = Σ|u
Likewise, we define the affine restrictions Γ|a and Σ|a to be the remaining portions of

Γ and Σ, respectively. That is, Γ = Γ|u, Γ|a and Σ = Σ|u,Σ|a (up to exchange).
If Σ1|u = Σ2|u, we say that Σ1 ∼u Σ2, and likewise for value contexts; clearly (∼u) is an

equivalence relation.

30

5 PROVING TYPE SOUNDNESS 5.2 Properties of Types and Stores

Lemma 5.2.4 (Context splitting properties).

Commutativity If Γ1 � Γ2 = Γ then Γ2 � Γ1 = Γ. If Σ1 � Σ2 = Σ then Σ2 � Σ1 = Σ.

Associativity (Γ1� Γ2)� Γ3 = Γ if and only if Γ1� (Γ2� Γ3) = Γ. (Σ1�Σ2)�Σ3 = Σ if and
only if Σ1 � (Σ2 � Σ3) = Σ.

Absorbtion If Γ1 � Γ2|u = Γ for any Γ1, Γ2, and Γ, then Γ1 = Γ and Γ2|u = Γ|u. Likewise, if
Σ1 � Σ2|u = Σ for any Σ1, Σ2, and Σ, then Σ1 = Σ and Σ2|u = Σ|u.
As a trivial corollary, for any Γ, Γ� Γ|u = Γ, and for any Σ, Σ� Σ|u = Σ.

Equivalence For any Γ1 and Γ2, if there exists some Γ such that Γ1 � Γ2 = Γ, then Γ1 ∼u Γ2.
For any Σ1 and Σ2, if there exists some Σ such that Σ1 � Σ2 = Σ, then Σ1 ∼u Σ2.

Proof. Each case by a trivial structural induction.

Lemma 5.2.5 (Protection is free). If a store has a type, then protecting or unprotecting any
part of its type preserves the typing. In particular, for any Σ1, Σ2, and `,

Σ1 .
M s : Σ2,Σ3 ⇐⇒ Σ1 .

M s : Σ2, [Σ3]
` .

Proof. By induction on Σ3 and inversion of the derivation of the antecedent:

Case ·.
That is, Σ1 .

M s : Σ2. Then [·]` = ·.

Case Σ′3, `
′:σ.

Then

Σ11 .
M s′ : Σ2,Σ

′
3 Σ12; · .MA v : σ

Σ11 � Σ12 .
M s′] {`′ 7→ v} : Σ2,Σ

′
3, `
′:σ

⇔
Σ11 .

M s′ : Σ2, [Σ
′
3]
` Σ12; · .MA v : σ

Σ11 � Σ12 .
M s′] {`′ 7→ v} : Σ2, [Σ

′
3]
`, `′:[σ]`

by induction at Σ′3, where Σ1 = Σ11�Σ12 and s = s′] {`′ 7→ v} and Σ2, [Σ
′
3]
`, `′:[σ]` =

Σ2, [Σ
′
3, `
′:σ]` = Σ2, [Σ3]

`.

Case Σ′3, `
′ : [σ]`

′′ .

Then

Σ11 .
M s′ : Σ2,Σ

′
3 Σ12; · .MA v : σ

Σ11 � Σ12 .
M s] {`′ 7→ v} : Σ2,Σ

′
3, `
′ : [σ]`

′′

⇔
Σ11 .

M s′ : Σ2, [Σ
′
3]
` Σ12; · .MA v : σ

Σ11 � Σ12 .
M s] {`′ 7→ v} : Σ2, [Σ

′
3]
`, `′ : [σ]`

′′

by induction at Σ′3, where Σ1 = Σ11 � Σ12 and s = s] {`′ 7→ v} and Σ2, [Σ
′
3]
`, `′ :

[σ]`
′′

= Σ2, [Σ
′
3, `
′ : [σ]`

′′
]` = Σ2, [Σ3]

`.

31

5.3 External Typing Implies Internal Typing 5 PROVING TYPE SOUNDNESS

Case Σ′3, `
′ : τ .

Then

Σ11 .
M s′ : Σ2,Σ

′
3 Σ12; · .MC v : τ

Σ11 � Σ12 .
M s] {`′ 7→ v} : Σ2,Σ

′
3, `
′:τ
⇔

Σ11 .
M s′ : Σ2, [Σ

′
3]
` Σ12; · .MC v : τ

Σ11 � Σ12 .
M s] {`′ 7→ v} : Σ2, [Σ

′
3]
`, `′:τ

by induction at Σ′3, where Σ1 = Σ11 � Σ12 and s = s] {`′ 7→ v} and Σ2, [Σ
′
3]
`, `′:τ =

Σ2, [Σ
′
3, `
′:τ]` = Σ2, [Σ3]

`.

Lemma 5.2.6 (Contexts close typed terms). The free variables, type variables, and locations
in a well-typed term and type are contained in the contexts used to type it.

(i) If Σ; ∆; Γ .MC e : τ then FV(e) ⊆ dom Γ, FTV(e) ⊆ ∆, FL(e) ⊆ dom Σ, and FTV(τ) ⊆
dom Γ.

(ii) If Σ; ∆; Γ .MA e : σ then FV(e) ⊆ dom Γ, FTV(e) ⊆ ∆, FL(e) ⊆ dom Σ, and FTV(σ) ⊆
dom Γ.

Proof. By induction on the type rules and the definition of free locations and variables.

Lemma 5.2.7 (Store types are closed). If Σ1 .
M s : Σ2 then FTV(Σ2) = ∅.

Proof. We proceed by induction on the derivation of Σ1 .
M s : Σ2:

Case
Σ1 .

M · : ·
.

Then FTV(·) = ∅.

Case
Σ11 .

M s : Σ′2 Σ12; ·; · .MC v : τ

Σ11 � Σ12 .
M s] {` 7→ v} : Σ′2, `:τ

.

By the induction hypothesis, FTV(Σ′2) = ∅, and since v types in an empty type
context, FTV(τ) = ∅; thus FTV(Σ′2, `:τ) = ∅ as well.

Case
Σ11 .

M s : Σ′2 Σ12; ·; · .MA v : σ

Σ11 � Σ12 .
M s] {` 7→ v} : Σ′2, `:σ

.

By the induction hypothesis, FTV(Σ′2) = ∅, and since v types in an empty type
context, FTV(σ) = ∅; thus FTV(Σ′2, `:σ) = ∅ as well.

Case
Σ11 .

M s : Σ′2 Σ12; ·; · .MA v : σ

Σ11 � Σ12 .
M s] {` 7→ v} : Σ′2, `:[σ]`

′ .

By the induction hypothesis, FTV(Σ′2) = ∅, and since v types in an empty type
context, FTV(σ) = ∅; thus FTV(Σ′2, `:[σ]`

′
) = ∅ as well.

5.3 External Typing Implies Internal Typing
Lemma 5.3.1 (Equivalence of expression typing). If an expression types in the external type
system (`), then it types in the internal type system (.) with empty store type:

32

5 PROVING TYPE SOUNDNESS 5.3 External Typing Implies Internal Typing

(i) If ∆; Γ `MC e : τ then ·; ∆; Γ .MC e : τ .

(ii) If ∆; Γ `MA e : σ then ·; ∆; Γ .MA e : σ.

Proof. By induction on the type derivation.

Case

A
∆, α; Γ `MC v : τ

∆; Γ `MC Λα.v : ∀α. τ
.

i.h. at A
·; ∆, α; Γ .MC v : τ

·; ∆; Γ .MC Λα.v : ∀α. τ

Case

A
∆; Γ,x:τ `MC e : τ ′

B
∆ `C τ

∆; Γ `MC λx:τ. e : τ → τ ′
.

i.h. at A
·; ∆; Γ,x:τ .MC e : τ ′

B
∆ `C τ

∣∣·|FL(λx:τ. e)

∣∣ = u

·; ∆; Γ .MC λx:τ. e : τ → τ ′

Case
∆; Γ `MC c : tyC (c)

.

·; ∆; Γ .MC c : tyC (c)

Case
Γ(x) = τ

∆; Γ `MC x : τ
.

Γ(x) = τ

·; ∆; Γ .MC x : τ

Case

A
module f : τ = v ∈M

B
· `C τ

·; ∆; Γ `MC f : τ
.

A
module f : τ = v ∈M

B
· `C τ

·; ∆; Γ .MC f : τ

Case

A
∆; Γ `MC e : ∀α. τ

B
∆ `C τ

∆; Γ `MC e[τ] : τ ′[τ/α]
.

33

5.3 External Typing Implies Internal Typing 5 PROVING TYPE SOUNDNESS

i.h. at A
·; ∆; Γ .MC e : ∀α. τ

B
∆ `C τ

·; ∆; Γ .MC e[τ] : τ ′[τ/α]

Case

A
∆; Γ `MC e1 : τ ′ → τ

B
∆; Γ `MC e2 : τ ′

∆; Γ `MC e1 e2 : τ
.

i.h. at A
·; ∆; Γ .MC e1 : τ ′ → τ

i.h. at B
·; ∆; Γ .MC e2 : τ ′

·� ·; ∆; Γ .MC e1 e2 : τ

Case

A
∆; Γ `MC e1 : int

B
∆; Γ `MC e2 : τ

C
∆; Γ `MC e3 : τ

∆; Γ `MC if0 e1 e2 e3 : τ
.

i.h. at A
·; ∆; Γ .MC e1 : int

i.h. at B
·; ∆; Γ .MC e2 : τ

i.h. at C
·; ∆; Γ .MC e3 : τ

·� ·; ∆; Γ .MC if0 e1 e2 e3 : τ

Case

A
∆; Γ `MA e : σ

B
σ <: σ′

∆; Γ `MA e : σ′
.

i.h. at A
·; ∆; Γ .MA e : σ

B
σ <: σ′

∆; Γ .MA e : σ′

Case

A
∆, αq; Γ `MA v : σ

∆; Γ `MA Λαq. v : ∀αq. σ
.

i.h. at A
·; ∆, αq; Γ .MA v : σ

∆; Γ .MA Λαq. v : ∀αq. σ

Case

A
∆; Γ, x:σ `MA e : σ′

B
∆ `A σ

C∣∣Γ|FV(λx:σ. e)

∣∣ = q

∆; Γ `MA λx:σ. e : σ(q σ′
.

34

5 PROVING TYPE SOUNDNESS 5.3 External Typing Implies Internal Typing

i.h. at A
·; ∆; Γ, x:σ .MA e : σ′

B
∆ `A σ

C∣∣Γ|FV(λx:σ. e)

∣∣ = q
∣∣·|FL(λx:σ. e)

∣∣ = u∣∣Γ|FV(λx:σ. e)

∣∣ t ∣∣·|FL(λx:σ. e)

∣∣ = q

∆; Γ .MA λx:σ. e : σ(q σ′

Case ∆; Γ `MA c : tyA (c) .

·; ∆; Γ .MA c : tyA (c)

Case
Γ(x) = σ

∆; Γ `MA x : σ
.

Γ(x) = σ

·; ∆; Γ .MA x : σ

Case

A
module f : σ = v ∈M

B
· `A τ

∆; Γ `MA f : σ
.

A
module f : σ = v ∈M

B
· `A σ

·; ∆; Γ .MA f : σ

Case

A
∆; Γ `MA e : ∀αq. σ

B
∆ `A σ

C
|σ| v q

∆; Γ `MA e[σ] : σ′[σ/αq]
.

i.h. at A
·; ∆; Γ .MA e : ∀αq. σ

B
∆ `A σ

C
|σ| v q

·; ∆; Γ .MA e[σ] : σ′[σ/αq]

Case

A
∆; Γ1 `MA e1 : σ′(q σ

B
∆; Γ2 `MA e2 : σ′

∆; Γ1 � Γ2 `MA e1 e2 : σ
.

i.h. at A
·; ∆; Γ1 .

M
A e1 : σ′(q σ

i.h. at B
·; ∆; Γ2 .

M
A e2 : σ′

·� ·; ∆; Γ1 � Γ2 .
M
A e1 e2 : σ

Case

A
∆; Γ1 `MA e1 : int

B
∆; Γ2 `MA e2 : τ

C
∆; Γ2 `MA e3 : τ

∆; Γ1 � Γ2 `MA if0 e1 e2 e3 : τ
.

35

5.3 External Typing Implies Internal Typing 5 PROVING TYPE SOUNDNESS

i.h. at A
·; ∆; Γ1 .

M
A e1 : int

i.h. at B
·; ∆; Γ2 .

M
A e2 : τ

i.h. at C
·; ∆; Γ2 .

M
A e3 : τ

·� ·; ∆; Γ1 � Γ2 .
M
A if0 e1 e2 e3 : τ

Case

A
∆; Γ1 `MA e1 : σ1

B
∆; Γ2 `MA e2 : σ2

∆; Γ1 � Γ2 `MA 〈e1, e2〉 : σ1 ⊗ σ2

.

i.h. at A
·; ∆; Γ1 .

M
A e1 : σ1

i.h. at B
·; ∆; Γ2 .

M
A e2 : σ2

·� ·; ∆; Γ1 � Γ2 .
M
A 〈e1, e2〉 : σ1 ⊗ σ2

Case

A
∆; Γ1 `MA e1 : σx ⊗ σy

B
∆; Γ2, x:σx, y:σy `MA e2 : σ

∆; Γ1 � Γ2 `MA let 〈x, y〉 = e1 in e2 : σ
.

i.h. at A
·; ∆; Γ1 .

M
A e1 : σx ⊗ σy

i.h. at B
·; ∆; Γ2, x:σx, y:σy .MA e2 : σ

·� ·; ∆; Γ1 � Γ2 .
M
A let 〈x, y〉 = e1 in e2 : σ

Case

A
module f : σ = v ∈M

B
· `A σ

∆; Γ `MC f : (σ)C
.

A
module f : σ = v ∈M

B
· `A σ

·; ∆; Γ .MC f : (σ)C

Case

A
module f : τ = v ∈M

B
· `C τ

∆; Γ `MA f : (τ)A
.

A
module f : τ = v ∈M

B
· `C τ

·; ∆; Γ .MA f : (τ)A

Case

A
interface f :> σ = g ∈M

B
· `A σ

∆; Γ `MA f : σ
.

A
interface f :> σ = g ∈M

B
· `A σ

·; ∆; Γ .MA f : σ

36

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

Theorem 5.3.2 (Programs to configurations). If `M e : τ then .M (·, e) : τ .

Proof. By inversion of Prog, all modules in M are okay. Furthermore, · `MC e : τ , and by
Lemma 5.3.1, ·; · .MC e : τ . Since s = ·, Σ = ·, and thus, · .M s : · � ·. Thus, by Conf,
.M (·, e) : τ .

5.4 Evaluation Contexts and Substitution
In this section, we prove several lemmas about terms in holes and about substitution. In
Lemma 5.4.2, we show that if a well-typed term is decomposed into an evaluation context and
a subterm in the hole, then the subterm types, and the evaluation context types with a suit-
able replacement term in the hole as well; unlike the usual replacement theorem, we require
the replacement term to type in empty contexts. In the lemma after that (Lemma 5.4.3), we
show that the hole may be re-filled with any a term that types in a non-empty store context.
Breaking this into two lemmas this allows us to manipulate the store context in which the
evaluation context is typed separately before replacing the term in the hole.

We begin, however, with an observation about how we may often ignore subsumption
rule (RTA-Subsume), which is not syntax directed, when dealing with type derivations.

Observation 5.4.1 (Subsumption and proof by inversion). We first observe that multiple
adjacent applications of the type rule RTA-Subsume may always be condensed into one, by
the transitivity of (<:). By induction, any instance of multiple adjacent subsumptions may
be rewritten to have only one subsumption. Furthermore, any derivation in λA that does
not end with a subsumption may have a subsumption added at the root, by reflexivity of
the subtype relation. Thus, without loss of generality, we may consider any type derivation
in λA to end with rule A-Subsume, with a different rule preceding it in the derivation.

Now we consider inverting type judgments of the form Σ; Γ .MA e : σ. The subsumption
rule may always appear at the root, and in general only one or two other rules will match
the syntax of e. Denote the applicable syntax-specific rule for e as rule R. Because we do not
consider proofs with multiple adjacent subsumptions, the premiss to RTA-Subsume must
be the conclusion of a different rule. But because e is the same, only rule R applies!:

A1 · · · Ak
Σ; ∆; Γ .MA e : σ<

R
σ< <: σ

Σ; ∆; Γ .MA e : σ
RTA-Subsume

Thus, when inverting a type judgment for the λA subcalculus, we may safely consider invert-
ing the syntax-specific judgment for e at an arbitrary type σ< <: σ. If our goal is reconstruct
a new type judgment giving σ, by subsumption it is sufficient to reconstruct a type judgment
giving σ<.

Lemma 5.4.2 (Terms in holes are typeable).

(i) If Σ; ∆; Γ .MC E[e′]C : τ , then there exist some Σ1�Σ2 = Σ and τ ′ such that Σ1; ∆; Γ .MC
e′ : τ ′, and for any other e′′ such that ·; ·; · .MC e′′ : τ ′, it types with Σ2; ∆; Γ .MC E[e′′]C :
τ

37

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

(ii) If Σ; ∆; Γ .MC E[e′]A : τ , then there exist some Σ1 � Σ2 = Σ and σ′ such that
Σ1; ∆; Γ .MA e′ : σ′, and for any other e′′ such that ·; ·; · .MA e′′ : σ′, it types with Σ2; ∆; Γ .MC
E[e′′]A : τ

(iii) If Σ; ∆; Γ .MA E[e′]A : σ, then there exist some Σ1 � Σ2 = Σ, Γ1 � Γ2 = Γ, and τ ′ such
that Σ1; ∆; Γ1 .

M
A e′ : σ′, and for any other e′′ such that ·; ·; · .MA e′′ : σ′, it types with

Σ2; ∆; Γ .MA E[e′′]A : σ

(iv) If Σ′; ∆; Γ .MA E[e′]C : σ, then there exist some Σ1 � Σ2 = Σ, Γ1 � Γ2 = Γ, and τ ′ such
that Σ1; ∆; Γ1 .

M
C e′ : τ ′, and for any other e′′ such that ·; ·; · .MC e′′ : τ ′, it types with

Σ2; ∆; Γ .MA E[e′′]C : σ

In particular, if E[e′]A is closed, then so is e′ (and likewise for the other three cases).

Proof. We take the statement of the theorem as an induction hypothesis in four parts and
proceed by mutual induction on the structures of E and E.

(i) Consider first E:

Case []C .

Then E[e′]C = e′.
Let τ ′ = τ , Σ1 = Σ and Σ2 = Σ|u.
Note that E[e′′]C = e′′.
If ·; ·; · .MC e′′ : τ ′, then by weakening, Σ|u; ∆; Γ .MC e′′ : τ ′.

Case E′[τa].

This only types if Σ; ∆; Γ .MC E′[e′]C : ∀α. τb where τ = τb[τa/α].
By induction, there exist some τ ′ and Σ1 � Σ2 = Σ such that Σ1; ∆; Γ .MC e′ : τ ′

and Σ2; ∆; Γ .MC E′[e′′]C : ∀α. τb for suitable e′′.
By RTC-TApp, Σ2; ∆; Γ .MC E′[e′′]C [τa] : τ .

Case E′ e2.

This only types if Σ1; ∆; Γ .MC E′[e′]C : τ1 → τ and Σ2; ∆; Γ .MC e2 : τ1 where
Σ1 � Σ2 = Σ.
By induction, there exist some τ ′ and Σ11�Σ12 = Σ1 such that Σ11; ∆; Γ .MC e′ : τ ′

and Σ12; ∆; Γ .MC E′[e′′]C : τ1 → τ for suitable e′′.
By RTC-App, Σ12 � Σ2; ∆; Γ .MC E′[e′′]C e2 : τ .

Case v E′.

This only types if Σ1; ∆; Γ .MC v : τ1 → τ and Σ2; ∆; Γ .MC E′[e′]C : τ1 where
Σ1 � Σ2 = Σ.
By induction, there exist some τ ′ and Σ21�Σ22 = Σ2 such that Σ21; ∆; Γ .MC e′ : τ ′

and Σ22; ∆; Γ .MC E′[e′′]C : τ1 for suitable e′′.
By RTC-App, Σ1 � Σ22; ∆; Γ .MC v E′[e′′]C : τ .

38

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

Case if0E′ e2 e3.

This only types if Σ1; ∆; Γ .MC E′[e′]C : int, Σ2; ∆; Γ .MC e2 : τ , and Σ2; ∆; Γ .MC
e2 : τ where Σ1 � Σ2 = Σ.
By induction, there exists some τ ′ and Σ11�Σ12 = Σ1 such that Σ11; ∆; Γ .MC e′ : τ ′

and Σ22; ∆; Γ .MC E′[e′′]C : int for suitable e′′.
By RTC-If0, Σ12 � Σ2; ∆; Γ .MC if0E′[e′′]C e2 e3 : τ .

Case fCA
σ
g (E′).

This only types if (σ)C = τ and if Σ; ·; · .MA E′[e′]C : σ.
By part (iv) of the induction hypothesis, there exist some τ ′ and Σ1 � Σ2 = Σ
such that Σ1; ·; · .MC e′ : τ ′ and Σ2; ·; · .MA E′[e′′]C : σ for suitable e′′.
By RTC-Boundary, Σ2; ∆; Γ .MC fCA

σ
g (E′[e′′]C) : τ .

This concludes the proof of first part.

(ii) The second part proceeds mutatis mutandis, with two notable changes:

• The E′ = []C case is vacuous.

• The CA boundary cases appeal to part (iii) of the induction hypothesis.

(iii) For the third part, we consider cases on E.

Case []A .

Then E[e′]A = e′.
Let σ′ = σ, Σ1 = Σ, Σ2 = Σ|u, Γ1 = Γ, and Γ2 = Γ|u.
Note that E[e′′]A = e′′.
If ·; ·; · .MA e′′ : σ, then by weakening Σ|u; ∆; Γ|u .MA e′′ : σ′.

Case E′[σa].

Consider the type derivation of E′[e′]A [σa]. According to Observation 5.4.1, with-
out loss of generality, there exists some σ< <: σ, with rule RTA-TApp concluding
that E′[e′]A [σa] has that type, followed by a subsumption. This can be the case
only if Σ; ∆; Γ .MA E′[e′]A : ∀αq. σb where σ< = σb[σa/α] and |σa| v q.
By induction, there exist some σ′, Σ1 � Σ2 = Σ, and Γ1 � Γ2 = Γ such that
Σ1; ∆; Γ1 .

M
A e′ : σ′ and Σ2; ∆; Γ2 .

M
A E′[e′′]A : ∀αq. σb for suitable e′′.

By RTA-TApp and RTA-Subsume, Σ2; ∆; Γ2 .
M
A E′[e′′]A [σa] : σ.

Case E e2.

Consider the type derivation of E′[e′]A e2. According to Observation 5.4.1, without
loss of generality, there exists some σ< <: σ, with rule RTA-App concluding
that E′[e′]A e2 has that type, followed by a subsumption. This can be the case
only if Σ1; ∆; Γ1 .

M
A E′[e′]A : σ1 (

q
σ< and Σ2; ∆; Γ2 .

M
A e2 : σ1 for some q, σ1,

Σ1 � Σ2 = Σ, and Γ1 � Γ2 = Γ.

39

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

By induction, there exist some σ′, Σ11 � Σ12 = Σ1, and Γ11 � Γ12 = Γ1 such that
Σ11; ∆; Γ11 .

M
A e′ : σ′ and Σ12; ∆; Γ12 .

M
A E′[e′′]A : σ1 (

q
σ< for suitable e′′.

By RTA-App and RTA-Subsume, Σ12 � Σ2; ∆; Γ12 � Γ2 .
M
A E′[e′′]A e2 : σ.

For subsequent cases, we consider subsumption implicitly.

Case v E′.

This only types if Σ1; ∆; Γ1 .
M
A v : σ1 (

q
σ< and Σ2; ∆; Γ2 .

M
A E′[e′]A : σ1 where

Σ1 � Σ2 = Σ and Γ1 � Γ2 = Γ.
By induction, there exist some σ′, Σ21 � Σ22 = Σ2, and Γ21 � Γ22 = Γ2 such that
Σ21; ∆; Γ21 .

M
A e′ : σ′ and Σ22; ∆; Γ22 .

M
A E′[e′′]A : σ1 for suitable e′′.

By RTA-App, Σ1 � Σ22; ∆; Γ1 � Γ22 .
M
A v E′[e′′]A : σ<.

Case if0E′ e2 e3.

This only types if Σ1; ∆; Γ1 .
M
A E′[e′]A : int, Σ2; ∆; Γ2 .

M
A e2 : σ<, and Σ2; ∆; Γ2 .

M
A

e3 : σ< where Σ1 � Σ2 = Σ and Γ1 � Γ2 = Γ.
By induction, there exist some σ′, Σ11 � Σ12 = Σ1, and Γ11 � Γ12 = Γ1 such that
Σ11; ∆; Γ11 .

M
A e′ : σ′ and Σ12; ∆; Γ12 .

M
A E′[e′′]A : int for suitable e′′.

By RTA-If0, Σ12 � Σ2; ∆; Γ12 � Γ2 .
M
A if0E′[e′′]A e2 e3 : σ<.

Case 〈E, e2〉.
This only types if Σ1; ∆; Γ1 .

M
A E′[e′]A : σ1 and Σ2; ∆; Γ2 .

M
A e2 : σ2 for some σ1,

σ2, Σ1, Σ2, Γ1, and Γ2 such that σ< = σ1 ⊗ σ2, Σ1 � Σ2 = Σ and Γ1 � Γ2 = Γ.
By induction, there exist some σ′, Σ11 � Σ12 = Σ1, and Γ11 � Γ12 = Γ1 such that
Σ11; ∆; Γ11 .

M
A e′ : σ′ and Σ12; ∆; Γ12 .

M
A E′[e′′]A : σ1 for suitable e′′.

By RTA-Pair, Σ12 � Σ2; ∆; Γ12 � Γ2 .
M
A 〈E′[e′′]A , e2〉 : σ<.

Case 〈v,E′〉.
This only types if Σ1; ∆; Γ1 .

M
A v : σ1 and Σ2; ∆; Γ2 .

M
A E′[e′]A : σ2 for some σ1,

σ2, Σ1, Σ2, Γ1, and Γ2 such that σ< = σ1 ⊗ σ2, Σ1 � Σ2 = Σ and Γ1 � Γ2 = Γ.
By induction, there exist some σ′, Σ21 � Σ22 = Σ2, and Γ21 � Γ22 = Γ2 such that
Σ21; ∆; Γ21 .

M
A e′ : σ′ and Σ22; ∆; Γ22 .

M
A E′[e′′]A : σ2 for suitable e′′.

By RTA-Pair, Σ1 � Σ22; ∆; Γ1 � Γ22 .
M
A 〈v,E′[e′′]A 〉 : σ<.

Case let 〈y1, y2〉 = E′ in e2.

This only types if Σ1; ∆; Γ1 .
M
A E′[e′]A : σ1 ⊗ σ2 and Σ2; ∆; Γ2, y1 : σ1, y2 : σ2 .

M
A

e2 : σ< for some σ1, σ2, Σ1, Σ2, Γ1, and Γ2 such that Σ1�Σ2 = Σ and Γ1�Γ2 = Γ.
By induction, there exist some σ′, Σ11 � Σ12 = Σ1, and Γ11 � Γ12 = Γ1 such that
Σ11; ∆; Γ11 .

M
A e′ : σ′ and Σ12; ∆; Γ12 .

M
A E′[e′′]A : σ1 ⊗ σ2 for suitable e′′.

By RTA-Let, Σ11 � Σ2; ∆; Γ11 � Γ2 .
M
A let 〈y1, y2〉 = E′[e′′]A in e2 : σ<.

Case σ<
f ACg(E′).

This only types if Σ; ·; · .MC E′[e′]A : (σ<)C .
By part (iv) of the induction hypothesis, there exist some σ′, Σ1, and Σ2 such

40

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

that Σ1; ·; · .MA e′ : σ′ and Σ2; ·; · .MC E′[e′′]A : (σ<)C for suitable e′′.
By RTA-Boundary, Σ2; ∆; Γ2 .

M
A

σ<
f ACg(E′[e′′]A) : σ<.

(iv) The proof of the fourth part follows the proof of the third, again mutatis mutandis,
where again the hole case is vacuous and the AC boundary case appeals to part (i).

Lemma 5.4.3 (Terms in holes are replaceable).

(i) If Σ1; ·; · .MC E[e′′]C : τ and ·; ·; · .MC e′′ : τ ′ and Σ2; ·; · .MC e′ : τ ′ where Σ1 � Σ2 = Σ,
then Σ; ·; · .MC E[e′]C : τ .

(ii) If Σ1; ·; · .MC E[e′′]A : τ and ·; ·; · .MA e′′ : σ′ and Σ2; ·; · .MA e′ : σ′ where Σ1 � Σ2 = Σ,
then Σ; ·; · .MC E[e′]A : τ .

(iii) If Σ1; ·; · .MA E[e′′]A : σ and ·; ·; · .MA e′′ : σ′ and Σ2; ·; · .MA e′ : σ′ where Σ1 � Σ2 = Σ,
then Σ; ·; · .MA E[e′]A : σ.

(iv) If Σ1; ·; · .MA E[e′′]C : σ and ·; ·; · .MC e′′ : τ ′ and Σ2; ·; · .MC e′ : τ ′ where Σ1 � Σ2 = Σ,
then Σ; ·; · .MA E[e′]C : σ.

Proof. We take the statement of the theorem as an induction hypothesis in four parts and
proceed by mutual induction on the structures of E and E.

(i) Consider first E:

Case []C .

Then E[e′′]C = e′′, so we know that τ ′ = τ .
Then Σ; ∆; Γ .MC e′ : τ by weakening.

Case E′[τa].

This can be the case only if Σ1; ·; · .MC E′[e′′]C : ∀α. τb where τ = τb[τa/α].
Then by induction, Σ; ·; · .MC E′[e′]C : ∀α. τb.
By RTC-TApp, Σ; ·; · .MC E′[e′]C [τa] : τ .

Case E′ e2.

This can be the case only if Σ11; ·; · .MC E′[e′′]C : τ1 → τ and Σ12; ·; · .MC e2 : τ1 for
some Σ11 � Σ12 = Σ1.
Then by induction, Σ11 � Σ2; ·; · .MC E′[e′]C : τ1 → τ .
By RTC-App, Σ; ·; · .MC E′[e′]C e2 : τ .

Case v E′.

This can be the case only if Σ11; ·; · .MC v : τ1 → τ and Σ12; ·; · .MC E′[e′′]C : τ1 for
some Σ11 � Σ12 = Σ1.
Then by induction, Σ11 � Σ2; ·; · .MC E′[e′]C : τ1.
By RTC-App, Σ1 � Σ22; ·; · .MC v E′[x]C : τ .

41

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

Case if0E′ e2 e3.

This can be the case only if Σ11; ·; · .MC E′[e′′]C : int, Σ12; ·; · .MC e2 : τ , and
Σ12; ·; · .MC e2 : τ for some Σ1 � Σ2 = Σ.
Then by induction, Σ11 � Σ2; ·; · .MC E′[e′]C : int.
By RTC-If0, Σ; ·; · .MC if0E′[e′]C e2 e3 : τ .

Case fCA
σ
g (E′).

This can be the case only if (σ)C = τ and if Σ1; ·; · .MA E′[e′′]C : σ.
Then by part (iv) of the induction hypothesis, Σ; ·; · .MA E′[e′]C : σ.
By RTC-Boundary, Σ; ·; · .MC fCA

σ
g (E′[e′]C) : τ .

This concludes the proof of first part.

(ii) The second part proceeds mutatis mutandis, with two notable changes:

• The E′ = []C case is vacuous.

• The CA boundary cases appeal to part (iii) of the induction hypothesis.

(iii) For the third part, we consider cases on E.

Case []A .

Then E[x]A = x, so we know that σ′ = σ.
Then Σ; · .MA e′ : σ by weakening.

Case E′[σa].

Consider the type derivation of E′[e′′]A [σa]. According to Observation 5.4.1, with-
out loss of generality, there exists some σ< <: σ, with rule RTA-TApp concluding
that E′[e′′]A [σa] has that type, followed by a subsumption. This can be the case
only if Σ1; ·; · .MA E′[e′′]A : ∀αq. σb where σ< = σb[σa/α] and |σa| v q.
Then by induction, Σ; ·; · .MA E′[e′]A : ∀αq. σb.
By RTA-TApp and RTA-Subsume, Σ; ·; · .MA E′[e′]A [σa] : σ.
For subsequent cases, we consider subsumption implicitly.

Case E e2.

This can be the case only if Σ11; ·; · .MA E′[e′′]A : σ1 (
q
σ< and Σ12; ·; · .MA e2 : σ1

for some q, σ1 and Σ11 � Σ12 = Σ1.
Then by induction, Σ11 � Σ2; ·; · .MA E′[e′]A : σ1 (

q
σ<.

By RTA-App, Σ; ·; · .MA E′[e′]A e2 : σ<.

Case v E′.

This can be the case only if Σ11; ·; · .MA v : σ1 (
q
σ< and Σ12; ·; · .MA E′[e′′]A : σ1

for some Σ11 � Σ12 = Σ1.
Then by induction, Σ12 � Σ2; ·; · .MA E′[e′]A : σ1.
By RTA-App, Σ; ·; · .MA v E′[e′]A : σ<.

42

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

Case if0E′ e2 e3.

This can be the case only if Σ11; ·; · .MA E′[e′′]A : int, Σ12; ·; · .MA e2 : σ<, and
Σ12; ·; · .MA e3 : σ< for some Σ11 � Σ12 = Σ1.
Then by induction, Σ11 � Σ2; ·; · .MA E′[e′]A : int.
By RTA-If0, Σ; ·; · .MA if0E′[e′]A e2 e3 : σ<.

Case 〈E, e2〉.
This can be the case only if Σ11; ·; · .MA E′[e′′]A : σ1 and Σ12; ·; · .MA e2 : σ2 for
some σ1, σ2 and Σ11 � Σ12 = Σ1 such that σ< = σ1 ⊗ σ2.
Then by induction, Σ11 � Σ2; ·; · .MA E′[e′]A : σ1.
By RTA-Pair, Σ; ·; · .MA 〈E′[e′]A , e2〉 : σ<.

Case 〈v,E′〉.
This can be the case only if Σ11; ·; · .MA v : σ1 and Σ12; ·; · .MA E′[e′′]A : σ2 for some
σ1, σ2 and Σ11 � Σ12 = Σ1 such that σ< = σ1 ⊗ σ2.
Then by induction, Σ12 � Σ2; ·; · .MA E′[e′]A : σ2.
By RTA-Pair, Σ; ·; · .MA 〈v,E′[e′]A 〉 : σ<.

Case let 〈y1, y2〉 = E′ in e2.

This can be the case only if Σ11; ·; · .MA E′[e′′]A : σ1 ⊗ σ2 and Σ12; ·; ·, y1:σ1, y2:σ2 .
M
A

e2 : σ< for some σ1, σ2 and Σ11 � Σ12 = Σ1.
Then by induction, Σ11 � Σ2; ·; · .MA E′[e′]A : σ1 ⊗ σ2.
By RTA-Let, Σ; ·; · .MA let 〈y1, y2〉 = E′[e′]A in e2 : σ<.

Case σ<
f ACg(E′).

This can be the case only if Σ1; ·; · .MC E′[e′′]A : (σ<)C .
Then by part (iv) of the induction hypothesis, Σ; ·; · .MC E′[e′]A : (σ<)C .
By RTA-Boundary, Σ; ·; · .MA

σ<
f ACg(E′[e′]A) : σ<.

(iv) The proof of the fourth part follows the proof of the third, again mutatis mutandis,
where again the hole case is vacuous and the AC boundary case appeals to part (i).

The next several lemmas concern substitution of types on types, types on value contexts,
types on expressions, and values on expressions.

Lemma 5.4.4 (Type substitution on types preserves well-formedness and qualifiers).

(i) If ∆, α `C τ and ∆ `C τ ′, then ∆ `C τ [τ ′/α].

(ii) If ∆, αq `C τ and ∆ `A σ′ then ∆ `C τ [σ′/αq]; if |σ′| v q then |(τ [σ′/αq])A | v |(τ)A |.

(iii) If ∆, αq `A σ and ∆ `A σ′ then ∆ `A σ[σ′/αq]; if |σ′| v q then |σ[σ′/αq]| v |σ|.

(iv) If ∆, α `A σ and ∆ `C τ ′ then ∆ `A σ[τ ′/α].

Proof. By mutual induction on the structure of τ and σ:

43

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

(i) By cases on τ :

Case int.
Then τ [τ ′/α] = τ = int, so ∆ `C int.

Case τ1 → τ2.

Then τ [τ ′/α] = τ1[τ ′/α]→ τ2[τ ′/α].
By inversion, ∆ `C τ1 and ∆ `C τ2.
By the induction hypothesis (twice), ∆ `C τ1[τ ′/α] and ∆ `C τ2[τ ′/α].
Thus, ∆ `C (τ1 → τ2)[τ ′/α].

Case ∀β. τ1.
By inversion, ∆, α, β `C τ1, and by well-formedness, α 6= β.
Then τ [τ ′/α] = ∀β.(τ1[τ ′/α]).
By the induction hypothesis and exchange, ∆, β `C τ1[τ ′/α].
Thus, ∆ `C (∀β. τ1)[τ ′/α].

Case β.

If α = β, then τ [τ ′/α] = τ ′. Thus, ∆ `C β[τ ′/α].
If α 6= β, then τ [τ ′/α] = τ . By inversion, β ∈ ∆. Thus, ∆ `C β[τ ′/α].

Case {σo}.
Then τ [τ ′/α] = (σo[τ ′/α])C .
By inversion, ∆, α `A σo.
By part (iv) of the induction hypothesis, ∆ `A σo[τ ′/α], and by Lemma 5.2.2,
∆ `C (σo[τ ′/α])C .

(ii) By cases on τ :

Case int.
Then τ [σ′/αq] = τ = int, so ∆ `C int, with |(τ [σ′/αq])A | = u = |(τ)A |.

Case τ1 → τ2.

Then τ [σ′/αq] = τ1[σ′/αq](u τ2[σ′/αq].
By inversion, ∆ `C τ1 and ∆ `C τ2.
By the induction hypothesis (twice), ∆ `C τ1[σ′/αq] and ∆ `C τ2[σ′/αq].
Thus, ∆ `C (τ1 → τ2)[σ′/αq], with |((τ1 → τ2)[σ′/αq])A | = u = |(τ1 → τ2)A |.

Case ∀β. τ1.
By inversion, ∆, α, β `C τ1, and by well-formedness, α 6= β.
Then τ [σ′/αq] = ∀β.(τ1[σ′/αq]).
By the induction hypothesis and exchange, ∆, β `C τ1[σ′/αq].
Thus, ∆ `C (∀β. τ1)[σ′/αq], with |(∀β. τ1[σ′/αq])A | = u = |(∀β. τ1)A |.

44

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

Case β.

Since αq 6= β, we know that τ [σ′/αq] = τ .
By inversion, β ∈ ∆.
Thus, ∆ `C β[σ′/αq], with |(β[σ′/αq])A | = u = |(β)A |.

Case {σo}.
Then τ [σ′/αq] = (σo[σ′/αq])C .
By inversion, ∆, α `A σo.
By part (iii) of the induction hypothesis, and because |σ′| v q, ∆ `A σo[σ′/αq],
so by Lemma 5.2.2, ∆ `C (σo[σ′/αq])C .
If |σ′| v q, then by the induction hypothesis, |σo[σ′/αq]| v |σo|.
By Lemma 5.2.1, we conclude that |((σo[σ′/αq])C)A | v |σo| = |({σo})A |.

(iii) By cases on σ:

Case int.

Then σ[σ′/αq] = σ = int, so ∆ `A int and |σ[σ′/αq]| = |int| = u.

Case σ1 (
q′
σ2.

Then σ[σ′/αq] = σ1[σ′/αq](q
′
σ2[σ′/αq].

By inversion, ∆ `A σ1 and ∆ `A σ2.
By the induction hypothesis (twice), ∆ `A σ1[σ′/αq] and ∆ `A σ2[σ′/αq].
Thus, ∆ `A (σ1 (

q′
σ2)[σ′/αq], which has qualifier q′ = |σ|.

Case ∀βq′
. σ1.

By inversion, ∆, αq, βq′ `A σ1, and by well-formedness, αq 6= βq′ .
Then σ[σ′/αq] = ∀βq′

. (σ1[σ′/αq]).
By the induction hypothesis and exchange, ∆, βq′ `A σ1[σ′/αq].
Thus, ∆ `A (∀βq′

. σ1)[σ′/αq].
Note that |σ[σ′/αq]| = |σ1[σ′/αq]| v |σ1| = |σ|.

Case βq′ .

If αq = βq′ , then σ[σ′/αq] = σ′ and q = q′. Thus, ∆ `A βq′
[σ′/αq], which has

qualifier |σ′| v q = q′ = |σ|.
If αq 6= βq′ , then σ[σ′/αq] = σ. By inversion, βq′ ∈ ∆. Thus, ∆ `A βq′

[σ′/αq],
which has qualifier q′ v |σ|.

Case {τo}.
Then σ[σ′/αq] = (τo[σ′/αq])A .
By inversion, ∆, αq `C τo.
By part (ii) of the induction hypothesis, ∆ `C τo[σ′/αq], and by Lemma 5.2.2,
∆ `A (τo[σ′/αq])A .

45

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

If |σ′| v q, then by the induction hypothesis, |(τo[σ′/αq])A | v |(τo)A | = |{τo}|.

Case σ1 ref.

Then σ[σ′/αq] = σ1[σ′/αq] ref.
By inversion, ∆, αq `A σ1.
By the induction hypothesis, ∆ `A σ1[σ′/αq], and thus ∆ `A σ1[σ′/αq] ref, with
|σ1[σ′/αq] ref| = a = |σ1 ref|.

Case σ1 ⊗ σ2.

Then σ[σ′/αq] = σ1[σ′/αq]⊗ σ2[σ′/αq].
By inversion, ∆, αq `A σ1 and ∆, αq `A σ2.
By the induction hypothesis, ∆ `A σ1[σ′/αq] and ∆ `A σ2[σ′/αq], and thus
∆ `A σ1[σ′/αq]⊗ σ2[σ′/αq].
If |σ′| v q, then by the induction hypothesis, |σ1[σ′/αq]| v |σ1| and |σ2[σ′/αq]| v
|σ2|; thus |σ1[σ′/αq]⊗ σ2[σ′/αq]| = |σ1[σ′/αq]|t|σ2[σ′/αq]| v |σ1|t|σ2| = |σ1 ⊗ σ2|.

(iv) Mutatis mutandem, with two notable changes:

Case βq′ .

The αq = βq′ case is vacuous.

Case {τo}.
By part (i) of the induction hypothesis.

Corollary 5.4.5 (Type substitution preserves value context qualifiers).
If |σ| v q then

∣∣Γ[σ/αq]
∣∣ v ∣∣Γ∣∣.

Proof. By structural induction on Γ with Lemma 5.4.4.

Lemma 5.4.6 (Type substitution on expressions preserves types).

For all Σ such that FTV(Σ) = ∅,

(i) if Σ; ∆, α; Γ .MC e : τ and · `C τa, where α /∈ FTV(Γ),
then Σ; ∆; Γ[τa/α] .MC e[τa/α] : τ [τa/α].

(ii) if Σ; ∆, αqa ; Γ .MA e : σ and · `A σa, where |σa| v qa and αqα /∈ FTV(Γ),
then Σ; ∆; Γ[σa/α

qa] .MA e[σa/α
qa] : σ[σa/α

qa].

Proof. Note first that FV(e) = FV(e[τa/α]) and FL(e) = FL(e[τa/α]), and likewise that
FV(e) = FV(e[σa/α

qa]) and FL(e) = FL(e[σa/α
qa]).

(i) By induction on the structure of e:

Case Λβ.v′.

By RTC-TLam, τ = ∀β. τ ′, so it must be the case that

46

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

A
Σ; ∆, α, β; Γ .MC v′ : τ ′

Σ; ∆, α; Γ .MC Λβ.v′ : ∀β. τ ′
,

where well-formedness ensures that α 6= β.
By exchange and the induction hypothesis, Σ; ∆, β; Γ[τa/α] .MC v′[τa/α] : τ ′[τa/α].
Then,

A, exchange, IH
Σ; ∆, β; Γ[τa/α] .MC v′[τa/α] : τ ′[τa/α]

Σ; ∆; Γ[τa/α] .MC Λβ. e′[τa/α] : ∀β. τ ′[τa/α]
.

Case λx:τx. e
′.

By RTC-Lam, τ = τx → τ ′, so it must be the case that

A
Σ; ∆, α; Γ,x:τx .

M
C e′ : τ ′

B∣∣Σ|FL(λx:τx.e′)

∣∣ = u

Σ; ∆, α; Γ .MC λx:τx. e
′ : τx → τ ′

.

By the induction hypothesis, Σ; ∆; Γ[τa/α],x:τx[τa/α] .MC e′[τa/α] : τ ′[τa/α].
Since α /∈ FTV(Γ), we know that Γ[τa/α] = Γ. Thus,

•
∣∣Σ|FL(e′[τa/α])

∣∣ t ∣∣Γ[τa/α]|FV(e′[τa/α])

∣∣ = u.

Note that because FTV(τa) = ∅, we know that α /∈ FTV((Γ,x:τx)[τa/α]).
Then,

A, exchange, IH
Σ; ∆; (Γ,x:τx)[τa/α] .MC e′[τa/α] : τ ′[τa/α] B,Γ[τa/α] = Γ

Σ; ∆; Γ[τa/α] .MC (λx:τx. e
′)[τa/α] : (τx → τ ′)[τa/α]

.

Case c.

By RTC-Con, it must be the case that

tyC (c) = τ

Σ; ∆, α; Γ .MC c : τ .

Since c[τa/α] = c and tyC (c)[τa/α] = tyC (c),

tyC (c) = τ

Σ; ∆; Γ[τa/α] .MC c[τa/α] : τ [τa/α] .

Case x.

By RTC-Var, it must be the case that

Σ; ∆, α; Γ1,x:τ ,Γ2 .
M
C x : τ .

47

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

Since x[τa/α] = x,

Σ; ∆; (Γ1,x:τ ,Γ2)[τa/α] .MC x[τa/α] : τ [τa/α] .

Case f .

By RTC-Mod, it must be the case that

module f : τ = v ∈M · `C τ

Σ; ∆, α; Γ .MC f : τ .

Thus τ [τa/α] = τ , and since f [τa/α] = f ,

module f : τ = v ∈M · `C τ

Σ; ∆; Γ[τa/α] .MC f [τa/α] : τ [τa/α] .

Case e′[τ1].

By RTC-TApp, it must be the case that

A
Σ; ∆, α; Γ .MC e′ : ∀β. τ2

B
∆, α `C τ1

Σ; ∆, α; Γ .MC e′[τ1] : τ2[τ1/β]
,

where τ = τ2[τ1/β].
By Barendregt’s convention, we may assume that α 6= β, and thus (∀β. τ2)[τa/α] =
∀β. (τ2[τa/α]). Then,

A, induction hypothesis
Σ; ∆; Γ[τa/α] .MC e′[τa/α] : (∀β. τ2)[τa/α]

B,Lemma 5.4.4
∆ `C τ1[τa/α]

Σ; ∆; Γ[τa/α] .MC (e′[τa/α])[τ1[τa/α]] : (τ2[τa/α])[τ1[τa/α]/β])
.

Case e1 e2.

By RTC-App, it must be the case that

A
Σ1; ∆, α; Γ1 .

M
C e1 : τ1

B
Σ2; ∆, α; Γ2 .

M
C e2 : τ2

Σ1 � Σ2; ∆, α; Γ1 � Γ2 .
M
C e1 e2 : τ

.

Then,

A, induction hypothesis
Σ1; ∆; Γ1[τa/α] .MC e1[τa/α] : τ1[τa/α]

B, induction hypothesis
Σ2; ∆; Γ2[τa/α] .MC e2[τa/α] : τ2[τa/α]

Σ1 � Σ2; ∆; (Γ1 � Γ2)[τa/α] .MC (e1 e2)[τa/α] : τ [τa/α]
.

Case if0 e1 e2 e3.

Likewise.

48

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

Case gf .

By RTC-ModA, it must be the case that

module g : σ = v ∈M · `A σ

Σ; ∆, α; Γ .MC g : (σ)C
,

where τ = (σ)A .
Thus τ [τa/α] = τ , and since g[τa/α] = g,

module g : σ = v ∈M · `A σ

Σ; ∆; Γ[τa/α] .MC g[τa/α] : (σ)C [τa/α] .

Case fCA
σ
g (e′).

By RTC-Boundary, it must be the case that

A
Σ; ·; Γ .MA e′ : σ

Σ; ∆, α; Γ .MC CA
f g

σ(e′) : (σ)C
,

where (σ)C = τ .
Since α /∈ FTV(Γ), we know from A and inspection of the type rules that
e′[τa/α] = e′ and σ[τa/α] = σ. Then,

A
Σ; ·; Γ[τa/α] .MA e′[τa/α] : σ[τa/α]

Σ; ∆; Γ[τa/α] .MC CA
f g

σ[τa/α](e′[τa/α]) : (σ)C [τa/α]
.

Case fCA[`]σg (v′).

There are three ways to type such an expression:

• If RTC-Blessed, it must be the case that

A
Σ1,Σ2; ·; · .MA v′ : σ

B
|σ| = a

[Σ1]
`, `: B, [Σ2]

`; ∆, α; Γ .MC CA
f g

[`]σ(v′) : (σ)C

where τ = (σ)C and Σ = [Σ1]
`, `: B, [Σ2]

`.
Since α /∈ FTV(·), we know from A and inspection of the type rules that
v′[τa/α] = v′ σ[τa/α] = σ. Then,

A
Σ1,Σ2; ·; ·[τa/α] .MA v′[τa/α] : σ[τa/α]

B
|σ[τa/α]| = a

[Σ1]
`, `: B, [Σ2]

`; ∆; Γ[τa/α] .MC CA
f g

[`]σ[τa/α](v′[τa/α]) : (σ)C [τa/α] .

• If RTC-Defunct, it must be the case that

49

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

A
|σ| = a

[Σ1]
`, `: D, [Σ2]

`; ∆, α; Γ .MC CA
f g

[`]σ(v′) : (σ)C

where τ = (σ)C and Σ = [Σ1]
`, `: D, [Σ2]

`.
Since α /∈ FTV(·), we know byA and inspection of the type rules σ[τa/α] = σ.
Then,

A
|σ[τa/α]| = a

[Σ1]
`, `: D, [Σ2]

`; ∆; Γ[τa/α] .MC CA
f g

[`]σ[τa/α](v′[τa/α]) : (σ)C [τa/α] .

• If RTC-Sealed, it must be the case that

A
Σ; ·; · .MA v′ : σ

B
|σ| = u

Σ; ∆, α; Γ .MC CA
f g

[`]σ(v′) : (σ)C

where τ = (σ)C .
Since α /∈ FTV(·), we know from A and inspection of the type rules that
v′[τa/α] = v′ σ[τa/α] = σ. Then,

A
Σ; ·; ·[τa/α] .MA v′[τa/α] : σ[τa/α]

B
|σ[τa/α]| = u

Σ; ∆; Γ[τa/α] .MC CA
f g

[`]σ[τa/α](v′[τa/α]) : (σ)C [τa/α] .

(ii) By induction on the structure of e:

Case Λβq′
. v′.

By RTA-TLam, σ = ∀βq. σ′, so it must be the case that

A
Σ; ∆, αqa , βq; Γ .MA v′ : σ′

Σ; ∆, αqa ; Γ .MA Λβq. v′ : ∀βq. σ′
,

where well-formedness ensures that αqa 6= βq.
By exchange and the induction hypothesis, Σ; ∆, βq; Γ[σa/α

qa] .MA v′[σa/α
qa] :

σ′[σa/α
qa].

Then,

A, exchange, IH
Σ; ∆, βq; Γ[σa/α

qa] .MA v′[σa/α
qa] : σ′[σa/α

qa]

Σ; ∆; Γ[σa/α
qa] .MA Λβq. v′[σa/α

qa] : ∀βq. σ′[σa/α
qa]

.

Case λx:σx. e
′.

50

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

By RTA-Lam, σ = σx (
q
σ′, so it must be the case that

A
Σ; ∆, αqa ; Γ, x:σx .

M
A e′ : σ′

B∣∣Σ|FL(λx:σx.e′)

∣∣ t ∣∣Γ|FV(λx:σx.e′)

∣∣ = q

Σ; ∆, αqa ; Γ .MA λx:σx. e
′ : σx (

q
σ′

.

By the i.h., Σ; ∆; Γ[σa/α
qa], x:σx[σa/α

qa] .MA e′[σa/α
qa] : σ′[σa/α

qa].
Since αqa /∈ FTV(Γ), we know that Γ[σa/α

qa] = Γ.
Thus,

∣∣Σ|FL(e′[σa/αqa])

∣∣ t ∣∣Γ[σa/α
qa]|FV(e′[σa/αqa])

∣∣ = q.
Note that because FTV(σa) = ∅, we know that αqa /∈ FTV((Γ, x:σx)[σa/α

qa]).
Then,

A, exchange, IH
Σ; ∆; (Γ, x:σx)[σa/α

qa] .MA e′[σa/α
qa] : σ′[σa/α

qa] B, Γ[σa/α
qa] = Γ

Σ; ∆; Γ[σa/α
qa] .MA (λx:σx. e

′)[σa/α
qa] : (σx (

q
σ′)[σa/α

qa]
,

Case c.

By RTA-Con, it must be the case that

tyA (c) = σ

Σ; ∆, αqa ; Γ .MA c : σ .

Since c[σa/α
qa] = c and tyA (c)[σa/α

qa] = tyA (c),

tyA (c) = σ

Σ; ∆; Γ[σa/α
qa] .MA c[σa/α

qa] : σ[σa/α
qa] .

Case x.

By RTA-Var, it must be the case that

Σ; ∆, αqa ; Γ1, x:σ, Γ2 .
M
A x : σ .

Since x[σa/α
qa] = x,

Σ; ∆; (Γ1, x:σ, Γ2)[σa/α
qa] .MA x[σa/α

qa] : σ[σa/α
qa] .

Case f.

By RTA-Mod, it must be the case that

module f : σ = v ∈M · `A σ

Σ; ∆, αqa ; Γ .MA f : σ .

Thus σ[σa/α
qa] = σ, and since f[σa/α

qa] = f,

module f : σ = v ∈M · `A σ

Σ; ∆; Γ[σa/α
qa] .MA f[σa/α

qa] : σ[σa/α
qa] .

51

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

Case e′[σ1].

By RTA-TApp, it must be the case that

A
Σ; ∆, αqa ; Γ .MA e′ : ∀βq. σ2

B
∆, αqa `A σ1

C
|σ1| v q′

Σ; ∆, αqa ; Γ .MA e′[σ1] : σ2[σ1/β
q]

,

where σ = σ2[σ1/β
q].

By Barendregt’s convention, we assume that αqa 6= βq; thus (∀βq. σ2)[σa/α
qa] =

∀βq. (σ2[σa/α
qa]). Then,

A, induction hypothesis
Σ; ∆; Γ[σa/α

qa] .MA e′[σa/α
qa] : (∀βq. σ2)[σa/α

qa]

B,Lemma 5.4.4
∆ `A σ1[σa/α

qa] D
Σ; ∆; Γ[σa/α

qa] .MA (e′[σa/α
qa])[σ1[σa/α

qa]] : (σ2[σa/α
qa])[σ1[σa/α

qa]/βq])

where

D =

|σa| v αqa ,Lemma 5.4.4
|σ1[σa/α

qa]| v |σ1|
C

|σ1| v q′

|σ1[σa/α
qa]| v q′

.

Case e1 e2.

By RTA-App, it must be the case that

A
Σ1; ∆, αqa ; Γ1 .

M
A e1 : σ1

B
Σ2; ∆, αqa ; Γ2 .

M
A e2 : σ2

Σ1 � Σ2; ∆, αqa ; Γ1 � Γ2 .
M
A e1 e2 : σ

.

Then,

A, induction hypothesis
Σ1; ∆; Γ1[σa/α

qa] .MA e1[σa/α
qa] : σ1[σa/α

qa]

B, induction hypothesis
Σ2; ∆; Γ2[σa/α

qa] .MA e2[σa/α
qa] : σ2[σa/α

qa]

Σ1 � Σ2; ∆; (Γ1 � Γ2)[σa/α
qa] .MA (e1 e2)[σa/α

qa] : σ[σa/α
qa]

.

Case if0 e1 e2 e3.

Likewise.

Case 〈e1, e2〉.
Likewise.

Case let 〈x, y〉 = e1 in e2.

By RTA-Let, it must be the case that

A
Σ1; ∆, αqa ; Γ1 .

M
A e1 : σx ⊗ σy

B
Σ2; ∆, αqa ; Γ2, x:σx, y:σy .

M
A e2 : σ

Σ1 � Σ2; ∆, αqa ; Γ1 � Γ2 .
M
A let 〈x, y〉 = e1 in e2 : σ

.

52

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

Then,

A, induction hypothesis
(Σ1; ∆; Γ1 .

M
A e1 : σx ⊗ σy)[σa/α

qa]

B, induction hypothesis
(Σ2; ∆; Γ2, x:σx, y:σy .

M
A e2 : σ)[σa/α

qa]

(Σ1 � Σ2; ∆; Γ1 � Γ2 .
M
A let 〈x, y〉 = e1 in e2 : σ)[σa/α

qa]
.

Case gf .

There are two rules for typing a λC module reference in an λA expression:

• If RTA-ModC, it must be the case that

module g : τ = v ∈M · `C τ

Σ; ∆, αqa ; Γ .MA g : (τ)A
,

where σ = (τ)C .
Thus σ[σa/α

qa] = σ, and since g[σa/α
qa] = g,

module g : τ = v ∈M · `C τ

Σ; ∆; Γ[σa/α
qa] .MA g[σa/α

qa] : (τ)A [σa/α
qa] .

• If RTA-ModI, it must be the case that

interface g :> σ = f ∈M · `A σ

Σ; ∆, αqa ; Γ .MA g : σ
.

Thus σ[σa/α
qa] = σ, and since g[σa/α

qa] = g,

interface g :> σ = f ∈M · `A σ

Σ; ∆; Γ[σa/α
qa] .MA g[σa/α

qa] : σ[σa/α
qa] .

Case `.

By RTA-Loc, it must be the case that

Σ1, `:σ`,Σ1; ∆, αqa , Γ .MA ` : σ` ref
,

where σ = σ` ref.
Thus `[σa/α

qa] = `, and since FTV(Σ) = ∅, we know that σ`[σa/α
qa] = σ`. Then,

Σ1, `:σ`,Σ1; ∆, Γ[σa/α
qa] .MA `[σa/α

qa] : σ`[σa/α
qa] ref

.

Case σ
f ACg(e′).

By RTA-Boundary, it must be the case that

A
Σ; ·; Γ .MC e′ : (σ)C

Σ; ∆, αqa ; Γ .MA
σ AC

f g
(e′) : σ

.

Since αqa /∈ FTV(Γ), we know from A and inspection of the type rules that
e′[σa/α

qa] = e′ and σ[σa/α
qa] = σ. Then,

53

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

A
Σ; ·; Γ[σa/α

qa] .MC e′[σa/α
qa] : (σ[σa/α

qa])C

Σ; ∆; Γ[σa/α
qa] .MA

σ[σa/αqa] AC
f g

(e′[σa/α
qa]) : σ[σa/α

qa]
.

Case σ
f AC[]g(v′).

Likewise, by rule RTA-Sealed, but with a second premiss that (σ)A = τw.

Definition 5.4.7 (Promotion-Worthy). We say that a term e is worthy with respect to
Σ if

∣∣Σ|FL(e)

∣∣ = u. Likewise, a term e is worthy with respect to Γ if
∣∣Γ|FV(e)

∣∣ = u and is
worthy with respect to Σ if

∣∣Σ|FL(e)

∣∣ = u.
If e is worthy with respect to Σ and Γ, then we write Σ; Γ .A e worthy; otherwise, we

write Σ; Γ 6 .A e worthy. Likewise for e.

Worthiness captures our notion of terms that can be “promoted” to allow for unlimited
use. In particular, λ closures in subcalculus λA are given an unlimited (u) type if they are
worthy, and an affine (a) type if they are not. Closures in subcalculus λC are required to be
worthy, since they should not close over affine things.

Note that we impose no such requirement on Λ closures, as they have the same qualifier
as their body, which regulates their usage accordingly.

Lemma 5.4.8 (No hidden locations). The type of a value tells us information about whether
and where locations might appear in that value:

(i) If Σ; ∆; · .MC v : τ then
∣∣Σ|FL(v)

∣∣ = u; that is, v is worthy.

(ii) If Σ; ∆; · .MA v : σ then
∣∣Σ|FL(v)

∣∣ v |σ|; that is, if σ is unlimited then v must be worthy.

Proof. By mutual induction on v and v.

(i) By cases on v:

Case Λα.v′.

By inversion of RTC-TLam and the induction hypothesis at v′, since FL(v′) =
FL(Λα.v′).

Case λx:τ ′. e.

By inversion of RTC-Lam.

Case c.

Since FL(c) = ∅, Σ|∅ = ·, and
∣∣·∣∣ = u.

Case (z−).

As for c.

Case fCA[`]σ
′

g (v′).

There three possible rules for typing this term: RTC-Blessed, RTC-Defunct,
and RTC-Sealed.

54

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

The first two require that Σ = [Σ1]
`, `:τ , [Σ2]

` for particular Σ1, Σ2, and τ . By
inspection of the definition of [Σi]

`, it should be clear that there are no σ types
in the range of Σ. Thus,

∣∣Σ|FL(v)

∣∣ = u.
For RTC-Sealed, it must be the case that |σ′| = u and that Σ; ∆; · .MA v′ : σ′.
By the induction hypothesis (ii),

∣∣Σ|FL(v′)

∣∣ v |σ′| = u. Since FL(fCA[`]σ
′

g (v′)) =

FL(v′) ∪ {`}, and since Σ(`) = τ ′, we see that
∣∣Σ|FL(v)

∣∣ = u.

(ii) By cases on v:

Case Λαq. v′.

By RTA-TLam, it must be the case that Σ; ∆; · .MA Λαq. v′ : ∀αq σ′. where
∀αq. σ′ = σ, and thus |σ| = |∀αq. σ′| = |σ′|. By inversion, it must be the case
that Σ; ∆, αq; · .MA v′ : σ′ By the induction hypothesis,

∣∣Σ|FL(v′)

∣∣ v |σ′|, and since
FL(v′) = FL(v), we have that

∣∣Σ|FL(v)

∣∣ v |σ|.
Case λx:σ′. e.

Let q = |σ|. Then by inversion of RTA-Lam, q = q1 t q2 where
∣∣·|FV(v)

∣∣ = q1 and∣∣Σ|FL(v)

∣∣ = q2. Since q1 = u = ⊥, we know that q2 = q = |σ|.

Case c.

Since FL(c) = ∅, we know that
∣∣ΣFL(c)

∣∣ = u v q for all q.

Case 〈v1, v2〉.
This has a pair type of the form σ1 ⊗ σ2, and therefore∣∣Σ|FL(v)

∣∣ =
∣∣Σ|FL(v1)∪FL(v2)

∣∣ def. of FL(〈v1, v2〉)
=
∣∣Σ|FL(v1) ∪ Σ|FL(v2)

∣∣ set theory
=
∣∣Σ|FL(v1)

∣∣ t ∣∣Σ|FL(v2)

∣∣ monotonicity of
∣∣·∣∣

v |σ1| t |σ2| i.h. twice; monotonicity of t
= |σ| def. of |σ1 ⊗ σ2|.

Case (z−), new[σ1], swap[σ1], swap[σ1][σ2].

As for c.

Case `.

By inversion of RTA-Loc, this has type σ′ ref if and only if ` ∈ dom Σ and
Σ(`) = σ′. Then

|σ| = |σ′ ref|
= a

=
∣∣·, ` : σ′

∣∣
=
∣∣Σ|{`}∣∣

=
∣∣Σ|FL(`)

∣∣.
Case σ′

f AC[]g(v′).

55

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

By inversion of RTA-Sealed, we know that Σ; ·; · .MC v′ : τ for some type τ . Then
by part (i) of the induction hypothesis,

∣∣Σ|FL(v′)

∣∣ = u. Since FL(v) = FL(v′), we
have that

∣∣Σ|FL(v)

∣∣ = u v q for all q.

Lemma 5.4.9 (Substitution).

(i) If Σ1; ∆; Γ,x : τx .
M
C e : τ and Σ2; ·; · .MC v : τx where Σ1 � Σ2 = Σ, then Σ; ∆; Γ .MC

e[v/x] : τ . If e and v are worthy in their respective contexts, then e[v/x] is worthy as
well.

(ii) If Σ1; ∆; Γ, x : σx .
M
A e : σ and Σ2; ·; · .MA v : σx where Σ1 � Σ2 = Σ, then Σ; ∆; Γ .MA

e[v/x] : σ. If e and v are worthy in their respective contexts, then e[v/x] is worthy as
well.

Proof. By induction on the structure of the type derivation for e or e. We consider each
proof tree by the expression in its conclusion (where possible).

(i) By cases in e, considering multiple type rules where necessary.

Case Λα.v′.

By rule RTC-TLam, it must be the case that

• Σ1; ∆, α; Γ,x : τx .
M
C v′ : τ ′, where

• τ = ∀α. τ ′.

By the induction hypothesis,

• Σ; ∆, α; Γ .MC v′[v/x] : τ ′ and

• Σ; Γ .C v′[v/x] worthy.

By the Barendregt condition, we assume that (Λα.v′)[v/x] = Λα.(v′[v/x]).
By rule RTC-TLam,

• Σ; ∆; Γ .MC (Λα.v′)[v/x] : ∀α. τ ′.

Since Λα. (v′[v/x]) is a value, by Lemma 5.4.8, it is worthy.

Case λy:τy. e
′.

Either x = y or x 6= y:

Case x = y.

Then e[v/x] = e.
Since x /∈ FV((λy:τy e′)[v/x]), and by weakening,

• Σ1 � Σ2; ∆; Γ .MC e[v/x] : τ .

Furthermore, if Σ1; Γ . e worthy and since it types only if FL(e) ⊆ dom Σ1,

• Σ1 � Σ2; Γ . e worthy.

Several other base cases in which x is not free in e proceed accordingly.

56

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

Case x 6= y.

By rule RTC-Lam, it must be the case that

• Σ1; ∆; Γ,x:τx,y:τy .
M
C e′ : τ ′ where

• τ = τy → τ ′ and

• Σ1; Γ,x:τx . λy:τy. e
′ worthy.

By our exchange observation, we have that

• Σ1; ∆; Γ,y:τy,x:τx .
M
C e′ : τ ,

and applying induction,

• Σ1 � Σ2; ∆; Γ,y:τy .
M
C e′[v/x] : τ .

Since FL(e′) = FL(λy:τy. e
′), we know that e′ is worthy.

Furthermore, since v is worthy by Lemma 5.4.8, by induction, e′[v/x] is
worthy, and thus λy:τy. e

′[v/x], which has no more free locations, must be
worthy as well.
Thus, by RTC-Lam,

• Σ1 � Σ2; ∆; Γ .MC (λy:τy., e
′)[v/x] : τ .

Case c.

As before when x /∈ FV(e)

Case y.

Either x = y or x 6= y:

Case x = y.

Then τ = τx, by RTC-Var.
Since x[v/x] = v, we thus have that

• Σ2; ·; · .MC x[v/x] : τ .

By our weakening observation,

• Σ1 � Σ2; ∆; Γ .MC x[v/x] : τ .

Furthermore, if v is worthy, so is x[v/x].

Case x 6= y.

If x 6= y, then as before when x /∈ FV(e).

Case e′[τa].

By inverting RTC-TApp, we have that

• Σ1; ∆; Γ,x:τx .
M
C e′ : ∀α. τb where

• τ = τb[τa/α].

By the induction hypothesis,

57

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

• Σ; ∆; Γ .MC e′[v/x] : ∀α. τb as well.

Then, by RTC-TApp,

• Σ; ∆; Γ .MC e′[v/x][τa] : τb[τa/α].

By the Barendregt condition, α /∈ FTV(v), and therefore e′[v/x][τa] = e′[τa][v/x].
If e′[τa] is worthy, then e′ is worthy as well, since it has the same free locations.
By induction, then e′[v/x] is worthy, and thus e′[τa][v/x] is worthy as well, since
it has the same free locations as e′[v/x].

Case e1 e2.

By inverting RTC-App, we have that

• Σ11; ∆; Γ,x:τx .
M
C e1 : τ ′ → τ and

• Σ12; ∆; Γ,x:τx .
M
C e2 : τ ′ for some τ ′, where

• Σ11 � Σ12 = Σ1.

Let Σ21 = Σ2|u, that is, Σ2 restricted so that its image contains no σ types; by
Lemma 5.4.8, v is worthy, thus Σ21 is sufficient for typing v.
Furthermore, by Lemma 5.2.4,

• Σ21 � Σ21 = Σ21 and

• Σ2 � Σ21 = Σ2.

By induction on both subterms e1 and e2,

• Σ11 � Σ21; ∆; Γ .MC e1[v/x] : τ ′ → τ and

• Σ12 � Σ21; ∆; Γ .MC e2[v/x] : τ ′.

Then by RTC-App,

• (Σ11 � Σ21)� (Σ12 � Σ21); Γ .MC e1[v/x] e2[v/x] : τ .

By associativity and commutativity of (�),

• Σ1 � Σ21; Γ .MC e1[v/x] e2[v/x] : τ ,

and by weakening and the definition of substitution,

• Σ1 � Σ2; ∆; Γ .MC (e1 e2)[v/x] : τ .

If e is worthy, then clearly e1 and e2 are. If e1 is worthy, then by induction,
e1[v/x] is worthy as well; likewise e2[v/x]. Thus, e[v/x] is worthy if e is.

Case if0 e1 e2 e3.

By inverting RTC-If0, we have that

• Σ11; ∆; Γ,x : τx .
M
C e1 : int,

• Σ12; ∆; Γ,x : τx .
M
C e2 : τ , and

• Σ12; ∆; Γ,x : τx .
M
C e3 : τ , where

58

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

• Σ11 � Σ12 = Σ1.

Let Σ21 = Σ2|u, and by Lemma 5.4.8, since v is worthy, Σ21 can type v.
Note that Σ21 + Σ21 = Σ21 and Σ2 + Σ21 = Σ2.
By induction on all three subterms ei,

• Σ11 � Σ21; Γ .MC e1[v/x] : int,

• Σ12 � Σ21; Γ .MC e2[v/x] : τ , and

• Σ12 � Σ21; Γ .MC e2[v/x] : τ .

Then by RTC-If0,

• (Σ11 � Σ21)� (Σ12 � Σ21); Γ .MC if0 e1[v/x] e2[v/x] e3[v/x] : τ ,

By associativity and commutativity of (�),

• Σ1 � Σ21; Γ1 � Γ2 .
M
C if0 e1[v/x] e2[v/x] e3[v/x] : τ ,

and by weakening and the definition of substitution,

• Σ1 � Σ2; ∆; Γ1 � Γ2 .
M
C (if0 e1 e2 e3)[v/x] : τ .

If e is worthy, then clearly e1, e2 and e3 are. Then by induction, all of e1[v/x],
e2[v/x], and e3[v/x] must be worthy as well, and thus e[v/x] is worthy.

Case f .

As before when x /∈ FV(e).

Case f.

As before when x /∈ FV(e)

Case fCA
σ
g (e′).

By inversion of RTC-Boundary, it must be the case that

• Σ1; ·; · .MA e′ : σ.

Thus e is closed, so as before when x /∈ FV(e).
If e is worthy then e′ is, as they have the same free locations. Then by induction,
e′[v/x] is worthy, and thus so is e[v/x].

Case fCA[`]σg (v′).

There are three rules that may be at the root of our type derivation:

Case RTC-Blessed.

By inversion, we know that there exists some Σ′1 such that

• Σ′1; ·; · .MA v′ : σ

Thus v′ is closed, and v′[v/x] = v′.
Therefore, this case is as before when x /∈ FV(e)

Case RTC-Defunct.

Then (σ)C = τ , and by inversion, we know that

59

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

• Σ1 = [Σ11]
`, `:D, [Σ12]

`,

• σ = σw, and

• |σ| = a.

This is sufficient to prove that

• Σ1; ∆; Γ∗ .
M
C fCA[`]σg (v∗) : τ

for any Γ∗ and v∗, including Γ and v′[v/x].

Case RTC-Sealed.

By inversion, we know that there exists some Σ′1 such that

• Σ′1; ·; · .MA v′ : σ.

Thus v′ is closed, and v′[v/x] = v′.
Therefore, this case is as before when x /∈ FV(e)

By Lemma 5.4.8, since e[v/x] is a value and has type τ , it is worthy.

(ii) The structural cases for e are insufficient due to rules with overlapping conclusions, so
in the case of subsumption, we identify the rule at the root of the derivation; when
unambiguous among the remaining cases, we identify the subject term at the root.

Case RTA-Subsume.

Then by inversion, we know that there exists some σ< such that

• Σ1; ∆; Γ, x : σx .
M
A e : σ< and

• σ< <: σ.

Then by induction,

• Σ; ∆; Γ .MA e[v/x] : σ<.

Reapplying RTA-Subsume yields our result.

Case Λαq. v′.

By inversion of rule RTA-TLam, we know that

• Σ1; ∆, αq; Γ, x : σx .
M
A v′ : σ′ where

• σ = ∀αq. σ′,

and by induction,

• Σ; ∆, αq; Γ .MA v′[v/x] : σ′.

Then reapplying RTA-TLam, we have that

• Σ; ∆; Γ .MA Λαq.v′[v/x] : σ.

Furthermore, if Λαq. v′ is worthy with respect to Σ1 then so is v′, since they
have the same free locations. By the induction hypothesis, v′[v/x] is worthy with
respect to Σ, and thus so is Λαq.v′[v/x].

60

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

Case λy:σy. e
′.

If x = y then as before when x /∈ FV(e).
Otherwise, x 6= y. By inversion of rule RTA-Lam, we know that

• Σ1; ∆; Γ, x:σx, y:σy .
M
A e′ : σr where

• σ = σy (
q
σr,

and by exchange and induction,

• Σ; ∆; Γ, y:σy .
M
A e′[v/x] : σr.

By cases on q:

Case u.

Then e′ is worthy with respect to Σ1 and Γ, x:σx, by the same inversion.
This means that either:

Case x /∈ FV(e′).

Then e′[v/x] = e′, and thus e′[v/x] is worthy;

Case |σx| = u.

Then by Lemma 5.4.8, v is worthy, and by induction e′[v/x] is worthy.
Thus, e′[v/x] is worthy.
Reapplying RTA-Lam, we get that

• Σ; ∆; Γ .MA λy:σy. (e′[v/x]) : σy (
u
σr.

By the Barendregt condition, λy:σy.(e′[v/x]) = (λy:σy. e
′)[v/x].

Finally, in this case, by Lemma 5.4.8, e[v/x] is worthy.

Case a.

Then by RTA-Lam, there exists some qualifier q′ such that

• Σ; ∆; Γ .MA (λy:σy. e
′)[v/x] : σy (

q′
σr.

Since q′ v a for any q′, by Derelict,

• σy (
q′
σr <: σy (

a
σr,

Hence, by RTA-Subsume,

• Σ; ∆; Γ .MA e[v/x] : σ.

Case c.

As before when x /∈ FV(e)

Case y.

If x 6= y, then as before when x /∈ FV(e)

If x = y, then σ = σx, by RTA-Var.
Since x[v/x] = v, we thus have that

61

5.4 Evaluation Contexts and Substitution 5 PROVING TYPE SOUNDNESS

• Σ2; ·; · .MA x[v/x] : σ.

By our weakening observation,

• Σ1 � Σ2; ∆; Γ .MA x[v/x] : σ.

If v is worthy then of course e[v/x] is as well.

Case e′[σa].

By inverting RTA-TApp, we have that

• Σ1; ∆; Γ, x : σx .
M
A e′ : ∀αq. σb where

• σ = σb[σa/α
q] and

• |σa| v αq.

By the induction hypothesis,

• Σ; ∆; Γ .MA e′[v/x] : ∀αq. σb.

Then, by RTA-TApp,

• Σ; ∆; Γ .MA e′[v/x][σa] : σb[σa/α
q].

By the Barendregt condition, αq /∈ FTV(v), and therefore e′[v/x][σa] = e′[σa][v/x].
If e′[σa] is worthy, then e′ is worthy as well, since it has the same free variables.
By induction, then e′[v/x] is worthy, and thus e′[σa][v/x] is worthy as well, since
it has the same free variables as e′[v/x].

Case e1 e2.

By inverting RTA-App, there exist some Σ11 and Σ12 such that

• Σ11; ∆; Γ1 .
M
A e1 : σ′(q σ and

• Σ12; ∆; Γ2 .
M
A e2 : σ′ for some σ′, where

• Σ11 � Σ12 = Σ1.

By the definition of (�), there are three ways to reach that conclusion:

Case
Γ′1 � Γ2 = Γ

Γ′1, x : σx � Γ2 = Γ, x : σx

.

In particular, x /∈ dom Γ2, so it must not be free in e2; thus e2[v/x] = e2.
We apply the induction hypothesis only to e1, yielding

• Σ11 � Σ2; ∆; Γ′1 .
M
A e1[v/x] : σ′(q σ.

Applying RTA-App, we have

• Σ1 � Σ2; ∆; Γ′1 � Γ2 .
M
A e1[v/x] e2[v/x] : σ.

Given that Γ′1 � Γ2 = Γ and by the definition of substitution, we have our
conclusion. (In this case, |σx| = a.)

Case
Γ1 � Γ′2 = Γ

Γ1 � Γ′2, x : σx = Γ, x : σx

.

62

5 PROVING TYPE SOUNDNESS 5.4 Evaluation Contexts and Substitution

By symmetry with the previous case, x /∈ FV(e1) and we apply induction only
to e2.

Case
Γ′1 � Γ′2 = Γ

Γ′1, x : σx � Γ′2, x : σx = Γ, x : σx

.

In this case, |σx| = u.
Thus, by Lemma 5.4.8, v is worthy, so if we let Σ21 = Σ2|u, then Σ21�Σ21 =
Σ21.
By induction on both e1 and e2, with v typing in Σ21, we have that

• Σ11 � Σ21; ∆; Γ′1 .
M
A e1[v/x] : σ′(q σ and

• Σ12 � Σ21; ∆; Γ′2 .
M
A e2[v/x] : σ′.

Then apply RTA-App and weakening, yielding

• Σ1 � Σ2; ∆; Γ′1 � Γ′2 .
M
A e1[v/x] e2[v/x] : σ.

If e and v are both worthy, then the ei are worthy too; by induction, both ei[v/x]
are worthy, and thus e[v/x] is.

Case if0 e1 e2 e3.

As in the RTA-App case above, we invert the RTA-If0 type rule and then con-
sider how the environments might be split. In particular, x may belong only
to the environment for e1, only to the environment for e2 and e3, or it may be
distributed into both. In any case, we apply induction to the cases where x is
free and recognize that substitution for x is identity on the other components, as
above.
Likewise, if e is worthy, then by induction on all three subexpressions, it follows
that e[v/x] is worthy.

Case f.

As before when x /∈ FV(e).

Case f .

As before when x /∈ FV(e)

Case `.

As before when x /∈ FV(e)

Case 〈e1, e2〉.
As in the RTA-App case above.

Case let 〈y, z〉 = e1 in e2.

As in the RTA-App case above.

Case σ
f ACg(e′).

By inverting RTA-Boundary, it must be the case that

• Σ1; ·; · .MC e′ : (σ)C .

63

5.5 Preservation 5 PROVING TYPE SOUNDNESS

Thus, e is closed, so as before when x /∈ FV(e).
If e is worthy then e′ is, as they have the same free locations. Then by induction,
e′[v/x] is worthy, and thus so is e[v/x].

Case σ
f AC[]g(v′).

As for σ
f ACg(e′).

5.5 Preservation
Observation 5.5.1 (Classification of types). Consider the various syntactic categories of
types:

τ τw τo

int
τ1 → τ2 •
∀α. τ •
α • •
{σ}

σ σw σo

int
σ1 (

q
σ2 •

∀αq. σ •
αq • •
σ ref • •
σ1 ⊗ σ2 • •
{τ}

Thus,

(i) For any type τ , if

• τ 6= int and

• there is no σ such that τ = {σ},

then τ is a wrappable type of the form τw.

(ii) For any type σ, if

• σ 6= int and

• there is no τ such that σ = {τ},

then σ is a wrappable type of the form σw.

Changing the type of a location from B to D in a store context Σ does not break the
typing of an expression using Σ. Furthermore, changing the value in a location in the store
from blssd to dfnct does not change the typing of the store, except that it updates the
type associated with that location in the store context. To be precise:

Lemma 5.5.2 (Going defunct).

(i) If Σ1, `:B; ∆; · .MC e : τ then Σ1, `:D; ∆; · .MC e : τ .

(ii) If Σ1, `:B; ∆; · .MA e : σ then Σ1, `:D; ∆; · .MA e : σ.

(iii) If Σ1, [Σ2]
`, `: D; ∆; · .MC e : τ then Σ1,Σ2|u, `: D; ∆; · .MC e : τ

64

5 PROVING TYPE SOUNDNESS 5.5 Preservation

(iv) If Σ1, [Σ2]
`, `: D; ∆; · .MA e : σ then Σ1,Σ2|u, `: D; ∆; · .MA e : σ

(v) If Σ1, [Σ
′]`, `: B .M s] {` 7→ blssd} : Σ2, [Σ

′]`, `: B,
then Σ1,Σ

′|u, `: D .M s] {` 7→ dfnct} : Σ2,Σ
′, `: D.

Proof.

(i) Observe that there are only two rules that mention store context bindings of the form
`:τ ′:

RTC-Blessed Then the subterm types in the new store context by RTC-Defunct.

RTC-Defunct Vacuous, as it requires that `: D, which contradicts the assumption.

Thus, we can construct a new derivation.

(ii) Likewise.

(iii) By induction on the length of Σ2. The only rule that makes use of a protected binding
like `′:[σ]` is RTC-Blessed. But since `: D, that rule never applies. Thus, such a
binding for `′ is irrelevant to the typing. The remaining bindings are present in Σ2|u.

(iv) Likewise.

(v) Inverting S-CLoc,

A
Σ1, [Σ

′]`, `: B .M s : Σ2, [Σ
′]` Σ1|u, [Σ′]`, `: B; ·; · .MC blssd : B

Σ1, [Σ
′]`, `: B .M s] {` 7→ blssd} : Σ2, [Σ

′]`, `: B

It suffices to prove B, which allows us to construct a derivation for the desired result:

B
Σ1,Σ

′|u, `: D .M s : Σ2,Σ
′ Σ1|u,Σ′|u, `: D; ·; · .MC dfnct : D

Σ1,Σ
′|u, `: D .M s] {` 7→ dfnct}) : Σ2,Σ

′, `: D

We proceed to prove B by induction on the structure of Σ′;

Case ·.
Then A gives us that Σ1, `: B .M s : Σ1 � Σ2.

Case Σ′′, `′:τ .

From A and inversion of rule S-CLoc,

D
Σ11, [Σ

′′]`, `′:τ , `: B .M s′ : Σ2, [Σ
′′]`

C
Σ12, [Σ

′′]`, `′:τ , `: B; ·; · .MC v : τ

(Σ11 � Σ12), [Σ
′′]`, `′:τ , `: B .M s′] {`′ 7→ v} : Σ2, [Σ

′′]`, `′:τ

for some Σ11 � Σ12 = Σ1. Then by S-CLoc,

65

5.5 Preservation 5 PROVING TYPE SOUNDNESS

D, IH at Σ′′

Σ11,Σ
′′|u, `′:τ , `: D .M s′ : Σ2,Σ

′′
C, parts (i) and (iii)

Σ12,Σ
′′|u, `′:τ , `: D; ·; · .MC v : τ

(Σ11 � Σ12),Σ
′′|u, `′:τ , `: D .M s′] {`′ 7→ v} : Σ2,Σ

′′, `′:τ
.

Case Σ′′, `′:[σ]`
′′ .

From A and inversion of rule S-ALocProt,

D
Σ11, [Σ

′′]`, `′:[σ]`
′′
, `: B .M s′ : Σ2, [Σ

′′]`
C

Σ12, [Σ
′′]`, `′:[σ]`

′′
, `: B; ·; · .MA v : σ

(Σ11 � Σ12), [Σ
′′]`, `′:[σ]`

′′
, `: B .M s′] {`′ 7→ v} : Σ2, [Σ

′′]`, `′:[σ]`
′′

for some Σ11 � Σ12 = Σ1. Then by S-ALocProt,

D, IH at Σ′′

Σ11,Σ
′′|u, `′:[σ]`

′′
, `: D .M s′ : Σ2,Σ

′′

C, parts (ii) and (iv)
Σ12,Σ

′′|u, `′:[σ]`
′′
, `: D; ·; · .MA v : σ

(Σ11 � Σ12),Σ
′′|u, `′:[σ]`

′′
, `: D .M s′] {`′ 7→ v} : Σ2,Σ

′′, `′:[σ]`
′′ .

Case Σ′′, `′:σ.

From A and inversion of rule S-ALoc,

D
Σ11, [Σ

′′]`, `′:[σ]`, `: B .M s′ : Σ2, [Σ
′′]`

C
Σ12, [Σ

′′]`, `′:[σ]`, `: B; ·; · .MA v : σ

(Σ11 � Σ12), [Σ
′′]`, `′:[σ]`, `: B .M s′] {`′ 7→ v} : Σ2, [Σ

′′]`, `′:[σ]`

for some Σ11 � Σ12 = Σ1. Then by S-ALoc,

D, IH at Σ′′

Σ11,Σ
′′|u, `: D .M s′ : Σ2,Σ

′′
C, parts (ii) and (iv)

Σ12,Σ
′′|u, `: D; ·; · .MA v : σ

(Σ11 � Σ12),Σ
′′|u, `: D .M s′] {`′ 7→ v} : (Σ1 � Σ2),Σ

′′, `′:σ
.

Theorem 5.5.3 (Preservation). If .M C : τ and C 7−→M C ′ then .M C ′ : τ .

Proof. We proceed by cases on the reduction relation (7−→M):

Case (s,E[e]C) 7−→M (s′,E[e′]C) if (s, e) 7−→M (s′, e′).

By inversion on Conf, we know that

(i) `M m okay for every module m in M ,

(ii) Σ1 .
M s : Σ1 � Σ2, and

(iii) Σ2; ·; · .MC E[e]C : τ .

By Lemma 5.4.2, there exist some τ ′ and Σ21 � Σ22 = Σ2 such that

• Σ21; ·; · .MC e : τ ′, and

• Σ22; ·; · .MC E[e′′]C : τ for all e′′ such that ·; ·; · .MC e′′ : τ ′.

66

5 PROVING TYPE SOUNDNESS 5.5 Preservation

Without loss of generality, we assume that (s, e) 7−→M (s′, e′) by some rule other than
C-Cxt or C-CxtA: If the former, then e = E′[e1]C and e′ = E′[e′1]C , so we consider
the context E[E′]C with e1 and e′1 in the hole instead. If the latter, then e = E′[e1]A
and e′ = E′[e′1]A , so we consider the context E[E′]C with e1 and e′1 in the hole as an
instance of C-Cxt instead.
In cases where s = s′, it is sufficient to show that Σ21; ·; · .MC e′ : τ ′. By Lemma 5.4.3,
we have that Σ2; ·; · .MC E[e′]C : τ ′, and by rule Conf, we have the desired result.
In cases where s 6= s′, we will need to rebuild the configuration typing using the new
store.
Now, by cases on (s, e) 7−→M (s′, e′):

Case (s, c v) 7−→M δC (s, c,v).

Metafunction δC is defined in only two cases:

Case δC (s,−, dze) = (s, (z−)).

Since tyC (−) = int→ int→ int and dze has type int, we know that τ ′ =
int→ int, which is also the type of (z−).

Case δC (s, (z1−), dz2e) = (s, dz1 − z2e).
Since tyC ((z1−)) = int→ int and dz2e has type int, we know that τ ′ = int,
which is also the type of dz1 − z2e.

Since s′ = s in both cases, it is sufficient to show that τ ′ is preserved.

Case (s, (Λα.v)[τa]) 7−→M (s,v[τa/α]).

By inversion of RTC-TApp, we know that

• Σ21; ·; · .MC Λα.v : ∀α. τb and

• · `C τa, where

• τ ′ = τb[τa/α].

Then, by inversion of RTC-TLam, we know that

• Σ21; ·, α; · .MC v : τb.

By (ii) and Lemma 5.2.7, FTV(Σ21) = ∅, and α /∈ FTV(·), so by Lemma 5.4.6,
we then conclude that Σ21; ·; · .MC v[τa/α] : τb[τa/α].

Case (s, (λx:τx. e) v) 7−→M (s, e[v/x]).

By inversion of RTC-App, we know that there exist some Σ211 and Σ212 such that

• Σ211; ·; · .MC λx:τx. e : τx → τ ′ and

• Σ212; ·; · .MC v : τx, where

• Σ211 � Σ212 = Σ21.

Then, by inversion of RTC-Lam on the former, we know that

• Σ211; ·; ·,x : τx .
M
C e : τ ′.

67

5.5 Preservation 5 PROVING TYPE SOUNDNESS

By Lemma 5.4.9, we have that Σ21; ·; · .MC e[v/x] : τ ′ as well.

Case (s, if0 d0e et ef) 7−→M (s, et).

By inversion on RTC-If0, we know that

• Σ212; ·; · .MC et : τ ′, where

• Σ211 � Σ212 = Σ21.

By weakening, Σ21; ·; · .MC et : τ ′.

Case (s, if0 dze et ef) 7−→M (s, ef) (z 6= 0).

By symmetry.

Case (s, f) 7−→M (s,v) (module f : τ ′′ = v ∈M).

By inversion of RTC-Mod, τ ′′ must equal τ ′.
Furthermore, premiss (i) from the inversion of Conf above tells us that `M
m okay for every module m in M , and for module f : τ ′ = v in particular. This
judgment can only be the conclusion of rule TM-C, from which inversion tells us
that

• ·; · `MC v : τ ′.

By Lemma 5.3.1,

• ·; ·; · .MC v : τ ′

By weakening, Σ21; ·; · .MC v : τ ′.

Case (s, fg) 7−→M (s, gCA
σ
f (f)) (module f : σ = v ∈M).

By inversion of RTC-ModA, τ ′ = (σ)C and · `A σ.
Then by RTA-Mod and RTC-Boundary,

module f : σ = v ∈M · `A σ

Σ21; ·; · .MA f : σ

Σ21; ·; · .MC CA
g f

σ(f) : (σ)C
.

Case (s, fCA
σ
g (v)) 7−→M coerceC (s, σ, v, f , g).

There are three possibilities:

• If v = dze then (s, e) 7−→M (s, dze).
The only rule to type e is RTC-Boundary, which gives it the type (int)C ,
which equals int.
The only rule to type e′ is RTC-Con, which gives tyC (dze) = int as well.

• If v =
(τo)A

g′ AC[]f ′(v′) then (s, e) 7−→M (s,v′).
We know there must be a derivation

68

5 PROVING TYPE SOUNDNESS 5.5 Preservation

A
Σ21; ·; · .MC v : ((τo)A)C

Σ21; ·; · .MA (τo)A

AC
g′ f ′

[](v) : (τo)A

Σ21; ·; · .MC CA
f g

σ

(
(τo)A

AC
g′ f ′

[](v)

)
: τo

,

where τ ′ = τo = ((τo)A)C . Then A suffices.

• Otherwise, (s, e) 7−→M (s] {` 7→ blssd}, fCA[`]σg (v)).
Furthermore, since the previous two cases covered int and {τo}, by Observa-
tion 5.5.1, we may let σw = σ.
On the left, RTC-Boundary gives us that

– Σ21; ·; · .MC fCA
σw

g (v) : (σw)C , where

– τ ′ = (σw)C .

By inversion, it must be the case that

– Σ21; ·; · .MA v : σw.

Now by cases on |σw|:

Case u.

By weakening and RTC-Sealed,

Σ21, `: B; ·; · .MA v : σw |σw| = u

Σ21, `: B; ·; · .MC CA
f g

[`]σ
w

(v) : (σw)C
.

Furthermore, the new store types by rule S-CLoc.

Case a.

By RTC-Blessed,

Σ21; ·; · .MA v : σw |σw| = a

[Σ21]
`, ` : B; ·; · .MC CA

f g
[`]σ

w

(v) : (σw)C
.

Consider decomposing [Σ21]
` as

– [Σ21]
` = Σ21|u, [Σ21|a]`.

Since Σ21 ∼u Σ22, we see that [Σ21|a]`,Σ22 is well-formed.
Furthermore, since {` 7→ blssd} is disjoint from s, we know that

– ` /∈ dom Σ2, so

– [Σ21|a]`,Σ22, `: B is well-formed. (Call this store context Σ′2.)

Recall that Σ22; ·; · .MC E[e′′]C : τ , which we can weaken to

– Σ′2; ·; · .MC E[e′′]C : τ .

69

5.5 Preservation 5 PROVING TYPE SOUNDNESS

Note that [Σ21]
`, `: B = Σ′2|u.

Thus,

– Σ′2 � ([Σ21]
`, `: B) = Σ′2.

and by Lemma 5.4.3,

– Σ′2; ·; · .MC E[e′]C : τ .

It is now sufficient to show that Σ′1 .
M s′ : Σ′1 � Σ′2 for some Σ′1.

Let Σ′1 = Σ1, `: B. Since ` is fresh, Σ′1 is well-formed.

Σ1 .
M s : Σ1 � Σ2 (ii)

⇒ Σ1 .
M s] {` 7→ blssd} : (Σ1 � Σ2), `: B rule S-CLoc

⇔ Σ1 .
M s′ : Σ′1 � (Σ2, `: B) defs. of s′ and Σ′1

⇔ Σ1 .
M s′ : Σ′1 � (Σ21|a,Σ22, `: B) algebra

⇔ Σ1 .
M s′ : Σ′1 � ([Σ21|a]`,Σ22, `: B) lem. 5.2.5

⇔ Σ1 .
M s′ : Σ′1 � Σ′2 def. Σ′2

⇒ Σ′1 .
M s′ : Σ′1 � Σ′2 weakening.

Case (s, fCA[`]∀α
q. σ

g (v)[τa]) 7−→M check(s, `, |∀αq. σ|, fCA
σ[(τa)A /αq]
g

(
v[(τa)A]

)
,blame f).

There are three possibilities:

Case |∀αq. σ| = u.

Then (s, e) 7−→M (s, fCA
σ[(τa)A /αq]
g

(
v[(τa)A]

)
).

We know there must be a derivation of the form
A

Σ21; ·; · .MA v : ∀αq. σ |∀αq. σ| = u

Σ21; ·; · .MC CA
f g

[`]∀α
q. σ(v) : ∀β. (σ[{β}/αq])C

B
· `C τa

Σ21; ·; · .MC CA
f g

[`]∀α
q. σ(v)[τa] : (σ[(τa)A /αq])C

,

where Σ211, `:τa,Σ212 = Σ21.
Then we can thus construct a derivation:

A
Σ21; ·; · .MA v : ∀αu. σ

B, def. (−)A

· `A (τa)A

Σ21; ·; · .MA v[(τa)A] : σ[(τa)A /αq]

Σ21; ·; · .MC CA
f g

σ[(τa)A /αq]
(
v[(τa)A]

)
: (σ[(τa)A /αq])C

.

Case s = s′′] {` 7→ blssd} and |∀αq. σ| = a.

Then (s, e) 7−→M (s′′] {` 7→ blssd}, fCA
σ[(τa)A /αq]
g

(
v[(τa)A]

)
).

We know there must be a derivation of the form

70

5 PROVING TYPE SOUNDNESS 5.5 Preservation

A
Σ′21; ·; · .MA v : ∀αq. σ |∀αq. σ| = a

[Σ′21]
`, `: B; ·; · .MC CA

f g
[`]∀α

q. σ(v) : ∀β. (σ[{β}/αq])C
B

· `C τa

[Σ′21]
`, `: B; ·; · .MC CA

f g
[`]∀α

q. σ(v)[τa] : (σ[(τa)A /αq])C
,

where [Σ′21]
`, `: B = Σ21.

We can thus construct a derivation:
A,weakening

Σ′21, `: D; ·; · .MA v : ∀αq. σ

B, def. (−)A

· `A (τa)A

Σ′21, `: D; ·; · .MA v[(τa)A] : σ[(τa)A /αq]

Σ′21, `: D; ·; · .MC CA
f g

σ[(τa)A /αq]
(
v[(τa)A]

)
: (σ[(τa)A /αq])C

.

Note that we can decompose Σ2 as

• Σ2 = Σ21,Σ22|a.

Since Σ21 = [Σ′21]
`, `: B, we can decompose Σ2 further as

• Σ2 = [Σ′21]
`, `: B,Σ22|a.

Since Σ2|a = Σ22|a and Σ2 ∼u Σ22, we know that

• Σ2 = Σ22.

Recall that Σ22; ·; · .MC E[e′′]C : τ . By Lemma 5.5.2, we can type E[e′′]C with
Σ′21|u, `: D,Σ22|a.
Let Σ′2 = (Σ′21, `: D)� (Σ′21|u, `: D,Σ22|a), which is clearly well-formed.
Then, by Lemma 5.4.3,

• Σ′2; ·; · .MC E[e′]C : τ .

It now suffices to show that Σ′1 .M s′′ : Σ′1 � Σ′2 for some Σ′1. Let Σ′1 =
Σ1|a,Σ′21|u, `: D. Since ` is fresh and dom Σ1|a is disjoint from dom Σ′21, we
know that Σ′1 is well-formed.

Σ1 .
M s′′] {` 7→ blssd} : Σ1 � Σ2 (ii)

⇔ Σ1|a, [Σ′21]
`, `: B .M s′′] {` 7→ blssd} : (Σ1|a � Σ2|a), [Σ′21]

`, `: B algebra
⇒ Σ1|a,Σ′21|u, `: D .M s′′] {` 7→ dfnct} : (Σ1|a � Σ2|a),Σ′21, `: D lem. 5.5.2
⇔ Σ′1 .

M s′′] {` 7→ dfnct} : Σ′1 � Σ′2 defs. Σ′i.

Otherwise.

We have that (s, e) 7−→M blame f . Then by Blame, blame f has whatever
type is needed.

Case (s, fCA[`]σ1(
q
σ2

g (v1) v2) 7−→M check(s, `, q, fCA
σ2
g

(
v1

σ1
g ACf (v2)

)
,blame f).

There are three possibilities:

71

5.5 Preservation 5 PROVING TYPE SOUNDNESS

Case q = u.

Then (s, e) 7−→M (s, fCA
σ2
g

(
v1

σ1
g ACf (v2)

)
).

We know there must be a derivation of the form
A

Σ211; ·; · .MA v1 : σ1 (
u
σ2 |σ1 (

u
σ2| = u

Σ211; ·; · .MC CA
f g

[`]σ1(
u
σ2(v1) : (σ1)C → (σ2)C

B
Σ212; ·; · .MC v2 : (σ1)C

Σ211 � Σ212; ·; · .MC CA
f g

[`]σ1(
u
σ2(v1) v2 : (σ2)C

,

where τ ′ = (σ2)C and Σ21 � Σ22 = Σ2.
Then,

A
Σ211; ·; · .MA v1 : σ1 (

u
σ2

B
Σ212; ·; · .MC v2 : (σ1)C

Σ212; ·; · .MA σ1 AC
g f

(v2) : σ1

Σ211 � Σ212; ·; · .MA v1
σ1 AC

g f
(v2) : σ2

Σ211 � Σ212; ·; · .MC CA
f g

σ2

(
v1

σ1 AC
g f

(v2)

)
: (σ2)C

.

Case s = s′′] {` 7→ blssd} and q = a.

Then (s, e) 7−→M (s′′] {` 7→ blssd}, fCA
σ2
g

(
v1

σ1
g ACf (v2)

)
).

We know there must be a derivation of the form
A

Σ′211; ·; · .MA v1 : σ1 (
a
σ2 |σ1 (

a
σ2| = a

[Σ′211]
`, `: B; ·; · .MC CA

f g
[`]σ1(

a
σ2(v1) : (σ1)C → (σ2)C

B
Σ21; ·; · .MC v2 : (σ1)C

Σ21; ·; · .MC CA
f g

[`]σ1(
a
σ2(v1) v2 : (σ2)C

,

where [Σ′211]
`, `: B = Σ21|u.

Note that we can decompose Σ21 as

• Σ21 = Σ21|a,Σ′211|u, [Σ′211|a]`, `: B.
By Lemma 5.5.2,

• Σ21|a,Σ′211|u, [Σ′211|a]`, `: D; ·; · .MC v2 : (σ1)C

Note that dom Σ21|a and dom Σ′211|a are disjoint.
Let Σ′212 = Σ21|a,Σ′211|u, `: D.
Note that Σ′212|a = Σ21|a, which means that dom Σ′211|a and dom Σ′212|a are
disjoint.
Then, by Lemma 5.5.2 again,

• Σ′212; ·; · .MC v2 : (σ2)C

72

5 PROVING TYPE SOUNDNESS 5.5 Preservation

Note also that because ` /∈ dom Σ′211, we know that Σ′211, `: D is well-formed,
and by weakening,

• Σ′211, `: D; ·; · .MA v1 : σ1 (
a
σ2

Finally, let Σ′21 = (Σ′211, `: D)�Σ′212, which is defined because dom Σ′211|a and
dom Σ′212|a are disjoint.
We can thus construct a derivation:

A,weakening
Σ′211, `: D; ·; · .MA v1 : σ1 (

a
σ2

B,Lemma 5.5.2
Σ′212; ·; · .MC v2 : (σ1)C

Σ′212; ·; · .MA σ1 AC
g f

(v2) : σ1

Σ′21; ·; · .MA v1
σ1 AC

g f
(v2) : σ2

Σ′21; ·; · .MC CA
f g

σ2

(
v1

σ1 AC
g f

(v2)

)
: (σ2)C

Since Σ21 ∼u Σ22, we can decompose Σ22 as

• Σ22 = Σ22|a,Σ21|u, and thus

• Σ22 = Σ22|a, [Σ′211]
`, `: B.

Note that the domains of Σ22|a and Σ′211 are disjoint.
Let Σ′22 = Σ22|a,Σ′211|u, `: D.
Recall that Σ22; ·; · .MC E[e′′]C : τ . By Lemma 5.5.2,

• Σ′22; ·; · .MC E[e′′]C : τ

We previously defined Σ′21 = (Σ′211, `: D)�Σ′212, which we can also decompose
as

• Σ′21 = (Σ′211|a � Σ21|a),Σ′211|u, `: D).

Let Σ′2 = Σ′21 � Σ′22, which is defined because the domains of Σ′211|a, Σ21|a,
and Σ22|a are all disjoint,
Then, by Lemma 5.4.3,

• Σ′2; ·; · .MC E[e′]C : τ .

It now suffices to show that Σ′1 .M s′′ : Σ′1 � Σ′2 for some Σ′1. Let Σ′1 =
Σ1|a,Σ′211|u, `: D. Since ` is fresh and dom Σ1|a is disjoint from dom Σ′211, it is
well-formed.

Σ1 .
M s′′] {` 7→ blssd} : Σ1 � Σ2 (ii)

⇔ Σ1|a, [Σ′211]
`, `: B .M s′′] {` 7→ blssd} : (Σ1|a � Σ2|a), [Σ′211]

`, `: B algebra
⇒ Σ1|a,Σ′211|u, `: D .M s′′] {` 7→ dfnct} : (Σ1|a � Σ2|a),Σ′211, `: D lem. 5.5.2
⇔ Σ′1 .

M s′′] {` 7→ dfnct} : Σ′1 � Σ′2 defs. Σ′i.

Otherwise.

73

5.5 Preservation 5 PROVING TYPE SOUNDNESS

We have that (s, e) 7−→M (s,blame f). Then by RTC-Blame, blame f has
whatever type is needed.

Case (s,E[e]A) 7−→M (s′,E[e′]A) if (s, e) 7−→M (s′, e′).

By inversion on Conf-A, we know that

(i) `M m okay for every module m in M ,

(ii) Σ1 .
M s : Σ1 � Σ2, and

(iii) Σ2; ·; · .MA E[e]A : τ .

By Lemma 5.4.2, there exist some σ′ and Σ21 � Σ22 = Σ2 such that

• Σ21; ·; · .MA e : σ′, and

• Σ22; ·; · .MA E[e′′]A : τ for all e′′ such that ·; ·; · .MA e′′ : σ′.

In cases where s = s′, it is sufficient to show that Σ21; ·; · .MA e′ : σ′. By Lemma 5.4.3,
we have that Σ2; ·; · .MA E[e′]A : τ , and by rule Conf-A, we have the desired result.
In cases where s 6= s′, we will need to rebuild the configuration typing using the new
store.
Now, by cases on (s, e) 7−→M (s′, e′):

Case (s, c v) 7−→M δA (s, c, v).

Metafunction δA is defined in only four cases:

Case δA (s,−, dze) = (s, (z−)).

Since tyA (−) = int(u int(u int and dze has type int, we know that σ′ =
int(u int, which is also the type of (z−). Since s does not change, this is
sufficient.

Case δA (s, (z1−), dz2e) = (s, dz1 − z2e).
Since tyA ((z1−)) = int(u int and dz2e has type int, we know that σ′ = int,
which is also the type of dz1 − z2e. Since s does not change, this is sufficient.

Case δA (s, new[σ′′], v) = (s] {` 7→ v}, `).
There must be a derivation

Σ21|u; ·; · .MA new[σ′′] : σ′′(
u
σ′′ ref

B
Σ21; ·; · .MA v : σ′′

Σ21; ·; · .MA new[σ′′] v : σ′′ ref
,

where σ′ = σ′′ ref.
Since e′ = `, by RTA-Loc,

• ·, `:σ′′; · .MA e′ : σ′′ ref

By weakening, we can type e′ with Σ|u, `:σ′′.
Recall that Σ22; ·; · .MA E[e′′]A : τ . Then by Conf-A,

74

5 PROVING TYPE SOUNDNESS 5.5 Preservation

(i) D
Lemma 5.4.3

Σ22, `:σ
′′; · .MA E[e′]A : τ

.M (s] {` 7→ v},E[e′]A) : τ

where

D =

(ii), Σ21 � Σ22 = Σ2

Σ1 .
M s : Σ1 � (Σ21 � Σ22)

B
Σ21; ·; · .MA v : σ′′

Σ1 � Σ21 .
M s] {` 7→ v} : (Σ1 � Σ21)� Σ22, `:σ

′′ .

Case δA (s′′] {` 7→ v1}, swap[σ1][σ2], 〈`, v2〉) = (s′′] {` 7→ v2}, 〈v1, `〉).
There must be a derivation

Σ′21|u; ·; · .MA swap[σ1][σ2] : · · ·
Σ′21|u, `:σ1; ·; · .MA ` : σ1 ref

A
Σ′21; ·; · .MA v2 : σ2

Σ′21, `:σ1; ·; · .MA 〈`, v2〉 : σ1 ref⊗ σ2

Σ′21, `:σ1; ·; · .MA swap[σ1][σ2] 〈`, v2〉 : σ1 ⊗ σ2 ref
,

where σ′ = σ1 ⊗ σ2 ref and Σ21 = Σ′21, `:σ1.
From (ii) we can say that Σ1 .

M s : Σ1 � Σ′21 � Σ22, `:σ1.
Considering the type rules for stores, there must therefore be a derivation

B
Σ11 .

M s′′ : Σ1 � Σ′21 � Σ22

C
Σ12; ·; · .MA v1 : σ1

Σ1 .
M s′′] {` 7→ v1} : Σ1 � Σ′21 � Σ22, `:σ1

,

where Σ11 � Σ12 = Σ1.
Now we can construct a type derivation:

C
Σ12; ·; · .MA v1 : σ1 Σ12|u, `:σ2 .

M
A ` : σ2 ref

Σ12, `:σ2; ·; · .MA 〈v1, `〉 : σ1 ⊗ σ2 ref
.

Recall that Σ22; ·; · .MA E[e′′]A : τ . Then by Conf-A,

(i) D
Lemma 5.4.3

Σ12 � Σ22, `:σ2 .
M
A E[e′]A : τ

.M s′′] {` 7→ v2},E[e′]A) : τ

where

D =

B
Σ11 .

M s′′ : Σ11 � Σ′21 � Σ12 � Σ22

A
Σ′21; ·; · .MA v2 : σ2

Σ11 � Σ′21 .
M s′′] {` 7→ v2} : Σ11 � Σ′21 � Σ12 � Σ22, `:σ2

.

Case (s, (Λαq. v)[σa]) 7−→M (s, v[σa/α
q]).

By inversion of RTA-TApp, we know that

75

5.5 Preservation 5 PROVING TYPE SOUNDNESS

• Σ21; ·; · .MA Λαq. v : ∀αq. σb,

• · `A σa, and

• |σa| v q, where

• σ′ = σb[σa/α
q].

Then, by inversion of RTA-TLam, we know that

• Σ21; ·, αq; · .MA v : σb.

By (ii) and Lemma 5.2.7, FTV(Σ21) = ∅, and αq /∈ FTV(·), so by Lemma 5.4.6,
we conclude that Σ21; ·; · .MA v[σa/α

q] : σb[σa/α
q].

Case (s, (λx:σx. e1) v) 7−→M (s, e1[v/x]).

By inversion of RTA-App, we know that there exist some Σ211 and Σ212 such that

• Σ211; · .MA λx:σx. e1 : σx (
q
σ′ and

• Σ212; · .MA v : σx, where

• Σ211 � Σ212 = Σ21.

Then, by inversion of TA-Lam on the former, we know that

• Σ211; x : σx .
M
A e1 : σ′.

By Lemma 5.4.9, we conclude that Σ21; · .MA e1[v/x] : σ′ as well.

Case (s, let 〈x1, x2〉 = 〈v1, v2〉 in e1) 7−→M (s, e1[v2/x2][v1/x1]).

By inversion of RTA-Let and RTA-Pair, there must be a derivation:

A
Σ2111; ·; · .MA v1 : σ1

B
Σ2112; ·; · .MA v2 : σ2

Σ211; ·; · .MA 〈v1, v2〉 : σ1 ⊗ σ2

C
Σ212; ·; ·, x1:σ1, x2:σ2 .

M
A e1 : σ

Σ21; ·; · .MA let 〈x1, x2〉 = 〈v1, v2〉 in e1 : σ′
,

for some Σ211 � Σ212 = Σ21 and Σ2111 � Σ2112 = Σ211.
Then by Lemma 5.4.9,

• Σ212 � Σ2112; ·; ·, x1:σ1 .
M
A e1[v2/x2] : σ′,

and by Lemma 5.4.9 again, Σ212 � Σ2112 � Σ2111; ·; · .MA e1[v2/x2][v1/x1] : σ′.

Case (s, if0d0e et ef) 7−→M (s, et).

By inversion on RTA-If0, we know that Σ212; · .MA et : σ′ where Σ211�Σ212 = Σ21,
and by weakening, Σ21; · .MA et : σ′.

Case (s, if0dze et ef) 7−→M (s, ef) (z 6= 0).

By symmetry.

Case (s, f) 7−→M (s, v) (module f : σ = v ∈M).

By inversion of RTA-Mod, σ must equal σ′.

76

5 PROVING TYPE SOUNDNESS 5.5 Preservation

Furthermore, premiss (i) from the inversion of Conf-A above tells us that `M
m okay for every module m in M , and for module f : σ′ = v in particular. This
judgment can only be the conclusion of rule TM-A, from which inversion tells us
that

• ·; · `MA v : σ′.

By Lemma 5.3.1,

• ·; ·; · .MA v : σ′,

and by weakening, Σ21; ·; · .MA v : σ′.

Case (s, fg) 7−→M (s,
(τf)

A

g ACf (f)) (module f : τf = v ∈M).

By inversion of RTA-ModC, σ′ = (τf)
A and · `C τf .

Then, by RTA-Mod and RTA-Boundary,

module f : τf = v ∈M · `C τf

Σ21; ·; · .MC f : τf

Σ21; ·; · .MA σ′
AC
g f

(f) : σ′
.

Case (s, fg) 7−→M (s, σgACf (f
′)) (interface f :> σ = f ′ ∈M).

By inversion of RTA-ModI, σ′ = σ and · `A σ.
Inverting Conf-A, the configuration C types only if

• `M interface f :> σ′ : f ′ okay.

The only rule with this conclusion is TM-I, so there must exist some v such that

• module f ′ : (σ′)C = v ∈M .

Then,

module f ′ : (σ′)C = v ∈M
Lemma 5.2.2
· `C (σ′)C

Σ21; ·; · .MC f ′ : (σ′)C

Σ21; ·; · .MA σ′
AC
g f

(f ′) : σ′
.

Case (s, σf ACg(v)) 7−→M coerceA (s, σ,v, f,g).

There are three possibilities:

Case v = dze.
Then (s, e) 7−→M (s, dze).
The only rule to type e is RTA-Boundary, which gives it the type (int)A =
int.
The only rule to type e′ is RTA-Con, which gives tyA (dze) = int as well.

Case v = g′CA[`]σ
o

f′ (v′).

77

5.5 Preservation 5 PROVING TYPE SOUNDNESS

Then (s, e) 7−→M check(s, `, |σo|, v′, σf ACg(blame f ′)).
Note that if (σo)C = (σ)C , then then σo = σ, by Lemma 5.2.1.
Then there are three subsidiary possibilities:

Case |σ| = u.

Then (s, e) 7−→M (s, v′).
Because |σ| = u, only rule RTC-Sealed applies for typing the CA sub-
term.
Thus, we know there must be a derivation of the form

A
Σ21; ∆; Γ .MA v : σw

B
|σw| = u

Σ21; ∆; Γ .MC CA
g′ f′

[`]σ
w

(v) : (σw)C

Σ21; ∆; Γ .MA
σw

AC
f g

(
CA
g′ f′

[`]σ
w

(v)

)
: σw

,

where σw = σo = σ′ = σ.
Then A suffices.

Case s = s′′] {` 7→ blssd} and |σ| = a.

Then (s′′, e) 7−→M (s] {` 7→ dfnct}, v′)
By inspection of s, it must be the case that Σ(`) = B. Thus, rule RTC-
Defunct will not apply to the AC subterm.
Furthermore, since |σ| = a, RTC-Sealed does not apply.
Thus, by inversion of RTA-Boundary and RTC-Blessed, there must
be a derivation

A
Σ′21; ·; · .MA v′ : σw |σw| = a

[Σ′21]
`, `: B; ·; · .MC CA

g′ f′
[`]σ

w

(v′) : (σw)C

[Σ′21]
`, `: B; ·; · .MA σw

AC
f g

(
CA
g′ f′

[`]σ
w

(v′)

)
: σw

,

where σw = σo = σ′ = σ and Σ21 = [Σ′21]
`, `: B.

From A and by weakening,

• Σ′21, `: D; ·; · .MA v : σ′.

Note that we can decompose Σ2 as

• Σ2 = Σ21,Σ22|a.

Since Σ21 = [Σ′21]
`, `: B, we can decompose Σ2 further as

• Σ2 = [Σ′21]
`, `: B,Σ22|a.

Since Σ2|a = Σ22|a and Σ2 ∼u Σ22, we know that Σ2 = Σ22.

78

5 PROVING TYPE SOUNDNESS 5.5 Preservation

Recall that Σ22; ·; · .MA E[e′′]A : τ . By Lemma 5.5.2, we can type E[e′′]A
with Σ′21|u, `: D,Σ22|a.
Let Σ′2 = (Σ′21, `: D) � (Σ′21|u, `: D,Σ22|a), which is clearly well-formed.
Then, by Lemma 5.4.3,

• Σ′2; ·; · .MA E[e′]A : τ .

It now suffices to show that Σ′1 .
M s′ : Σ′1 � Σ′2 for some Σ′1. Let Σ′1 =

Σ1|a,Σ′21|u, `: D. Since ` is fresh and dom Σ1|a is disjoint from dom Σ′21,
we know that Σ′1 is well-formed.

Σ1 .
M s′′] {` 7→ blssd} : Σ1 � Σ2 (ii)

⇔ Σ1|a, [Σ′21]
`, `: B .M s′′] {` 7→ blssd} : (Σ1|a � Σ2|a), [Σ′21]

`, `: B algebra
⇒ Σ1|a,Σ′21|u, `: D .M s′′] {` 7→ dfnct} : (Σ1|a � Σ2|a),Σ′21, `: D lem. 5.5.2
⇔ Σ′1 .

M s′′] {` 7→ dfnct} : Σ′1 � Σ′2 defs. Σ′i.

Otherwise.

We know that (s, e) 7−→M (s, σf ACg(blame f)).
Then,

Σ21; ·; · .MC blame f : (σ′)C

Σ21; ·; · .MA σ′
AC
g′ f ′

(blame f) : σ′

Otherwise.

We know that (s, e) 7−→M (s, σf AC[]g(v)).
Furthermore, since the previous two cases covered int and {σo}, by Observa-
tion 5.5.1, we may let τw = (σ)C .
By inversion of RTA-Boundary, there must be a derivation

A
Σ21; ·; · .MC v : (σ)C

Σ21; ·; · .MA σ AC
f g

(v) : σ
.

Then by RTA-Sealed,

A
Σ21; ·; · .MC v : (σ)C (σ)C = τw

Σ21; ·; · .MA σ AC
f g

[](v) : σ
.

Case (s, ∀α
q. σb

f AC[]g(v)[σa]) 7−→M (s,
σb[σa/αq]
f ACg

(
v[(σa)

C]
)
).

Rule RTA-TApp gives us that

• · `A σa.

Furthermore RTA-Sealed gives us that

79

5.6 Progress 5 PROVING TYPE SOUNDNESS

• σ′ = ∀αq. σb.

By inversion, it must be the case that

• Σ21; ·; · .MC v : ∀γ. (σb[{γ}/αq])C .

By Lemma 5.4.8,

• Σ21; · . v worthy.

Then,

Inv. RTA-Sealed

Σ21; ·; · .MC v : ∀γ. (σb[{γ}/αq])C

Inv. RTA-TApp, Lemma 5.2.2
· `C (σa)

C

Σ21; ·; · .MC v[(σa)
C] : (σb[σa/α

q])C

Σ21; ·; · .MA σb[σa/αq] AC
f g

(
v[(σa)

C]
)

: σb[σa/α
q]

.

Case (s, σ1(
q
σ2

f AC[]g(v1) v2) 7−→M (s, σ2
f ACg

(
v1 gCA

σ1
f (v2)

)
).

Rule RTA-Boundary gives us that

• σ′ = σ1 (
q
σ2

Furthermore, RTA-App tells us that there exist some Σ211 and Σ212 such that

• Σ212; ·; · .MA v2 : σ1, where

• Σ211 � Σ212 = Σ21.

By inversion, it must be the case that

• Σ21; ·; · .MC v1 : (σ1)C → (σ2)C .

Then,

Σ211; ·; · .MC v1 : (σ1)C → (σ2)C Σ212; ·; · .MC v2 : σ1

Σ211 � Σ212; ·; · .MC v1 CA
g f

σ1(v2) : (σ2)C

Σ211 � Σ212; ·; · .MA σ2 AC
f g

(
v1 CA

g f

σ1(v2)

)
: σ2

.

All other cases are subsumed by first case above, letting E = []C .

5.6 Progress
Definition 5.6.1 (Faulty expressions and configurations). We define the faulty expres-
sions with respect to store s inductively as follows:

Qs ::= QΛ
s [τ]

where QΛ
s ::= c | λx:τ. e
| CA

f g
[`]σ(v) (σ 6= ∀αq. σ′)

| Qλ
s,v v

where Qλ
s,v ::= dze | Λα. e

80

5 PROVING TYPE SOUNDNESS 5.6 Progress

| − | (z−) (v 6= dz2e)
| CA

f g
[`]σ(v) (σ 6= σ1 (

q
σ2)

| if0v et ef (v 6= dze)
| E[Qs]C | E[Qs]A

Qs ::= QΛ
s [τ]

where QΛ
s ::= c | ` | 〈v1, v2〉 | λx:σ. e
| σ AC

f g
[](v) (σ 6= ∀αq. σ′)

| Qλ
s,v v

where Qλ
s,v ::= dze | ` | 〈v1, v2〉 | Λαq. e

| − | (z−) (v 6= dz2e)
| swap[σ1][σ2] (¬∃` ∈ dom s, v = 〈`, v′2〉)
| σ AC

f g
[](v) (σ 6= σ1 (

q
σ2)

| if0 v et ef (v 6= dze)
| let 〈x1, x2〉 = v in e (v 6= 〈v1, v2〉)
| E[Qs]A | E[Qs]C

A faulty configuration is a configuration whose expression is faulty with respect to its
store.

Definition 5.6.2 (Redexes). In the definition of the relation (7−→M), every rule other than
C-Cxt and C-CxtA has either the form (s, er) 7−→M C ′ or the form (s, er) 7−→M C ′. We
call the expressions er and er (λC and λA) redexes, and denote them with the metasyntatic
variables R and R, respectively.

Lemma 5.6.3 (Redexes and evaluation contexts).

If (s, e) 7−→M (s′, e′), then either:

• We can decompose e = E[R]C and e′ = E[es]C . Then for any other evaluation context
E′[]C , we have that (s,E′[R]C) 7−→M (s′,E′[es]C) as well.

• We can decompose e = E[R]A and e′ = E[es]A . Then for any other evaluation context
E′[]A , we have that (s,E′[R]A) 7−→M (s′,E′[es]A) as well.

Proof. By induction on the derivation of (s, e) 7−→M (s′, e′).

Definition 5.6.4 (Closed configurations and module contexts). We consider a configuration
C to be closed when all locations in the expression and the store are mapped by the store.
We consider a module context M to be closed when all module names occuring in M are also
defined in M . We consider C to be closed with respect to M when C is closed and all module
names occuring in C are defined in M .

Lemma 5.6.5 (Uniform evaluation). For any C closed with respect to M , either C is faulty
or an answer, or there exists some C ′ closed with respect to M such that C 7−→M C ′.

Proof. If C = blame f for some module f , then C is an answer. Otherwise, C must be of
the form (s, e).

We therefore generalize our induction hypothesis as follows.

81

5.6 Progress 5 PROVING TYPE SOUNDNESS

(i) For any s and e, if the configuration (s, e) is closed with respect to closed M , then one
of:

(Q) e is faulty with respect to s (and hence the configuration is faulty),

(A) e is a value (and hence the configuration is an answer),

(R) there exist some s′ and e′ such that (s, e) 7−→M (s′, e′), which is also closed with
respect to M (let C ′ = (s′, e′)).

(ii) For any s and e, if the configuration (s, e) is closed with respect to closed M , then one
of:

(Q) e is faulty with respect to s,

(A) e is a value,

(R) there exist some s′ and e′ such that (s, e) 7−→M (s′, e′), which is also closed with
respect to M .

We proceed by mutual induction on the structures of e and e.

(i) Cases on e:

Case v.

Then (A).

Case x.

Vacuous, because e is closed.

Case f .

Because C is closed inM , we know that there exists somemodule f : τ = v ∈M ,
thus (s,x) 7−→M (s,v); becauseM is closed, we know that v is closed inM . Hence
(R).

Case e1[τ].

Consider first the induction hypothesis at e1, noting that E1 = []C [τ] is an eval-
uation context.

(Q) Then (Q).

(A) Let v1 = e1. Now by cases on v1:

Case c.

Then (Q).

Case ∀α.e11.

Then (s, e) 7−→M (s, e11[τ/α]), hence (R).

Case λx:τ.e11.

Then (Q).

82

5 PROVING TYPE SOUNDNESS 5.6 Progress

Case fCA[`]σg (v11).

If σ = ∀αq. σ′, then (s, e) 7−→M check(· · ·), hence (R); otherwise (Q).

(R) That is, (s, e1) 7−→M (s′, e′1). Then (s,E1[e1]C) 7−→M (s′,E1[e′1]C) by
Lemma 5.6.3, hence, (R).

Case e1 e2.

Consider first the induction hypothesis at e1, noting that E1 = []C e2 is an
evaluation context.

(Q) Then (Q).

(A) Let v1 = e1, and note that E2 = v1 []C is an evaluation context. We now
apply the induction hypothesis to e2:

(Q) Then (Q).

(A) Let v2 = e2. Now by cases on v1:

Case c.

By cases on c:

Case dze.
Then (Q).

Case (z−).

If v2 = dz2e then (s, e) 7−→M (s, dz − z2e), hence (R); otherwise (Q).

Case −.
If v2 = dze for some z, then (s, e) 7−→M (s, (z−)), hence (R); other-
wise (Q).

Case ∀α.e11.

Then (Q).

Case λx:τ.e11.

Then (s, e) 7−→M (s, e11[v2/x]), hence (R).

Case fCA[`]σg (v11).

If σ = σ1 (
q
σ2, then (s, e) 7−→M check(· · ·), hence (R); otherwise (Q).

(R) That is, (s, e2) 7−→M (s′, e′2). Then (s,E2[e2]C) 7−→M (s′,E2[e′2]C) by
Lemma 5.6.3, hence, (R).

(R) That is, (s, e1) 7−→M (s′, e′1). Then (s,E1[e1]C) 7−→M (s′,E1[e′1]C) by
Lemma 5.6.3, hence, (R).

Case if0 e1 e2 e3.

Apply induction at e1, noting that E1 = if0 []C e2 e3 is an evaluation context.

(Q) Then (Q).

83

5.6 Progress 5 PROVING TYPE SOUNDNESS

(A) If e1 = dze for some z, then (R) by one of the two if0 rules; otherwise, (Q)
by the definition of faulty expressions.

(R) Then (R) by Lemma 5.6.3.

Case gf .

Because C is closed in M , we know that there exists some module g : σ = v ∈M ,
thus (s, g) 7−→M (s, fCA

σ
g (g)); because M is closed, we know that v is closed in

M . Hence (R).

Case fCA
σ
g (e1).

Apply part (ii) of the induction hypothesis to e1, noting that E′ = fCA
σ
g ([]A) is

an evaluation context:

(Q) Then (Q).

(A) Let v1 = e1. Then (s, e) 7−→M coerceC (· · ·), hence (R).

(R) That is, (s, e) 7−→M (s′, e′). Then (R).

(ii) Cases on e:

Case v.

Then (A).

Case x.

Vacuous, because e is closed.

Case f.

Because C is closed in M , we know that there exists some module x : σ = v ∈M ,
thus (s, x) 7−→M (s, v); and since M is closed, v is closed in M . Hence (R).

Case e1[σ].

Consider first the induction hypothesis at e1, noting that E1 = []A [σ] is an eval-
uation context.

(Q) Then (Q).

(A) Let v1 = e1. Now by cases on v1:

Case c.

Then (Q).

Case ∀αq′
.e11.

Then (s, e) 7−→M (s, e11[σ/αq′
]), hence (R).

Case λx:τ.e11.

Then (Q).

Case 〈v1, v2〉.
Then (Q).

84

5 PROVING TYPE SOUNDNESS 5.6 Progress

Case `.

Then (Q).

Case σ′

f AC[]g(v11).

If σ′ = ∀αq. σ′′, then (s, e) 7−→M (s,
σ′[σ/αq]
f ACg

(
v11[(σ)C]

)
) hence (R);

otherwise (Q).

(R) That is, (s, e1) 7−→M (s′, e′1).
Then (s,E1[e1]A) 7−→M (s′,E1[e′1]A) by Lemma 5.6.3, hence, (R).

Case e1 e2.

Consider first the induction hypothesis on at e1, noting that E1 = []A e2 is an
evaluation context.

(Q) Then (Q).

(A) Let v1 = e1, and note that E2 = v1 []A is an evaluation context. We now
apply the induction hypothesis to e2:

(Q) Then (Q).

(A) Let v2 = e2. Now by cases on v1:

Case c.

By cases on c:

Case dze.
Then (Q).

Case (z−).

If v2 = dze2 then (s, e) 7−→M (s, dz − z2e), hence (R); otherwise (Q).

Case −.
If v2 is an integer constant dze, then (s, e) 7−→M (s, (z−)), hence (R);
otherwise (Q).

Case new[σ1].

Then (s, e) 7−→M ((s, ` 7→ v2), `), hence (R).

Case swap[σ1][σ2].

If v2 = 〈`, v22〉 where s = (s1, ` 7→ v21, s2) for some s1, s2, and v21,
then (s, e) 7−→M ((s1, ` 7→ v22, s2), 〈v21, `〉, hence (R); otherwise (Q).

Case Λαq.e11.

Then (Q).

Case λx:τ.e11.

Then (s, e) 7−→M (s, e11[v2/x]), hence (R).

Case `.

85

5.6 Progress 5 PROVING TYPE SOUNDNESS

Then (Q).

Case 〈v1, v2〉.
Then (Q).

Case σ′

f AC[]g(v11).

If σ′ = σ1 (
q
σ2, then (s, e) 7−→M (s, σ2

f ACg

(
v1 gCA

σ1
f (v2)

)
), hence (R);

otherwise (Q).

(R) That is, (s, e2) 7−→M (s′, e′2). Then by Lemma 5.6.3 with E1, (R).

(R) That is, (s, e1) 7−→M (s′, e′1).
Then by Lemma 5.6.3, (s,E1[e1]A) 7−→M (s′,E1[e′1]A), hence, (R).

Case if0 e1 e2 e3.

Apply induction at e1, noting that E1 = if0[]A e2 e3 is an evaluation context:

(Q) Then (Q).

(A) If e1 = dze for some z, then (R) by one of the two if0 rules; otherwise, (Q)
by the definition of faulty.

(R) Then (R) in E1, by Lemma 5.6.3.

Case 〈e1, e2〉.
Consider first the induction hypothesis on at e1, noting that E1 = 〈[]A , e2〉 is an
evaluation context.

(Q) Then (Q).

(A) Let v1 = e1, and note that E2 = 〈v1, []A 〉 is an evaluation context. We now
apply the induction hypothesis to e2:

(Q) Then (Q).

(A) Then (A), since 〈v1, v2〉 is a value.

(R) That is, (s, e2) 7−→M (s′, e′2). Then (s,E2[e2]A) 7−→M (s′,E2[e′2]A) by
Lemma 5.6.3, hence, (R).

(R) That is, (s, e1) 7−→M (s′, e′1).
Then (s,E1[e1]A) 7−→M (s′,E1[e′1]A) by Lemma 5.6.3, hence, (R).

Case let 〈x, y〉 = e1 in e2.

Apply induction at e1, noting that E1 = let 〈x, y〉 = []A in e2 is an evaluation
context:

(Q) Then (Q).

(A) If e1 = 〈v1, v2〉 then (s, e) 7−→M (s, e2[v2/y][v1/x]), hence (R); otherwise (Q).

(R) That is, (s, e1) 7−→M (s′, e′1).
Then (s,E1[e1]A) 7−→M (s′,E1[e′1]A) by Lemma 5.6.3, hence, (R).

86

5 PROVING TYPE SOUNDNESS 5.6 Progress

Case gf .

Because C is closed in M , we know that either

• there exists some module g : τ = v ∈M ,
and thus (s,gf) 7−→M (s,

(τ)A

f ACg(g)), or

• there exists some interface g :> σu = g′ ∈M ,
and thus (s,gf) 7−→M (s, σ

u

f ACg(g′)),

hence (R).

Case σ′

f′ ACg′(e1).

Apply part (i) of the induction hypothesis to e1, noting that E1 = σ′

f′ ACg′([]C) is
an evaluation context:

(Q) Then (Q).

(A) Let v1 = e1. Then (s, e) 7−→M coerceA (· · ·).

(R) That is, (s, e1) 7−→M (s′, e′1).
Then (s,E1[e1]C) 7−→M (s′,E1[e′1]C) by Lemma 5.6.3, hence (R).

Lemma 5.6.6 (Canonical Forms).

(i) For the λC subcalculus:

(a) If Σ; ∆; Γ .MC v : int then v = dze for some z.

(b) If Σ; ∆; Γ .MC v : ∀α. τ then v is either:

• Λα. e for some e, or

• fCA[`]∀β
q. σ

g (v′) for some `, βq, σ, f , g, and v′ s.t. ∀α. τ = ∀α. (σ[{α}/βq])C .

(c) If Σ; ∆; Γ .MC v : τ1 → τ2 then v is one of:

• The constant −, with τ1 = int and τ2 = int→ int;

• The constant (z−) for some z, with τ1 = τ2 = int;

• λx:τ1. e for some e, or

• fCA[`]σ1(
q
σ2

g (v′) for some `, σ1, σ2, f , g, and v′ such that τ1 = (σ1)C and
τ2 = (σ2)C ..

(d) If Σ; ∆; Γ .MC v : {σ} then v = fCA[`]σ
o

g (v′) for some `, σo, f , g, and v′ such that
σ = σo.

(ii) For the λA subcalculus:

(a) If Σ; ∆; Γ .MA v : int then v = dze for some z.

(b) If Σ; ∆; Γ .MA v : ∀αq. σ then v is either:

• Λαq. e for some e, or

87

5.6 Progress 5 PROVING TYPE SOUNDNESS

• ∀αq. σ
f AC[]g(v′) for some `, f, g, and v′.

(c) If Σ; ∆; Γ .MA v : σ1 (
q
σ2 then v is either:

• The constant −, with σ1 = int and σ2 = int(u int;

• The constant (z−) for some z, with σ1 = σ2 = int;

• The constant new[σ1], with σ2 = σ1 ref;

• The constant swap[σ′1][σ′2] for some σ′1 and σ′2 such that σ1 = σ′1 ref⊗ σ′2 and
σ2 = σ′1 ⊗ σ′2 ref;

• λx:σ1. e for some e; or

• σ1(
q
σ2

f AC[]g(v′) for some `, f, g, and v′.

(d) If Σ; ∆; Γ .MA v : σ1 ⊗ σ2 then v = 〈v1, v2〉 for some v1 and v2.

(e) If Σ; ∆; Γ .MA v : σ ref then v = ` for some `.

(f) If Σ; ∆; Γ .MA v : {τ} then v =
{τ}
f AC[`]g(v′) for some `, f, g, and v′.

Proof. We exhausively consider the values and their possible types:

(i) By cases on v:

Case Λα. e.

This types only by rule RTC-TLam, which gives it a type of the form ∀α. τ .
Therefore, Λα. e is a possibility for part (b).

Case λx:τ. e.

This types only by rule RTC-Lam, which gives it a type of the form τ → τ ′.
Therefore, λx:τ. e is a possibility for part (c).

Case c.

This types only by rule RTC-Con, which gives it type tyC (c). By cases on c:

Case dze.
Then tyC (c) = int. Therefore, dze is a possibility for part (a).

Case (z−).

Then tyC (c) = int→ int. Therefore, (z−) is a possibility for part (c).

Case −.
Then tyC (c) = int→ int→ int. Therefore, − is a possibility for part (c).

Case fCA[`]σg (v′).

This types only by rules RTC-Sealed, RTC-Blessed, and RTC-Defunct,
each of which requires that σ be a σw type. Because σw is one of ∀αq. σ, σ1 (

q
σ2,

or σo, the type of the value must be one of ∀β.(σ[{β}/αq])C , (σ1)C → (σ2)C , or
{σo}. Therefore, fCA[`]σg (v′) is a possibility for parts (b), (c), and (d).

88

5 PROVING TYPE SOUNDNESS 5.6 Progress

(ii) In the λA subcalculus, besides the rules mentioned for each syntactic form, each may
type by RTA-Subsume with the syntax-specific rule proving the antecedant to the
subsumption. We merely note that subsumption relates only types that are the same
but for potentially different qualifiers q on each function type constructor ((q), which
we do not distinguish in this lemma.
By cases on v:

Case Λαq. e.

This types only by rule RTA-TLam, which gives it a type of the form ∀αq. σ.
Therefore, Λαq. e is a possibility for part (b).

Case λx:σ. e.

This types only by rule RTA-Lam, which gives it a type of the form σ (u σ′.
Therefore, λx:σ. e is a possibility for part (c).

Case c.

This types only by rule RTA-Con, which gives it type tyA (c). By cases on c:

Case dze.
Then tyA (c) = int. Therefore, dze is a possibility for part (a).

Case (z−).

Then tyA (c) = int(u int. Therefore, (z−) is a possibility for part (c).

Case −.
Then tyA (c) = int(u int(u int. Therefore, − is a possibility for part (c).

Case new[σ1].

Then tyA (new[σ1]) = σ1 (
u

σ1 ref. Therefore, new[σ1] is a possibility for
part (c).

Case swap[σ1][σ2].

Then tyA (swap[σ1][σ2) = (σ1 ref⊗σ2)(u (σ1⊗σ2 ref). Therefore, swap[σ1][σ2]
is a possibility for part (c).

Case 〈v1, v2〉.
This types only by rule RTA-Pair, which gives it a type of the form σ1 ⊗ σ2.
Therefore, 〈v1, v2〉 is a possibility for part (d).

Case `.

This types only by rule RTA-Loc, which gives it a type of the form σ ref. There-
fore, ` is a possibility for part (e).

Case σ
f AC[]g(v′).

This types only by rule RTA-Sealed, which requires that (σ)C be a τw type.
Because τw is one of ∀α. τ , τ1 → τ2, or τo, the type of the value must be one of
∀βq.(σ[{βq}/α])A , (τ1)A (u (τ2)A , or {τo}. Therefore, σf AC[]g(v′) is a possibility
for parts (b), (c), and (f).

89

5.6 Progress 5 PROVING TYPE SOUNDNESS

Lemma 5.6.7 (Faulty expressions are ill-typed).

(i) If e ∈ Qs is faulty with respect to s, then there exist no M , Σ1, Σ2, and τ such that

• Σ1 .
M s : Σ1 � Σ2 and

• Σ2; ·; · .MC e : τ .

(ii) If e is faulty with respect to s, then there exist no M , Σ1, Σ2, and σ such that

• Σ1 .
M s : Σ1 � Σ2 and

• Σ2; ·; · .MA e : σ.

Proof by contradiction. We proceed by mutual induction on the structure of Qs and Qs.

(i) Suppose that Σ1; ·; · .MC Qs : τ . Then by cases on Qs:

Case QΛ
s [τa].

This types only by rule RTC-TApp, which requires that QΛ
s have a type ∀α. τb.

By Lemma 5.6.6, we see that the only values with such a type are Λα. e and
fCA[`]∀β

q. σ
g (v′), neither of which is an instance of QΛ

s , contradicting our assump-
tion.

Case Qλ
s,v v.

This types only by rule RTC-App, which requires that Σ21; ·; · .MC Qλ
s,v : τ ′ → τ

and Σ22; ·; · .MC v : τ ′, where Σ21 � Σ22 = Σ2.
By cases on Qλ

s,v:

Case dze.
This does not have type τ ′ → τ .

Case Λα. e.

This does not have type τ ′ → τ .

Case − where v 6= dz2e.
This has type int→ (int→ int), which means that v must have type int.
By Lemma 5.6.6, v must be an integer constant, which contradicts the side
condition.

Case (z−) where v 6= dz2e.
This has type int→ int, which means that v must have type int.
By Lemma 5.6.6, v must be an integer constant, which contradicts the side
condition.

Case fCA[`]σg (v′) where σ 6= σ1 (
q
σ2.

This has type (σ)C , which must equal τ ′ → τ .
This can be the case only if σ = σ1 (

q
σ2, which contradicts the side condition.

90

5 PROVING TYPE SOUNDNESS 5.6 Progress

Case if0v et ef where v 6= dze.
The types only by rule RTC-If0, which requires that v have type int.
By Lemma 5.6.6, v = dze for some integer z, which contradicts the side condition.

Case E[Q′s]C .

By our assumption, Σ1 .
M s : Σ1 � Σ2 and Σ2; ·; · .MC E[Q′s]C : τ .

Then by Lemma 5.4.2 (i), Σ21; ·; · .MC Q′s : τ ′ for some Σ21 � Σ22 = Σ2.
By weakening, then, Σ2; ·; · .MC Q′s : τ ′, but by the induction hypothesis (i), this
cannot be so.

Case E[Q′s]A .

By our assumption, Σ1 .
M s : Σ1 � Σ2 and Σ2; ·; · .MC E[Q′s]A : τ .

Then by Lemma 5.4.2 (ii), Σ21; ·; · .MC Q′s : σ′ for some Σ21 � Σ22 = Σ2.
By weakening, then, Σ2; ·; · .MC Q′s : σ′, but by the induction hypothesis (ii), this
cannot be so.

(ii) Suppose that Σ1; ·; · .MA Qs : σ.
Then by cases on Qs:

Case QΛ
s [σa].

This types only by rule RTA-TApp, which requires that QΛ
s have a type ∀αq. τb.

By Lemma 5.6.6, we see that the only values with such a type are Λαq. e and
fCA[`]∀α

q. σ
g (v′), neither of which is an instance of QΛ

s , contradicting our assump-
tion.

Case Qλ
s,v v.

This types only by rule RTA-App, which requires that Σ21; ·; · .MA Qλ
s,v : σ′(q σ

and Σ22; ·; · .MA v : σ′ where Σ21 � Σ22 = Σ2.
By cases on Qλ

s,v:

Case dze.
This does not have type τ ′(u τ .

Case `.

This does not have type τ ′(u τ .

Case 〈v1, v2〉.
This does not have type τ ′(u τ .

Case Λα. e.

This does not have type τ ′(u τ .

Case − where v 6= dz2e.
This has type int(u (int(u int), which means that v must have type int.
By Lemma 5.6.6, v must be an integer constant, which contradicts the side

91

5.6 Progress 5 PROVING TYPE SOUNDNESS

condition.

Case (z−) where v 6= dz2e.
This has type int(u int, which means that v must have type int.
By Lemma 5.6.6, v must be an integer constant, which contradicts the side
condition.

Case swap[σ1][σ2] where ¬∃`′ ∈ dom s s.t. v = 〈`′, v′′〉.
Then σ = σ1 ⊗ σ2 ref and σ′ = σ1 ref⊗ σ2.
By Lemma 5.6.6, twice, v has the latter type only if it is a pair v = 〈`, v′〉.
Then Qλ

s,v v only types with a derivation of the form

...
· · · .MA swap[σ1][σ2] : · · ·

Σ′2|u, `:σ1 .
M
A ` : σ1 ref Σ′2 .

M
A v′ : σ2

Σ′2, `:σ1; ·; · .MA 〈`, v′〉 : σ1 ref⊗ σ2

Σ′2, `:σ1; ·; · .MA swap[σ1][σ2] 〈`, v′〉 : σ1 ⊗ σ2 ref
,

where Σ2 = Σ′2, `:σ1.
Furthermore, the induction hypothesis states that Σ1 .

M s : Σ1�Σ2, that is,
Σ1 .

M s : Σ1�Σ′2, `:σ1. By inversion of S-ALoc, this can be the case only if
s = s′] {` 7→ v1} for some v1. This contradicts the side condition on s.

Case σ′′

f AC[]g(v′) where σ′′ 6= σ′1 (
q
σ′2.

This has type σ′′, which must equal σ′ (q σ, which contradicts the side
condition.

Case if0 v et ef where v 6= dze.
This types only by rules RTA-If0, which requires that v have type int.
By Lemma 5.6.6, v = dze for some integer z, which contradicts the side condition.

Case let 〈x1, x2〉 = v in e where v 6= 〈v1, v2〉.
This types only by rules RTA-Let, which requires that v have a type σ1 ⊗ σ2.
By Lemma 5.6.6, v = 〈v1, v2〉, which contradicts the side condition.

Case E[Q′s]A .

By our assumption, Σ1 .M s : Σ1 � Σ2 and Σ2; ·; · .MA E[Q′s]A : σ. Then by
Lemma 5.4.2 (iii), Σ21; ·; · .MA Q′s : σ′ for some Σ21 � Σ22 = Σ2.
By weakening, then, Σ2; ·; · .MA Q′s : σ′, but by the induction hypothesis (ii), this
cannot be so.

Case E[Q′s]C .

By our assumption, Σ1 .
M s : Σ1 � Σ2 and Σ2; ·; · .MA E[Q′s]C : σ.

Then by Lemma 5.4.2 (iv), Σ21; ·; · .MA Q′s : τ ′ for some Σ21 � Σ22 = Σ2.
By weakening, then, Σ2; ·; · .MA Q′s : τ ′, but by the induction hypothesis (i), this
cannot be so.

92

6 CONCLUSION 5.7 Type Soundness

Theorem 5.6.8 (Progress). If .M C : τ , then either C is an answer or there exists some
C ′ such that C 7−→M C ′.

Proof. Since C types, it is closed; thus, by Lemma 5.6.5, it is an answer, it takes a step, or
it is faulty. Because it types, we can eliminate the faulty case by Lemma 5.6.7.

5.7 Type Soundness

Main Theorem (Type Soundness). If `M e : τ and ({}, e) 7−→M
∗ C such that configura-

tion C cannot take another step, then C is an answer with .M C : τ .

Proof. By Theorems 5.3.2 (Programs to configurations), 5.6.8 (Progress), and 5.5.3 (Preser-
vation), and induction on the length of the reduction sequence.

6 Conclusion

Our work is part of an ongoing program to investigate practical aspects of substructural type
systems, and this paper describes one step in that program. Here, we have focused on the
problem of interaction between substructural and non-substructural code, each governed by
its own type system, and explored the use of higher-order contracts to prevent the conven-
tional language from breaking the substructural language’s invariants. Our answer to the
problem at hand naturally raises more questions.

Exceptions. In a production language with a contract system, contract violations should
not always terminate the program. Real programs may catch an exception and either try to
mitigate the condition that caused it, try something easier instead, or report an error and go
on with some other task. To ensure soundness, it suffices to prevent the questionable actions
from occurring.

On one hand, we believe that ML-style exceptions should not provide too much difficulty
in an affine setting. In our prototype, try-with expressions are multiplicative, in the sense
that the type environment needs to be split between an expression and its exception handler,
not given in whole to both.

On the other hand, we do not know how exceptions or any sort of blame might work in a
linear setting—this is one reason why we chose an affine calculus. Terminating the program
is problematic because of the implicit discarding of linear values, but catching an exception
once part of a continuation containing linear values has been discarded seems even worse.
Exceptions in linear languages remain an open question.

Linearity. Our work emphasizes contract-based interaction with affine type systems rather
than linear type systems because it remains unclear to us what linear contracts ought to
mean. We may want a conventional language to interoperate with a language that (at least
sometimes) prohibits discarding values. However, unlike affine guarantees, which are safety
properties, relevance guarantees—that a value is used at some point in the future—are a
form of liveness property.

93

REFERENCES REFERENCES

One approximation is to consider a contract representing a relevance guarantee to be
violated if at any point we can determine that the contract necessarily will be violated.
Detecting the violation of such a liveness property is undecidable in general, but tracing
garbage collection approximates a liveness property very close to the one we desire. In an
idealized semantics, we might garbage collect the store after each reduction step and signal a
violation if the seal location of a not-yet-used linear value has become unreachable. In a real
implementation, finalizers on linear values could detect discarding. If we detect a violation,
we probably could do nothing to prevent it, but at worst we could file a bug report.

Our work suggests that adding substructural libraries to a conventional programming
language such as ML does not require a particularly complicated implementation, and our
results yield a realistic contract-based design.

Acknowledgments. We wish to thank Daniel Brown, Ryan Culpepper, Jed Davis, Matthias
Felleisen, Alec Heller, Sam Tobin-Hochstadt, Aaron Turon, and the anonymous referees for
their helpful comments, discussion, and corrections. This research was supported in part by
AFOSR grant FA9550-09-1-0110.

References

A. Ahmed, M. Fluet, and G. Morrisett. L3: A linear language with locations. Technical
Report TR-24-04, Harvard University, 2004.

E. Barendsen and S. Smetsers. Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science, 6(6), 1996.

P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In CSL’94,
number 933 in LNCS, pages 121–135. Springer-Verlag, 1995.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP’02, pages
48–59. ACM Press, 2002.

C. Flanagan. Hybrid type checking. In POPL’06, volume 41, pages 245–256. ACM Press,
2006.

S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions. In ESOP’09,
volume 1576 of LNCS, pages 74–90. Springer-Verlag, 1999.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris VI, 1972.

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe
dialect of C. In Proc. USENIX Annual Technical Conference, 2002.

J. Matthews and R. B. Findler. Operational semantics for multi-language programs. In
POPL’07, volume 42, pages 3–10. ACM Press, 2007.

94

List of Figures List of Figures

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML. MIT
Press, revised edition, 1997.

G. Plotkin. Type theory and recursion. LICS’93, 1993.

J. C. Reynolds. Towards a theory of type structure. In Proc. Colloque sur la
Programmation, volume 19 of LNCS, pages 408–425. Springer-Verlag, 1974.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Workshop on Scheme
and Functional Programming, pages 81–92. ACM Press, 2006.

W. R. Stevens. UNIX Network programming. Prentice-Hall, 1990.

R. Strom and S. Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Transactions on Software Engineering, 12(1), 1986.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts to programs.
In OOPSLA’06, pages 964–974. ACM Press, 2006.

S. Tobin-Hochstadt and M. Felleisen. The design and implementation of Typed Scheme. In
POPL’07, pages 395–406. ACM Press, 2008.

D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In FPCA’95, pages 1–11.
ACM Press, 1995.

P. Wadler. Linear types can change the world. In Programming Concepts and Methods,
pages 347–359. North Holland, 1990.

D. Walker. Substructural type systems. In B. C. Pierce, editor, Advanced Topics in Types
and Programming Languages, chapter 1, pages 3–44. MIT Press, 2005.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

List of Figures

2.1 States and transitions for TCP (simplified) 4
2.2 Selected C language socket operations . 5
2.3 The A language sockets API . 6
2.4 An echo server in language A . 7
3.1 Type-directed generation of coercions . 10
4.1 Selected syntax and semantics of λC . 11
4.2 Syntax of λA . 12
4.3 Statics of λA : qualifiers (i) . 12
4.4 Statics of λC : context splitting (ii) . 13
4.5 Statics of λA : types and subtyping (iii) 13
4.6 Statics of λA : expressions and constants (iv) 14
4.7 Statics of λA : modules (v) . 15

95

A THE AFFINE SOCKETS LIBRARY

4.8 Dynamics of λA . 15
4.9 New syntax for λA

C . 17
4.10 New statics for λA

C : type translation and qualifiers (i) 17
4.11 New statics for λA

C : programs, modules, and expressions (ii) 18
4.12 Dynamics of λA

C : run-time syntax (i) . 19
4.13 Dynamics of λA

C : reduction relation (ii) . 20
5.1 Internal type system: new syntax (i) . 23
5.2 Internal type system: store splitting and typing (ii) 23
5.3 Internal type system: store protection and qualifiers (iii) 23
5.4 Internal type system: new expressions and constants (iv) 24
5.5 Internal type system: old λA expressions (v) 25
5.6 Internal type system: old λC expressions (vi) 26
5.7 Internal type system: configurations (vii) 26
B.1 Statics of λC : types (i) . 100
B.2 Statics of λC : expressions and constants (ii) 100
B.3 Statics of λC : programs and modules (iii) 101
B.4 Dynamics of λC . 101

A The Affine Sockets Library

This is the full code listing for the sockets library from §2. It includes the details of error
handing that we omit from the shorter presentation.

When we raise an exception, we “freeze” the capability. We can thaw the frozen capability
if we have the socket that it goes with. (This requires a dynamic check.) This lets us recover
the capability with a type paramater that matches any extant sockets that go with it:

module ASocket = struct[A]
module S = Socket
let getAddrByName = S.getAddrByName

abstype α socket = Sock of {S.socket}
and α initial qualifier A = Initial
and α bound qualifier A = Bound
and α listening qualifier A = Listening
and α connected qualifier A = Connected

with
abstype frozenInitial qualifier A = FInitial of {S.socket}

and frozenBound qualifier A = FBound of {S.socket}
and frozenListening qualifier A = FListening of {S.socket}
and frozenConnected qualifier A = FConnected of {S.socket}

with
let freezeInitial[α] (Sock sock: α socket) (_: α initial) =

FInitial sock

let thawInitial[α] (Sock sock: α socket)
(FInitial sock’: frozenInitial) =

96

A THE AFFINE SOCKETS LIBRARY

if sock == sock’
then Right[frozenInitial, α initial] Initial[α]
else Left [frozenInitial, α initial] (FInitial sock’)

let freezeBound[α] (Sock sock: α socket) (_: α bound) =
FBound sock

let thawBound[α] (Sock sock: α socket)
(FBound sock’: frozenBound) =

if sock == sock’
then Right[frozenBound, α bound] Bound[α]
else Left [frozenBound, α bound] (FBound sock’)

let freezeListening[α] (Sock sock: α socket) (_: α listening) =
FListening sock

let thawListening[α] (Sock sock: α socket)
(FListening sock’: frozenListening) =

if sock == sock’
then Right[frozenListening, α listening] Listening[α]
else Left [frozenListening, α listening] (FListening sock’)

let freezeConnected[α] (Sock sock: α socket) (_: α connected) =
FConnected sock

let thawConnected[α] (Sock sock: α socket)
(FConnected sock’: frozenConnected) =

if sock == sock’
then Right[frozenConnected, α connected] Connected[α]
else Left [frozenConnected, α connected] (FConnected sock’)

end

exception SocketError of string
exception StillInitial of frozenInitial × string
exception StillBound of frozenBound × string
exception StillListening of frozenListening × string
exception StillConnected of frozenConnected × string

let socket (): ∃α. α socket × α initial =
try
let sock = S.socket ()
in Pack(unit, Sock[unit] sock, Initial[unit])

with
IOError s → raise (SocketError s)

let bind[α] (Sock sock as s: α socket) (port: int) (cap: α initial)
: α bound =

97

A THE AFFINE SOCKETS LIBRARY

try
S.bind sock port;
Bound[α]

with
IOError msg → raise (StillInitial (freezeInitial s cap, msg))

let connect[α] (Sock sock as s: α socket) (host: string)
(port: string) (cap: α initial + α bound)
: α connected =

try
S.connect sock host port;
Connected[α]

with
IOError msg → match cap with
| Left cap → raise

(StillInitial (freezeInitial s cap, msg))
| Right cap → raise (StillBound (freezeBound s cap, msg))

let listen[α] (Sock sock as s: α socket) (cap: α bound)
: α listening =

try
S.listen sock;
Listening[α]

with
IOError msg → raise (StillBound (freezeBound s cap, msg))

let accept[α] (Sock sock as s: α socket) (cap: α listening)
: (∃’s. ’s socket × ’s connected) × α listening =

try
let newsock = S.accept sock in
(Pack(unit, Sock[unit] newsock, Connected[unit]),
Listening[α])

with
IOError msg → raise

(StillListening (freezeListening s cap, msg))

let send[α] (Sock sock: α socket) (data: string) (_: α connected)
: α connected =

try
S.send sock data;
Connected[α]

with
IOError msg → raise (SocketError msg)

let recv[α] (Sock sock: α socket) (len: int) (_: α connected)
: string × α connected =

try

98

A THE AFFINE SOCKETS LIBRARY

let str = S.recv sock len
in (str, Connected[α])

with
IOError msg → raise (SocketError msg)

let close[α] (Sock sock: α socket) (_: α connected): unit =
try
S.close sock

with
IOError s → raise (SocketError s)

end

let catchInitial[α,βa] (sock: α socket) (body: unit (a βa)
(handler: α initial (a βa) =

try body () with
| StillInitial (frz, msg) →

match thawInitial sock frz with
| Left frz → raise (StillInitial (frz, msg))
| Right cap → handler cap

let catchBound[α,βa] (sock: α socket) (body: unit (a βa)
(handler: α bound (a βa) =

try body () with
| StillBound (frz, msg) →

match thawBound sock frz with
| Left frz → raise (StillBound (frz, msg))
| Right cap → handler cap

let catchListening[α,βa] (sock: α socket) (body: unit (a βa)
(handler: α listening (a βa) =

try body () with
| StillListening (frz, msg) →

match thawListening sock frz with
| Left frz → raise (StillListening (frz, msg))
| Right cap → handler cap

let catchConnected[α,βa] (sock: α socket) (body: unit (a βa)
(handler: α connected (a βa) =

try body () with
| StillConnected (frz, msg) →

match thawConnected sock frz with
| Left frz → raise (StillConnected (frz, msg))
| Right cap → handler cap

end

99

B SEMANTICS OF λC

B Semantics of λC

The syntax of λC may be found in figure 4.1.

∆ `C τ

CC-Int

∆ `C int

CC-Arr
∆ `C τ1 ∆ `C τ2

∆ `C τ1 → τ2

CC-All
∆, α `C τ

∆ `C ∀α. τ

CC-Var
α ∈ ∆

∆ `C α

Figure B.1: Statics of λC : types (i)

∆; Γ `MC e : τ

TC-TLam
∆, α; Γ `MC v : τ

∆; Γ `MC Λα.v : ∀α. τ

TC-TApp
∆; Γ `MC e : ∀α. τ ′ ∆ `C τ

∆; Γ `MC e[τ] : τ ′[τ/α]

TC-Lam
∆; Γ,x : τ `MC e : τ ′ ∆ `C τ

∆; Γ `MC λx:τ. e : τ → τ ′

TC-App
∆; Γ `MC e1 : τ ′ → τ ∆; Γ `MC e2 : τ ′

∆; Γ `MC e1 e2 : τ

TC-Con

∆; Γ `MC c : tyC (c)

TC-If0
∆; Γ `MC e1 : int ∆; Γ `MC e2 : τ ∆; Γ `MC e3 : τ

∆; Γ `MC if0 e1 e2 e3 : τ

TC-Var
Γ(x) = τ

∆; Γ `MC x : τ

TC-Mod
module f : τ = v ∈M · `C τ

∆; Γ `MC f : τ

tyC (c) = τ

tyC (−) = int→ int→ int tyC ((z−)) = int→ int tyC (dze) = int

Figure B.2: Statics of λC : expressions and constants (ii)

100

B SEMANTICS OF λC

` P , `M m okay

Prog-C
(∀m ∈M) `M m okay ·; · `MC e : τ

`M e : τ

TM-C
·; · `MC v : τ

`M module f : τ = v okay

Figure B.3: Statics of λC : programs and modules (iii)

evaluation contexts E ::= []C | E[τ] | E e | v E | if0E e e
configurations C ::= (s, e)

stores s ::= · · ·

C 7−→M C , δC (s, c,v) = (s,v)

(C-δ) (s, c v) 7−→
M

δC (s, c,v)

(C-B) (s, (Λα.v)[τ]) 7−→
M

(s,v[τ/α])

(C-β) (s, (λx:τ. e) v) 7−→
M

(s, e[v/x])

(C-If0) (s, if0 d0e et ef) 7−→
M

(s, et)

(C-IfZ) (s, if0 dze et ef) 7−→
M

(s, ef) z 6= 0

(C-Mod) (s, f) 7−→
M

(s,v) (module f : τ = v) ∈M

(C-Cxt) (s,E[e]C) 7−→
M

(s′,E[e′]C) if (s, e) 7−→
M

(s′, e′)

δC (s,−, dze) = (s, (z−))

δC (s, (z1−), dz2e) = (s, dz1 − z2e)

Figure B.4: Dynamics of λC

101

	Introduction
	An Example
	Implementing Stateful Contracts
	Formalization
	The Calculi C and A
	Mixing It Up with AC

	Proving Type Soundness
	The Internal Type System
	Properties of Types and Stores
	External Typing Implies Internal Typing
	Evaluation Contexts and Substitution
	Preservation
	Progress
	Type Soundness

	Conclusion
	References
	List of Figures

	The Affine Sockets Library
	Semantics of C

