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Abstract. Most programs interact with the world: via graphical user
interfaces, networks, etc. This form of interactivity entails concurrency,
and concurrent program components must coordinate their computa-
tions. This paper presents Syndicate, a novel design for a coordinated,
concurrent programming language. Each concurrent component in Syn-
dicate is a functional actor that participates in scoped conversations.
The medium of conversation arranges for message exchanges and coor-
dinates access to common knowledge. As such, Syndicate occupies a
novel point in this design space, halfway between actors and threads.

1 From Interaction to Concurrency and Coordination

Most programs must interact with their context. Interactions often start as re-
actions to external events, such as a user’s gesture or the arrival of a message.
Because nobody coordinates the multitude of external events, a program must
notice and react to events in a concurrent manner. Thus, a sequential program
must de-multiplex the sequence of events and launch the appropriate concurrent
component for each event. Put differently, these interacting programs consist of
concurrent components, even in sequential languages.

Concurrent program components must coordinate their computations to re-
alize the overall goals of the program. This coordination takes two forms: the
exchange of knowledge and the establishment of frame conditions. In addition,
coordination must take into account that reactions to events may call for the cre-
ation of new concurrent components or that existing components may disappear
due to exceptions or partial failures. In short, coordination poses a major prob-
lem to the proper design of effective communicating, concurrent components.

This paper presents Syndicate, a novel language for coordinated concurrent
programming. A Syndicate program consists of functional actors that partici-
pate in precisely scoped conversations. So-called networks coordinate these con-
versations. When needed, they apply a functional actor to an event and its cur-
rent state; in turn, they receive a new state plus descriptions of actions. These
actions may represent messages for other participants in the conversations or
assertions for a common space of knowledge.

Precise scoping implies a separation of distinct conversations, and hence ex-
istence of multiple networks. At the same time, an actor in one network may
have to communicate with an actor in a different network. To accommodate such
situations, Syndicate allows the embedding of one network into another as if



Programs P ∈ P ::= actor f u #”a | net #”
P

Leaf functions f ∈ F = E× V −→total
#”A × V+Err

Values u, v ∈ V (first-order data; numbers, strings, lists, trees, sets, etc.)
Events e ∈ E ::= 〈c〉 | π
Actions a ∈ A ::= 〈c〉 | π | P

Assertions c, d ∈ S ::= u | ?c | �c
Assertion sets π ∈ � = P(S)

Fig. 1: Syntax of Syndicate Programs

the first were just an actor within the second. In other words, networks simulta-
neously scope and compose conversations. The resulting tree-structured shape
of networked conversations corresponds both to tree-like arrangements of con-
tainers and processes in modern operating systems and to the nesting of layers
in network protocols [1]. Syndicate thus unifies the programming techniques
of distributed programming with those of coordinated concurrent programming.

By construction, Syndicate networks also manage resources. When a new
actor appears in a conversation, a network allocates the necessary resources.
When an actor fails, it deallocates the associated resources. In particular, it
retracts all shared state associated with the actor, thereby making the failure
visible to interested participants. Syndicate thus solves notorious problems of
service discovery and resource management in the coordination of communicat-
ing components.

In sum, Syndicate occupies a novel point in the design space of coordinated
concurrent (functional) components (sec. 2), sitting firmly between a thread-
based world with sharing and local-state-only, message-passing actors. Our de-
sign for Syndicate includes two additional contributions: an efficient protocol
for incrementally maintaining the common knowledge base and a trie-based data
structure for efficiently indexing into it (sec. 3). Finally, our paper presents eval-
uations concerning the fundamental performance characteristics of Syndicate
as well as its pragmatics (secs. 4 and 5).

2 Syndicate

Syndicate is a new language directly inspired by our previous work on Net-
work Calculus (NC) [2]. It generalizes NC’s “observation” mechanism into a
means of asserting and monitoring common group state. In Syndicate, NC’s
subscriptions are a special case of general assertions, which simplifies the syn-
tax, semantics and programming model. Syndicate thus supports Actor-style
point-to-point, NC-style multicast, and a novel form of assertion-set-based com-
munication in a uniform mechanism. This section describes Syndicate using
mathematical syntax and semantics. It includes examples and concludes with
theorems about Syndicate’s key properties. The remainder of the paper re-
ports on our prototype implementations based on Javascript [3] and Racket [4].



2.1 Abstract Syndicate Syntax and Informal Semantics

Fig. 1 displays the syntax of Syndicate programs. Each program P consists
of a single actor: either a leaf actor or a network actor. A leaf actor has the
shape actor f u #”a , comprising not only its event-transducing behavior function
f but also a piece of actor-private state u and a sequence of initial actions #”a .
A network actor creates a group of communicating actors, and consists of a
sequence of programs prefixed with the keyword net.

Leaf actor functions consume an event plus their current state. The function
computes a sequence of desired actions plus a state value. Behavior functions
are total, though termination via an exception is acceptable. We call the latter
a crash. These constraints are reflected in the type associated with f ; see fig. 1.

In the λ-calculus, a program is usually a combination of an inert part—a
function value—and an input value. In Syndicate, delivering an event to an
actor is analogous to such an application. However, the pure λ-calculus has no
analogue of the actions produced by Syndicate actors.

A Syndicate actor may produce actions like those in the traditional Actor
model, namely sending messages 〈c〉 and spawning new actors P , but it may also
produce state change notifications π. The latter convey sets of assertions an actor
wishes to publish in its network’s shared dataspace. Each such set completely
replaces all previous assertions made by that actor; to retract an assertion, the
actor issues a state change notification action lacking the assertion concerned.

We take the liberty of using wildcard ? as a form of assertion set comprehen-
sion. For now, when we write expressions such as {(a, ?)}, we mean the set of all
pairs having the atom a on the left. Similarly, {??} means {?c | c ∈ S}. Clearly,
implementers must take pains to keep representations of sets specified in this
manner tractable. We discuss this issue in more detail in sec. 3;

When an actor issues an assertion of shape ?c, it expresses an interest in being
informed of all assertions c. In other words, an assertion ?c acts as a subscription
to c. Similarly, ??c specifies interest in being informed about assertions of shape
?c, and so on. The network sends a state change notification event to an actor
each time the set of assertions matching the actor’s interests changes.

An actor’s subscriptions are assertions like any other. State change notifica-
tions thus give an actor control over its subscriptions as well as over any other
information it wishes to make available to its peers or acquire from them.

Our examples use a mathematical notation to highlight the essential aspects
of Syndicate’s coordination abilities without dwelling on language details. We
use italic text to denote variables and monospace to denote literal atoms and
strings. In places where Syndicate demands a sequence of values, for example
the #”a in an actor action, our language supplies a single list value [a1, ..., an]. We
include list comprehensions [a | a ∈ A, P (a), ...] because actors frequently need to
construct, filter, and transform sequences of values. Similarly, we add syntax for
sets {c1, ..., cn}, including set comprehensions {c | c ∈ S, P (c), ...}, and for tuples
(v1, ..., vn), to represent the sets and tuples needed by Syndicate. We write
constructors for actions and events just as in Syndicate: that is, 〈·〉 constructs



a message event or action; ?· , an “interest” assertion; �· , a cross-layer assertion;
and actor and net, actions which spawn new actors.

We define functions using patterns over the language’s values. For example,
the leaf function definition

box 〈(set, id , vc)〉 vo = ([{?(set, id , ?), (value, id , vc)}], vc)

introduces a function box that expects two arguments: a Syndicate message
and an arbitrary value. The 〈(set, id , vc)〉 pattern for the former says it must
consist of a triple with set on the left and arbitrary values in the center and
right field. The function yields a pair whose left field is a sequence of actions
and whose right one is its new state value vc. The sequence of actions consists
of only one element: a state change notification action bearing an assertion set.
The assertion set is written in part using a wildcard denoting an infinite set, and
in part using a simple value. The resulting assertion set thus contains not only
the triple (value, id , vc) but also the infinite set of all ?-labelled triples with set

on the left and with id in the middle.

2.2 Some Syndicate Programs

Suppose we wish to create an actor X with an interest in the price of milk. Here
is how it might be written:

actor fX uX [{?(price, milk, ?)}]

Its initial action is a state change notification containing the assertion set

{?(price, milk, c) | c ∈ S}

If some peer Y previously asserted (price, milk, 1.17), this assertion is im-
mediately delivered to X in a state change notification event. Infinite sets of
interests thus act as query patterns over the shared dataspace.

Redundant assertions do not cause change notifications. If actor Z subse-
quently also asserts (price, milk, 1.17), no notification is sent to X, since X
has already been informed that (price, milk, 1.17) has been asserted. However,
if Z instead asserts (price, milk, 9.25), then a change notification is sent to X
containing both asserted prices.

Symmetrically, it is not until the last assertion of shape (price, milk, p) for
some particular p is retracted from the network that X is sent a notification
about the lack of assertions of shape (price, milk, p).

When an actor crashes, all its assertions are automatically retracted. By im-
plication, if no other actor is making the same assertions at the time, then peers
interested in the crashing actor’s assertions are sent a state change notification
event informing them of the retraction(s).

For a different example, consider an actor representing a shared mutable
reference cell holding a number. A new box is created by choosing a name id
and launching the actor

actor box 0 [{?(set, id , ?), (value, id , 0)}]



The new actor’s first action asserts both its interest in set messages labelled
with id as well as the fact that the value of box id is currently 0. Its behavior is
given by the function box from sec. 2.1. Upon receipt of a set message bearing a
new value vc, the actor replaces its private state value with vc and constructs a
single action specifying the new set of facts the actor wants to assert. This new
set of facts includes the unchanged set-message subscription as well as a new
value fact, thereby replacing vo with vc in the shared dataspace.

To read the value of the box, clients either include an appropriate assertion
in their initially declared interests or issue it later:

actor boxClient () [{?(value, id , ?)}]

As corresponding facts come and go in response to actions taken by the box actor
they are forwarded to interested parties. For example, an actor that increments
the number held in the box each time it changes would be written

boxClient {(value, id , v)} () = ([〈(set, id , v + 1)〉], ())

Our next example demonstrates demand matching. The need to measure
demand for some service and allocate resources in response appears in different
guises in a wide variety of concurrent systems. Here, we imagine a client, A,
beginning a conversation with some service by adding (hello, A) to the shared
dataspace. In response, the service should create a worker actor to talk to A.

The “listening” part of the service is spawned as follows:

actor demandMatcher ∅ [{?(hello, ?)}]

Its behavior function is defined as follows:

demandMatcher πnew πold = ([mkWorker x | (hello, x) ∈ πnew − πold ], πnew )

The actor-private state of demandMatcher , πold , is the set of currently-asserted
hello tuples.1 The incoming event, πnew , is the newest version of that set from
the environment. The demand matcher performs set subtraction to determine
newly-appeared requests and calls a helper function mkWorker to produce a
matching service actor for each:

mkWorker x = actorworker (initialStateFor x) (initialActionsFor x)

Thus, when (hello, A) first appears as a member of πnew , the demand matcher
invokes mkWorker A, which yields a request to create a new worker actor that
talks to client A. The conversation between A and the new worker proceeds from
there. A more sophisticated implementation of demand matching might maintain
a pool of workers, allocating incoming conversation requests as necessary.

Our final example demonstrates an architectural pattern seen in operating
systems, web browsers, and cloud computing. Fig. 2 sketches the architecture of
a Syndicate program implementing a word processing application with mul-
tiple open documents, alongside other applications and a file server actor. The
“Kernel” network is at the bottom of this tree-like representation of containment.
1 Our implementations of Syndicate internalise assertion sets as tries (sec. 3.3)
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Fig. 2: Layered File Server / Word Processor architecture

The hierarchical nature of Syndicate means that each network has a con-
taining network in turn. Actors may interrogate and augment assertions in the
dataspaces of containing networks by prefixing assertions relating to the nth
relative network layer with n harpoons �. Syndicate networks relay �-labelled
assertions outward and relay assertions matching �-labelled interests inward.

In this example, actors representing open documents communicate directly
with each other—via a local network scoped to the word processor—and only
indirectly with other actors in the system. When the actor for a document decides
that it is time to save its content to the file system, it issues a message such as

〈�(save, "novel.txt", "Call me Ishmael.")〉

into its local network. The harpoon (�) signals that, like a system call in regular
software applications, the message is intended to be relayed to the next outermost
network—the medium connecting the word processing application as a whole to
its peers. Once the message is relayed, the message

〈(save, "novel.txt", "Call me Ishmael.")〉

is issued into the outer network, where it may be processed by the file server. The
harpoon is removed as part of the relaying operation, and no further harpoons
remain, indicating that the message should be processed here, at this network.

The file server responds to two protocols, one for writing files and one for
reading file contents and broadcasting changes to files as they happen. These
protocols are articulated as two subscriptions:

{?(save, ?, ?), ??(contents, ?, ?)}

The first indicates interest in save messages. When a save message is received,
the server stores the updated file content.

The second indicates interest in subscriptions in the shared dataspace, an
interest in interest in file contents. This is how the server learns that peers wish
to be kept informed of the contents of files under its control. The file server is
told each time some peer asserts interest in the contents of a file. In response, it
asserts facts of the form

(contents, "novel.txt", "Call me Ishmael.")



and keeps them up-to-date as save commands are received, finally retracting
them when it learns that peers are no longer interested. In this way, the shared
dataspace not only acts as a kind of cache for the files maintained on disk, but
also doubles as an inotify-like mechanism [6] for signalling changes in files.

Our examples illustrate the key properties of Syndicate and their unique
combination. Firstly, the box and demand-matcher examples show that Syndi-
cate conversations may involve many parties, generalizing the Actor model’s
point-to-point conversations. At the same time, the file server example shows
that Syndicate conversations are more precisely bounded than those of tradi-
tional Actors. Each of its networks crisply delimits its contained conversations,
each of which may therefore use a task-appropriate language of discourse.

Secondly, all three examples demonstrate the shared-dataspace aspect of
Syndicate. Assertions made by one actor can influence other actors, but cannot
directly alter or remove assertions made by others. The box’s content is made
visible through an assertion in the dataspace, and any actor that knows id can
retrieve the assertion. The demand-matcher responds to changes in the datas-
pace that denote the existence of new conversations. The file server makes file
contents available through assertions in the (outer) dataspace, in response to
clients placing subscriptions in that dataspace.

Finally, Syndicate places an upper bound on the lifetimes of entries in the
shared space. Items may be asserted and retracted by actors at will in response
to incoming events, but when an actor crashes, all of its assertions are auto-
matically retracted. If the box actor were to crash during a computation, the
assertion describing its content would be visibly withdrawn, and peers could take
some compensating action. The demand matcher can be enhanced to monitor
supply as well as demand and to take corrective action if some worker instance
exits unexpectedly. The combination of this temporal bound on assertions with
Syndicate’s state change notifications gives good failure-signalling and fault-
tolerance properties, improving on those seen in Erlang [7].

2.3 Formal Syndicate Semantics

Fig. 3a shows the syntax of Syndicate machine configurations, along with a
metafunction boot, which loads programs in P into starting machine states in �.

The reduction relation operates on actor states Σ = #”e . B . #”a , which are
triples of a sequence of events #”e destined for the actor, the actor’s behavior
and state B, and a sequence of actions #”a issued by the actor and destined for
processing by its containing network. The behavior and state of leaf actors is a
pair (f, u); the behavior of a network actor is determined by the reduction rules
of Syndicate, and its state is a configuration.

Network Configurations C comprise three registers: a sequence of actions to
be performed

#        ”

(k, a), each labelled with some location k denoting the origin of the
action; the current contents of the shared dataspace R; and a sequence of actors
#           ”

` 7→ Σ residing within the configuration. Each actor is assigned a locally-unique
label `, scoped strictly to the configuration and meaningless outside. Labels are
never made visible to leaf actors: they are an internal matter, used solely as part



Configurations C ∈ C ::= [
#        ”

(k, a) ; R ;
#”
A]

Actors A ∈ O ::= ` 7→ Σ
Actor States Σ ∈ � ::= #”e . B . #”a

Behaviors B ∈ B ::= (f, u) | C
Shared Dataspaces R ∈ R = P(Lift(L)× S)

Locations j, k ∈ Lift(L) ::= ` | �
Local Labels ` ∈ L = N

Events e ∈ E ::= 〈c〉 | π
Actions a ∈ A ::= 〈c〉 | π | P

boot : P→ �

boot (actor f u #”a ) = · . (f, u) . #”a

boot (net
#”
P ) = · . [

#         ”

(�, P ) ; ∅ ; ·] . ·
(a)

AQ ∈ OQ ::= ` 7→ ΣQ

ΣQ ∈ �Q ::= #”e . B . ·
Quiescent Terms

CI ∈ CI ::= [ · ; R ;
#  ”
AI ]

AI ∈ OI ::= ` 7→ ΣI

ΣI ∈ �I ::= · . BI . ·
BI ∈ BI ::= (f, u) | CI

Inert Terms

(b)

Fig. 3: Evaluation Syntax and Inert and Quiescent Terms of Syndicate

of the behavior of network actors. The locations marking each queued action
in the configuration are either the labels of some contained actor or the special
location � denoting an action resulting from some external force, such as an event
arriving from the configuration’s containing configuration.

The reduction relation drives actors toward quiescent and even inert states.
Fig. 3b defines these syntactic classes, which are roughly analogous to values in
the call-by-value λ-calculus. An actor is quiescent when its sequence of actions
is empty, and it is inert when, besides being quiescent, it has no more events to
process and cannot take any further internal reductions.

The reductions and metafunctions of Syndicate are shown in figs. 4 and 5.
Rules notify-leaf and exception deliver an event to a leaf actor and update its
state based on the results. An exception results in the failing actor becoming
inert and issuing a synthesised action retracting all its previous assertions.

Rule notify-net delivers an event to a network actor. Not only is the arriving
event labelled with the special location � before being enqueued, it is transformed
by the metafunction inp, which prepends a harpoon marker to each assertion
contained in the event. This marks the assertions as pertaining to the next
outermost network, rather than to the local network.

Rule gather reads from the outbound action queue of an actor in a network.
It labels each action with the label of the actor before enqueueing it in the
network’s pending action queue for processing.

The newtable rule is central. A queued state change notification action (k, π)
not only replaces assertions associated with location k in the shared dataspace
but also inserts a state change notification event into the event queues of in-
terested local actors via the metafunction bc (short for “broadcast”). Because k
may have made assertions labelled with �, newtable also prepares a state change
notification for the wider environment, using the out metafunction.



#”e e0 . (f, u) .
#”a −→ #”e . (f, u′) . #”a ′ #”a when f (e0, u) = ( #”a ′, u′) (notify-leaf)

#”e e0 . (f, u) .
#”a −→ · . (λeu.(·, u), u) . ∅ #”a when f (e0, u) ∈ Err (exception)

#”e e0 . [ · ; R ;
#  ”
AI ] .

#”a −→ #”e . [(�, inp(e0)) ; R ;
#  ”
AI ] .

#”a (notify-net)

#”e . [
#        ”

(k, a) ; R ;
#   ”
AQ(` 7→ #”e ′ . B . #”a ′a′′)

#”
A] . #”a −→

#”e . [(`, a′′)
#        ”

(k, a) ; R ;
#   ”
AQ(` 7→ #”e ′ . B . #”a ′ )

#”
A] . #”a (gather)

#”e . [
#          ”

(k′, a)(k, π) ; R ;
#   ”
AQ ] . #”a −→

#”e . [
#          ”

(k′, a) ; R⊕ (k, π) ;
#                                 ”

bc(k, π,R,AQ)] . out(k, π,R)
#”a (newtable)

#”e . [
#          ”

(k′, a)(k, 〈c〉) ; R ;
#   ”
AQ ] . #”a −→

#”e . [
#          ”

(k′, a) ; R ;
#                                     ”

bc(k, 〈c〉, R,AQ)] . out(k, 〈c〉, R) #”a (message)

#”e . [
#          ”

(k′, a)(k, P ) ; R ;
#   ”
AQ] .

#”a −→ #”e . [
#          ”

(k′, a) ; R ;
#   ”
AQ(` 7→ boot(P ))] . #”a (spawn)

where ` distinct from k, every k′, and the labels of every AQ

ΣQ −→ Σ′

#”e . [ · ; R ;
#  ”
AI(` 7→ ΣQ)

#   ”
AQ] .

#”a −→ #”e . [ · ; R ;
#   ”
AQ

#  ”
AI(` 7→ Σ′)] . #”a

(schedule)

Fig. 4: Reduction Semantics of Syndicate

Rule message performs send-message actions 〈c〉. The bc metafunction is
again used to deliver the message to interested peers, and out relays the message
on to the containing network if it happens to be labelled with �.

The bc metafunction computes the consequences of an action for a given
actor. When it deals with a state change notification, the entire aggregate shared
dataspace R is projected according to the asserted interests of each actor. The
results of the projection are assembled into a state change notification. When
bc deals with a message, a message event 〈c〉 is enqueued for an actor with local
label ` only if it has previously asserted interest in c; that is, if (`, ?c) ∈ R.

The out metafunction never produces an action for transmission to the outer
network when the cause of the call to out is an action from the outer network.
Without this rule, configurations would never become inert.

The spawn rule allocates a fresh local label ` and places the configuration to
be spawned into the collection of local actors, alongside its siblings.

Finally, the schedule rule allows quiescent, non-inert contained actors to take
a step and rotates the sequence of actors as it does so. Variations on this rule
can express different scheduling policies. For example, sorting the sequence de-
creasing by event queue length prioritizes heavily-loaded actors.



⊕ : R× (Lift(L)× �) −→ R
R⊕ (k, π) = {(j, c) | (j, c) ∈ R, j 6= k} ∪ {(k, c) | c ∈ π}

bc : Lift(L)× E× R×OQ −→ O

bc(k, π, Rold , ` 7→ #”e . B . ·) =

{
` 7→ πnew #”e . B . · when πnew 6= πold

` 7→ #”e . B . · when πnew = πold

where Rnew = Rold ⊕ (k, π)

πnew = {c | (j, c) ∈ Rnew , (`, ?c) ∈ Rnew}
πold = {c | (j, c) ∈ Rold , (`, ?c) ∈ Rold}

bc(k, 〈c〉, R, ` 7→ #”e . B . ·) =


` 7→ 〈c〉 #”e . B . · when (`, ?c) ∈ R and either k = �

or ¬∃d s.t. c =�d

` 7→ #”e . B . · otherwise

inp : E −→ A
inp(π) = {�c | c ∈ π}

inp(〈c〉) = 〈�c〉

out : Lift(L)× E× R −→ #”A
out(�,_,_) = · (empty sequence of actions)
out(`, π,R) = {c | (j, �c) ∈ R⊕ (`, π), j 6= �} (sequence of single π action)

out(`, 〈c〉,_) =

{
〈d〉 when c = �d

· otherwise

Fig. 5: Metafunctions for Semantics

2.4 Properties

Two theorems capture invariants that support the design of and reasoning about
effective protocols for Syndicate programs. Theorem 1 assures programmers
that the network does not invalidate any reasoning about causality that they in-
corporate into their protocol designs. Theorem 2 makes a causal connection be-
tween the actions of an actor and the events it subsequently receives. It expresses
the purpose of the network: to keep actors informed of exactly the assertions and
messages relevant to their interests as those interests change.

Theorem 1 (Order preservation). If an actor produces action A before ac-
tion B, then A is interpreted by the network before B. Events are enqueued atom-
ically with interpretation of the action that causes them. If event C for actor `
is enqueued before event D, also for `, then C is delivered before D.



Proof (sketch). The reduction rules consistently move items one-at-a-time from
the front of one queue to the back of another, and events are only enqueued
during action interpretation. ut

Theorem 2 (Causality). If π` is the most recently interpreted state change
notification action from actor ` in some network, then events e subsequently
enqueued for ` are bounded by π`. That is, if e = π′, then π′ ⊆ {c | ?c ∈ π`}; if
e = 〈d〉, then ?d ∈ π`.

Proof (sketch). Interpretation of π` updates R so that {c | (`, c) ∈ R} = π`. The
`-labelled portion of R is not altered until the next state change notification
from ` is interpreted. The updated R is used in bc to compute events for ` in
response to interpreted actions; the rest follows from the definition of bc. ut

3 Efficiency Considerations

Taking sec. 2.3 literally implies that Syndicate networks convey entire sets of
assertions to and fro every time the dataspace changes. While wholesale trans-
mission is a convenient illusion, it is intractable as an implementation strategy.
Because the change in state from one moment to the next is usually small, ac-
tors and networks transmit redundant information with each action and event.
In short, Syndicate needs an incremental semantics (sec. 3.1).

Relatedly, while many actors find natural expression in terms of whole sets
of assertions, some are best expressed in terms of reactions to changes in state.
Supporting a change-oriented interface between leaf actors and their networks
simplifies the programmer’s task in these cases (sec. 3.2).

Regardless of how programmers articulate leaf actors, an implementation of
Syndicate requires fast computation of the overlap between one actor’s actions
and the declared interests of others. From the definitions of bc and out we know
that the chosen data representation must support a variety of set operations on,
and between, assertion sets and shared dataspaces. These structures may include
wildcards, making them infinite. Choice of data structure for these sets is key to
an efficient Syndicate implementation (sec. 3.3).

3.1 Deriving an Incremental Semantics for Syndicate

Starting from the definitions of sec. 2, we replace assertion-set events with
patches. Patches allow incremental maintenance of the shared dataspace without
materially changing the semantics in other respects. When extended to code in
leaf actors, they permit incremental computation in response to changes.

The required changes to Syndicate’s program syntax are small: we replace
assertion sets π with patches ∆ in the syntax of events and actions.

Events e ∈ E ::= 〈c〉 | ∆
Actions a ∈ A ::= 〈c〉 | ∆ | P

Patches ∆ ∈ � ::=
πadd
πdel

where πadd ∩ πdel = ∅



All other definitions from fig. 1 remain the same. The configuration syntax is
as before, except that queued events and actions now use patches instead of
assertion sets. Behavior functions, too, exchange patches with their callers.

Patches denote changes in assertion sets. They are intended to be applied to
some existing set of assertions. The notation is chosen to resemble a substitution,
with elements to be added to the set written above the line and those to be
removed below. We require that a patch’s two sets be disjoint.

To match the exchange of patches for assertion sets, we replace the newtable
reduction rule from fig. 4 with a rule for applying patches:

#”e . [
#          ”

(k′, a)(k,
πadd
πdel

) ; R ;
#   ”

AQ] .
#”a −→

#”e . [
#          ”

(k′, a) ; R⊕ (k,∆′) ;
#                                        ”

bc∆(k,∆
′, R,AQ)] . out(k,∆

′, R) #”a (patch)

where
∆′ =

πadd − {c | (k, c) ∈ R}
πdel ∩ {c | (k, c) ∈ R}

The effect of the definition of ∆′ is to render harmless any attempt by k to add
an assertion it has already added or retract an assertion that is not asserted.

The ⊕ operator, defined in fig. 5 for wholesale assertion-set updates, is
straightforwardly adapted to patches:

R⊕ (k,
πadd
πdel

) = R ∪ {(k, c) | c ∈ πadd} − {(k, c) | c ∈ πdel}

The inp metafunction is likewise easily adjusted:

inp(
πadd
πdel

) =
{ �c | c ∈ πadd}
{ �c | c ∈ πdel }

It is the out metafunction that requires deep surgery. We must take care not
only to correctly relabel assertions in the resulting patch but to signal only true
changes to the aggregate set of assertions of the entire network:

out(`,
πadd
πdel

, R) =
{c | �c ∈ πadd − π`�}
{c | �c ∈ πdel − π`�}

where π`� = {c | (j, c) ∈ R, j 6= `, j 6= �}

The definition of π`� here is analogous to that of π• in the definition of bc∆, which
also filters R to compute a mask applied to the patch. There is one key difference
between π• and π`�. Assertions learned as feedback from the containing network
(i.e., those labelled with � in R) are discarded when computing the aggregate set
π`� of local assertions pertaining to the containing network. While a contained
actor’s assertions feed directly into the assertions made by the group as a whole,
those received from the containing network must not.

The metafunction bc∆ (fig. 6) constructs a state change notification tailored
to the interests of the given actor `. The notification describes the net change



bc∆ : Lift(L)× �× R×OQ −→ O

bc∆(k,
πadd

πdel
, Rold , ` 7→ #”e . B . ·) =


` 7→ ∆fb

#”e . B . · if ` = k and ∆fb 6= ∅
∅

` 7→ ∆other
#”e . B . · if ` 6= k and ∆other 6= ∅

∅
` 7→ #”e . B . · otherwise

where ∆fb =
{c | c ∈ π•add , (`, ?c) ∈ Rnew} ∪ {c | c ∈ (π◦ ∪ π•add − π•del), ?c ∈ πadd}
{c | c ∈ π•del , (`, ?c) ∈ Rold } ∪ {c | c ∈ π◦, ?c ∈ πdel }

∆other =
{c | c ∈ π•add , (`, ?c) ∈ Rold}
{c | c ∈ π•del , (`, ?c) ∈ Rold} π• = {c | (j, c) ∈ Rold , j 6= k}

Rnew = Rold ⊕ (`,
πadd

πdel
) π•add = πadd − π•

π◦ = {c | (j, c) ∈ Rold} π•del = πdel − π•

Fig. 6: Definition of bc∆ metafunction

to the shared dataspace caused by actor k’s patch action—as far as that change
is relevant to the interests of `. The patch ∆fb that bc∆ constructs as feedback
when ` = k differs from the patch ∆other delivered to k’s peers. While assertions
made by k’s peers do not change during the reduction, k’s assertions do. Not only
must new assertions in πadd be considered as potentially worthy of inclusion, but
new subscriptions in πadd must be given the opportunity to examine the entirety
of the aggregate state. Similar considerations arise for πdel .

The final change adjusts the exception rule to produce ∅
{?} ∈ ∆ instead of

∅ ∈ π as the action that retracts all outstanding assertions of a crashing process:

#”e e0 . (f, u) .
#”a −→ · . (λeu.(·, u), u) . ∅

{?}
#”a when f (e0, u) ∈ Err (exceptionI)

Equivalence Theorem. Programs using the incremental protocol and se-
mantics are not directly comparable to those using the monolithic semantics
of the previous section. Each variation uses a unique language for communi-
cation between networks and actors. However, any two assertion sets π1 and
π2 can be equivalently represented by π1 and a patch π2−π1

π1−π2
, because π2 =

π1 ∪ (π2 − π1)− (π1 − π2) and (π2 − π1) ∩ (π1 − π2) = ∅.
This idea suggests a technique for embedding an actor communicating via the

monolithic protocol into a network that uses the incremental protocol. Specif-
ically, the actor integrates the series of incoming patches to obtain knowledge
about the state of the world, and differentiates its outgoing assertion sets with
respect to previous assertion sets.

Every monolithic leaf actor can be translated into an equivalent incremental
actor by composing its behavior function with a wrapper that performs this on-



the-fly integration and differentiation. The reduction rules ensure that, if every
monolithic leaf actor in a program is translated into an incremental actor in this
way, each underlying monolithic-protocol behavior function receives events and
emits actions identical to those seen in the run of the unmodified program using
the monolithic semantics.

Let us imagine hierarchical configurations as trees like the one in fig. 2. Each
actor and each network becomes a node, and each edge represents the pair of
queues connecting an actor to its container. For a monolithic-protocol configu-
ration to be equivalent to an incremental-protocol configuration, it must have
the same tree shape and equivalent leaf actors with identical private states. Fur-
thermore, at each internal monolithic node (i.e., at each network), the shared
dataspace set must be identical to that in the corresponding incremental node.
Finally, events and actions queued along a given edge on the monolithic side
must have the same effects as those queued on the corresponding incremental
edge. If these conditions are satisfied, then reduction of the monolithic configu-
ration proceeds in lockstep with the equivalent incremental configuration, and
equivalence is preserved at each step.

While dataspace equality is simple set equality, comparing the effects of
monolithic and incremental action queues calls for technical definitions. Corre-
sponding slots in the queues must contain either identical message-send actions,
spawn actions that result in equivalent actors, or state change notifications that
have the same effect on the shared dataspace in the container. Comparing event
queues is similar, except that instead of requiring state change notifications to
have identical effects on the shared dataspace, we require that they instead iden-
tically modify the perspective on the shared dataspace that the actor they are
destined for has been accumulating.

We write ΣM ≈ ΣI to denote equivalence between monolithic and incremental
states, and use M and I subscripts for monolithic and incremental constructs gen-
erally. We write JPMK to denote the translation of a monolithic-protocol program
into the incremental-protocol language using the wrapping technique sketched
above. The translation maintains additional state with each leaf actor in order
to compute patches from assertion sets and vice versa and to expose informa-
tion required for judging equivalence between the two kinds of machine state.
Where a leaf actor has private state u in an untranslated program, it has state
(u, πi, πo) in the translated program. The new registers πi and πo are the actor’s
most recently delivered and produced assertion sets, respectively.

Theorem 3 (Incremental Protocol Equivalence). For every monolithic
program PM, if there exists ΣM such that boot(PM) −→n

M ΣM for some n ∈ N,
then there exists a unique ΣI such that boot(JPMK) −→n

I ΣI and ΣM ≈ ΣI.

Proof (sketch). We first define LPMM to mean augmentation of the monolithic
program with the same additional registers as provided by JPMK. Second, we
define an equivalence between translated and untranslated monolithic machine
states that ignores the extra registers, and prove that reduction respects this
equivalence. Third, we prove that LPMM and JPMK reduce in lockstep, and that



equivalence between translated monolithic and incremental states is preserved
by reduction. Finally, we prove that the two notions of equivalence together
imply the desired equivalence. The full proof takes the form of a Coq script,
available via www.ccs.neu.edu/racket/pubs/#esop16-gjf. ut

3.2 Programming with the Incremental Protocol

The incremental protocol occasionally simplifies programming of leaf actors, and
it often improves their efficiency. Theorem 3 allows programmers to choose on
an actor-by-actor basis which protocol is most appropriate for a given task.

For example, the demand-matcher example from sec. 2.2 can be implemented
in a locally-stateless manner using patch-based state change notifications. It is no
longer forced to maintain a record of the most recent set of active conversations,
and thus no set subtraction is required. Instead, it can rely upon the added and
removed sets in patch events it receives from its network:

actor demandMatcher ()

[
{?(hello, ?)}

∅

]

demandMatcher
πadd
πdel

() = ([mkWorker x | (hello, x) ∈ πadd ] , ())

More generally, theorem 4 can free actors written using the incremental pro-
tocol from maintaining sets of assertions they have “seen before”; they may rely
on the network to unambiguously signal (dis)appearance of assertions.

Theorem 4 (Duplicate-freedom). For all pairs of events e = π1

π2
and e′ = π3

π4

delivered to an actor, c ∈ π1 ∩ π3 only if some event π5

π6
was delivered between e

and e′, where c ∈ π6. Symmetrically, c cannot be retracted twice without being
asserted in the interim.

Proof (sketch). The patch rule prunes patch actions against R to ensure that
only real changes are passed on in events. R itself is then updated to incorporate
the patch so that subsequent patches can be accurately pruned in turn. ut

3.3 Tries for Efficient Dataspace Implementation

Our implementations of Syndicate use a novel trie-based [8] associative map
structure, making it possible to compute metafunctions such as bc, bc∆ and out
efficiently. These tries index Syndicate dataspaces, assertion sets, and patches.
When a network routes an event, it matches the event’s assertions against the
assertions laid out along the paths of the trie to find the actors interested in
the event. The trie-based organization of the dataspace allows the network to
rapidly discard irrelevant portions of the search space.

While a trie must use sequences of tokens as keys, we wish to key on trees.
Hence, we must map our tree-shaped assertions, which have both hierarchical
and linear structure, to sequences of tokens that encode both forms of structure.

www.ccs.neu.edu/racket/pubs/#esop16-gjf


Values v, w ∈ V ::= x | (v, w, ...)
Patterns p, q ∈ Q ::= x | (p, q, ...) | ?
Atoms x, y, z ∈ X Integers, Strings, Symbols, etc.
Tokens σ ∈ K ::= x | � | � | ?
Tries r ∈ T ::= ok({j, k, ...}) | br( #          ”σ 7→ r) | tl(r)

Fig. 7: Values, Patterns and Tries

J·K : Q −→ #”K
JxK = x

J(p, q, ...)K =� JpK JqK ... �
J?K = ?

Example: J (sale,milk, (1,pt), (1.17,USD) ) K =
� sale milk� 1 pt�� 1.17 USD��

Fig. 8: Compiling patterns (and values) to token sequences.

To this end, we reinterpret assertions as sequences of tokens by reading them
left to right and inserting distinct “push” and “pop” tokens � and � to mark
entry to, and exit from, nested subsequences.2

Fig. 7 shows the syntax of values, patterns, and tries, and fig. 8 shows how
we read patterns and values as token sequences. A value may be an atom x or
a tuple of values (v, w, ...). Patterns extend values with wildcard ?; hence, every
value is a pattern. Tries involve three kinds of node:

ok({j, k, ...}) is a leaf. The tokens along the path from the root of the trie to this
leaf represent assertions made by actors at locations {j, k, ...}. The locations
are a set because more than one actor may be making the same assertion at
the same time.

br( #          ”σ 7→ r) is a branch node, with edges labelled with tokens σ leading to nested
tries r.

tl(r) nodes are ephemeral. During routing computations, they arise from spe-
cializing an edge ? 7→ r to � 7→ tl(r), and they disappear as soon as a
matching generalization is possible. As such, they match balanced sequences
of tokens until an unmatched � appears, and then continue as r.

For example, consider the dataspace where actor 1 has asserted the (infinite)
assertion set {(a, ?)} and actor 3 has asserted {(?, b)}. Its trie representation is

br(� 7→ br(a 7→ br(b 7→ br(� 7→ ok({1, 3})),
? 7→ br(� 7→ ok({1}))),

? 7→ br(b 7→ br(� 7→ ok({3})))))
2 Inspired by Alur and Madhusudan’s work on nested-word automata [9].



route :
#          ”

(K\?)× T −→ P(Lift(L))

route(· , r) =

{
locations if r = ok(locations)

∅ otherwise

route(σ′ #”σ , ok(locations)) = ∅

route(σ′ #”σ , br(h)) =

{
∅ if h = ∅
route( #”σ , get(h, σ′)) if h 6= ∅

route(� #”σ , tl(r)) = route( #”σ , r)

route(� #”σ , tl(r)) = route( #”σ , tl(tl(r)))

route(x #”σ , tl(r)) = route( #”σ , tl(r))

get(h, σ) =



r if (σ 7→ r) ∈ h
br(∅) if (σ 7→ r) /∈ h and σ = ?

tl(get(h, ?)) if (σ 7→ r) /∈ h and σ =�
untl(get(h, ?)) if (σ 7→ r) /∈ h and σ =�
get(h, ?) if (σ 7→ r) /∈ h and σ /∈ {?,�,�}

untl(r) =

{
r′ if r = tl(r′)

br(∅) otherwise

Fig. 9: Message routing using tries.

If actor 2 wishes to assert {(?, ?)}, the network receives the trie

br(� 7→ br(? 7→ br(? 7→ br(� 7→ ok({2})))))

and computes the union of this trie with its current dataspace during processing
of the newtable rule, yielding the updated dataspace trie

br(� 7→ br(a 7→ br(b 7→ br(� 7→ ok({1, 2, 3})),
? 7→ br(� 7→ ok({1, 2}))),

? 7→ br(b 7→ br(� 7→ ok({2, 3})),
? 7→ br(� 7→ ok({2})))))

Routing of messages is done with the route function of fig. 9. Evaluating
route(JvK, r) yields the set of locations in r to which a message 〈v〉 should be
sent. If a specific token is not found in a branch, route takes the ? branch, if one
exists. No backtracking is needed. Notice what happens when� is to be matched
against br(h) where� 6∈ dom(h) and ? 7→ r ∈ h. The result of get(h,�) is tl(r),
which requires the matcher to consume tokens until a matching� is seen before
continuing to match the rest of the input against r.

Routing of state change notifications requires finding all actors making asser-
tions that overlap an assertion set or patch. Our implementation relies on a set



combine : T× T× (T× T→ T)→ T
combine(r1, r2, f) = g(r1, r2)

where g(tl(r1), tl(r2)) =

{
tl(g(r1, r2)) when g(r1, r2) 6= br(∅)
br(∅) otherwise

g(tl(r1), r2) = g(expand(r1), r2)

g(r1, tl(r2)) = g(r1, expand(r2))

g(ok(α1), r2) = f(ok(α1), r2)

g(r1, ok(α2)) = f(r1, ok(α2))

g(br(h1), br(h2)) =

br(dedup({g(get(h1, σ), get(h2, σ))

| σ ∈ dom(h1) ∪ dom(h2)}))

expand : T −→ T
expand(r) = br({? 7→ tl(r), � 7→ r})

dedup : (K 7→ T) −→ (K 7→ T)
dedup(h) = {σ 7→ r | σ 7→ r ∈ h, distinct(σ, r, h)}

distinct : K× T× (K 7→ T) −→ 2

distinct(?, r, h) = (r 6= br(∅))

distinct(�, r, h) =

{
r′ 6= get(h, ?) if r = tl(r′)

r 6= br(∅) otherwise

distinct(�, r, h) = (r 6= untl(get(h, ?)))

distinct(x, r, h) = (r 6= get(h, ?))

Fig. 10: Operations on tries.

intersection calculation, as does the subsequent filtering needed before enqueue-
ing a patch event for an actor. Such set operations on trie maps are computed
by combine (fig. 10). Its third argument determines the operation. For example,
supplying funion computes trie union by lifting actor-location-set union to tries:

funion(ok(α1), ok(α2)) = ok(α1 ∪ α2)
funion(ok(α1), br(∅)) = ok(α1)
funion(br(∅), ok(α2)) = ok(α2)

Analogous definitions yield trie subtraction and trie intersection, but combine
also generalizes beyond simple set operations. For example, we use it to compute
values such as π•add , (part of bc∆, fig. 6), in a single pass over πadd and R.



Implementation of our tries and the functions operating upon them requires
care. While the algorithms shown in figs. 9 and 10 are correct, an implementation
must apply three important optimizations, not shown here for lack of space, to
be performant. First, combine’s g must, if possible, avoid iterating over both h1
and h2 when its two arguments are both br. For most applications of combine,
g treats the larger of the two as a base against which the smaller of the two
is applied. Second, efficient implementation of distinct from fig. 10 relies on
cheaply testing equality between tries. To address this, we hash-cons [10] to force
pointer-equality to hold exactly when set equality holds for our tries. Finally, we
use smart constructors extensively to enforce invariants that would otherwise be
distributed throughout the codebase.

4 Pragmatics of Syndicate’s Performance

While the unicast, address-based routing of Actors makes an efficient implemen-
tation straightforward, Syndicate’s multicast messages place new demands on
implementations. Furthermore, Syndicate offers communication via assertions,
and in order to provide a usable service we must discover the boundaries of
acceptable performance for this new medium.

4.1 Reasoning about Routing Time and Delivery Time

For messaging protocols using address-based routing, computation of the set of
recipients (“routing”) should take time in Õ(|address|). More general messaging
protocols effectively use more of each message as address information. In such
cases, routing time should be bounded by Õ(|message|). In either case, noting
that |address| ≤ |message|, delivery to all n interested recipients (“delivery”)
should take time in Õ(n), for Õ(|message| + n) overall processing time. Actor-
style unicast messaging is then a special case, where the address is the target
process ID, the size of the message body is irrelevant, and n = 1.

Communication via assertions happens through state change notifications.
Programmers might reasonably expect that routing time should be bounded
by the number of assertions in each notification, which is why the incremental
semantics using patches instead of full sets is so important. A complication
arises, however, when one considers that patches written using wildcards refer
to infinite sets of assertions. Our trie-based representation of assertion sets takes
care to represent such infinite sets tractably, but the programmer cannot assume
a routing time bounded by the size of the representation of the notification. To see
this, consider that asserting ? forces a traversal of the entirety of the ?-prefixed
portion of the dataspace to discover every active interest.

Fortunately, routing time can be bounded by the size of the representation
of the intersection of the patch being processed with the dataspace itself. When
processing a patch πadd

πdel
to a dataspace R, our function combine (fig. 10) explores

R only along paths that are in πadd or πdel . When reasoning about routing time,
therefore, programmers must set their expectations based on both the patches
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Fig. 11: Message Routing and Delivery Latencies, sec/msg vs. k

being issued and the assertions established in the environment to be modified
by each patch. After routing has identified the n actors to receive state change
notifications, the associated delivery time is in Õ(n), just as for messages.

4.2 Measuring Syndicate Performance

Notwithstanding the remarks above, we cannot yet make precise statements
about complexity bounds on routing and delivery costs in Syndicate. The diffi-
culty is the complex interaction between the protocol chosen by the Syndicate
programmer and the data structures and algorithms used to represent and ma-
nipulate assertion sets in the Syndicate implementation.

We can, however, measure the performance of our Racket-based Syndicate
implementation on representative protocols. For example, we expect that:

1. simple actor-style unicast messaging performs in Õ(1);
2. multicast messaging performs within Õ(|message|+ n);
3. state change notification performance can be understood; and
4. Syndicate programs can smoothly interoperate with the “real world.”

Unicast Messaging. We demonstrate a unicast, actor-like protocol using a simple
“ping-pong” program. The program starts k actors in a single Syndicate net-
work, with the ith peer asserting the subscription ?(ping, ?, i). When it receives
a message (ping, j, i), it replies by sending (ping, i, j). Once all k peers have
started, a final process numbered k+ 1 starts and exchanges messages with one
of the others until ten seconds have elapsed. It then records the overall mean
message delivery latency.

Fig. 11a shows message latency as a function of the number of actors. Each
point along the x-axis corresponds to a complete run with a specific value for k.
It confirms that, as expected, total routing and delivery latency is roughly Õ(1).

Broadcast Messaging. To analyze the behavior of broadcasting, we measure a
variation on the “ping-pong” program which broadcasts each ping to all k partic-
ipants. Each sent message results in k delivered messages. Fig. 11b shows mean
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Fig. 12: State Change Notification Cost, sec/notification vs. k

latency of each delivery against k. This latency is comprised of a fixed per-
delivery cost along with that delivery’s share of a fixed per-transmission routing
cost. In small groups, the fixed routing cost is divided among few actors, while
in large groups it is divided among many, becoming an infinitesimal contributor
to overall delivery latency. Latency of each delivery, then, is roughly Õ( 1k + 1).
Aggregating to yield latency for each transmission gives Õ(1 + k), as expected.

State Change Notifications. Protocols making use of state change notifications
fall into one of two categories: either the number of assertions relevant to an
actor’s interests depends on the number of actors in the group, or it does not.
Hence, we measure one of each kind of protocol.

The first program uses a protocol with assertion sets independent of group
size. A single “publishing” actor asserts the set {A}, a single atom, and k “sub-
scribers” are started, each asserting {?A}. Exactly k patch events {A}∅ are deliv-
ered. Each event has constant, small size, no matter the value of k.

The second program demonstrates a protocol sensitive to group size, akin to
a “chatroom” protocol. The program starts k “peer” actors in total. The ith peer
asserts a patch containing both (presence, i) and ?(presence, ?). It thereby
informs peers of its own existence while observing the presence of every other
actor in the network. Consequently, it initially receives a patch indicating its
own presence along with that of the i − 1 previously-started peers, followed by
k − i− 1 patches, one at a time as each subsequently-arriving peer starts up.

Measuring the time-to-inertness of differently-sized examples of each program
and dividing by the number of state change notification events delivered shows
that in both cases the processing required to compute and deliver each state
change notification is roughly constant even as k varies (fig. 12).

Communication with the Outside World An implementation of a TCP/IP “echo”
service validates our claim that Syndicate can effectively structure a concurrent
program that interacts with the wider world, because this service is a typical
representative of many network server applications.

A “driver” actor provides a pure Syndicate interface to socket functionality.
A new connection is signalled by a new assertion. The program responds by
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Fig. 13: Marginal cost of additional connections, sec/conn. vs. k

spawning an actor for the connection. When the connection closes, the “driver”
retracts the assertion, and the per-connection actor reacts by terminating.

The scalability of the server is demonstrated by gradually ramping up the
number of active connections. Our client program alternates between adding new
connections and performing work spread evenly across all open connections.
During each connection-opening phase, it computes the mean per-connection
time taken for the server to become ready for work again after handling the
batch of added connections. Fig. 13 plots the value of k, the total number of
connections at the end of a phase, on the (logarithmic) x-axis; on the y-axis,
it records mean seconds taken for the server to handle each new arrival. The
marginal cost of each additional connection remains essentially constant and
small, though the results are noisy and subject to GC effects.

5 Pragmatics of Syndicate Programming

Syndicate’s networks support both publish-subscribe interaction [5] and con-
tinuous queries [11,12] over dataspaces. To demonstrate the benefits of this dual
arrangement, we report highlights of Racket and Javascript Syndicate imple-
mentations of two new case studies: a rudimentary TCP/IP stack and a GUI-
based text entry widget, respectively.

TCP/IP Stack. Our TCP/IP stack (fig. 14) is structured similarly to a tradi-
tional operating system, with “kernel” services available in an outermost layer
and each application running in its own nested network. Applications thus re-
main isolated by default, able to access Ethernet, IP, or TCP services on demand,
and able to interact with peers via the Kernel-layer network as they see fit.

Our demo configuration includes a simple “hit counter” single-page HTTP
application, a TCP/IP-based chat server, and a simple UDP packet echo server.
The code for the chat server was originally written as a standalone program using
a Syndicate interface to the kernel’s TCP/IP stack. It needed nothing more
than a change of environment to run against our stack, since our stack shares
its protocol of assertions and messages with the Syndicate kernel interface.

Placing configuration information in the shared dataspace encourages a de-
sign that automatically adapts as the configuration changes. Actors receive their
initial configuration settings through the same mechanism that informs them
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Fig. 14: Layering of TCP/IP Stack Implementation

of later updates. For example, the IP routing table is configured by placing an
assertion for each route into the Kernel-layer network. An assertion such as

(gateway, 0.0.0.0/0, 192.168.1.1, wlan0)

specifies a default route via gateway 192.168.1.1 over ethernet interface wlan0.
IP interfaces self-configure in response to such assertions. An actor is spawned
for each interface. Each such actor asserts a tuple announcing its own existence.
The ARP implementation responds to these, using a demand-matcher to spawn
an ARP driver instance for each announced interface. If a route is removed,
the corresponding IP interface actor reacts by terminating. Its assertions are
removed, causing termination of the matching ARP driver instance in turn.

Each ARP driver instance maintains a cache of mappings between IP ad-
dresses and Ethernet MAC addresses, which it publishes into the shared datas-
pace. Actors forwarding IP datagrams query the shared dataspace to discover
the MAC address for the next hop by asserting a new interest. For example,
?(arpQuery, 10.2.3.4, ?) requests the MAC address associated with IP address
10.2.3.4. When the ARP driver sees a query for an IP address not in the
cache, it sends ARP packets to discover the needed information and asserts
results into the dataspace as they arrive. Thus, if 10.2.3.4 is at MAC address m,
(arpQuery, 10.2.3.4,m) is ultimately asserted, and the forwarding actor can ad-
dress its Ethernet packet. The idea is general; a similar protocol could be used
to proxy queries and cache query results for a relational database.

Assertions in shared dataspaces can be used to represent resource demand
and supply. We have already seen how the IP and ARP drivers spawn actors
in response to demand for their services. Another example is found in the port
allocation services that manage TCP and UDP port numbers. Each established
TCP or UDP endpoint claims its port via assertion, and the allocation services
monitor such assertions in order to avoid collisions and reclaim released ports.

Finally, assertions can be used to solve startup ordering problems and arrange
for the clean shutdown of services. Several actors must coordinate to produce a
complete, working IP interface. Each asserts its readiness to the next in line via
a tuple declaring the fact. Any actor depending on service X can simply monitor
the dataspace for assertions of the form “service X is ready” before publishing
its own readiness. By contrast, languages such as Java [13, §12.4] and C++ [14,



§3.6.2] solve their static initializer ordering problems via complex ad-hoc rules,
which sometimes leave ordering unspecified.

Text Entry Widget. Following Samimi [15], we constructed a simple text entry
GUI control. Samimi’s design proceeds in two stages. In the first, it calls for two
components: one representing the model of a text field, including its contents
and cursor position, and one acting as the view, responsible for drawing the
widget and interpreting keystrokes. In the second stage, a search component is
added, responsible for searching the current content of the model for a pattern
and collaborating with the view to highlight the results.

Our browser-hosted solution naturally has an actor for each of the three
components. The model actor maintains the current contents and cursor position
as assertions in the shared dataspace. The view actor observes these assertions
and, when they change, updates the display. It also subscribes to keystroke
events and translates them into messages understandable to the model actor.
The addition of the search actor necessitates no changes to the model actor. The
search actor observes the assertion of the current content of the field in the same
way the view actor does. If it finds a matching substring, it asserts this fact.
The view actor must observe these assertions and highlight any corresponding
portion of text.

6 Related Work

Syndicate draws directly on Network Calculus [2], which, in turn, has borrowed
elements from Actor models [16,17,18], process calculi [19,20,21,22,23], and actor
languages such as Erlang [7], Scala [24], E [25] and AmbientTalk [26].

This work makes a new connection to shared-dataspace coordination mod-
els [27], including languages such as Linda [28] and Concurrent ML (CML) [29].
Linda’s tuplespaces correspond to Syndicate’s dataspaces, but Linda is “gen-
erative,” meaning that its tuples take on independent existence once created.
Syndicate’s assertions instead exist only as long as some actor continues to
assert them, which provides a natural mechanism for managing resources and
dealing with partial failures (sec. 2). Linda research on failure-handling focuses
mostly on atomicity and transactions [30], though Rowstron introduces agent
wills [31] and uses them to build a fault-tolerance mechanism. Turning to mul-
tiple tuplespaces, the Linda variants Klaim [32] and Lime [33] offer multiple
spaces and different forms of mobility. Papadopoulos [34] surveys the many other
variations; Syndicate’s non-mobile, hierarchical, nameless actors and networks
occupy a hitherto unexplored point in this design space.

CML [29,35] is a combinator language for coordinating I/O and concur-
rency, available in SML/NJ and Racket [4, version 6.2.1, §11.2.1]. CML uses
synchronous channels to coordinate preemptively-scheduled threads in a shared-
memory environment. Like Syndicate, CML treats I/O, communication, and
synchronization uniformly. In contrast to Syndicate, CML is at heart transac-
tional. Where CML relies on garbage collection of threads and explicit “abort”



handlers to release resources involved in rolled-back transactions, Syndicate
monitors assertions of interest to detect situations when a counterparty is no
longer interested in the outcome of a particular action. CML’s threads inhabit a
single, unstructured shared-memory space; it has no equivalent of Syndicate’s
process isolation and layered media.

The routing problem faced by Syndicate is a recurring challenge in net-
working, distributed systems, and coordination languages. Tries matching pre-
fixes of flat data find frequent application in IP datagram routing [36] and are
also used for topic-matching in industrial publish-subscribe middleware [5,37].
We do not know of any other uses of tries exploiting visibly-pushdown lan-
guages [9,38] (VPLs) for simultaneously evaluating multiple patterns over semi-
structured data (such as the language of our assertions), though Mozafari et
al. [39] compile single XPath queries into NFAs using VPLs in a complex event
processing setting. A cousin to our technique is YFilter [40], which uses tries
to aggregate multiple XPath queries into a single NFA for routing XML docu-
ments to collections of subscriptions. Depth in their tries corresponds to depth
in the XML document; depth in ours, to position in the input tree. More closely
related are the tries of Hinze [41], keyed by type-directed preorder readings of
tree-shaped values. Hinze’s tries rely on types and lack wildcards.

7 Conclusion

Programmers constantly invent and re-invent design patterns that help them
address the lack of coordination mechanisms in their chosen languages. Even
the most recent implementations of actors fail to integrate the observer pat-
tern, conversations among groups of actors, and partial failure recovery. Instead
programmers fake these using administrative actors and brittle work-arounds.

Syndicate provides a blueprint for eliminating these problems once and for
all. Its shared dataspace directly provides the observer pattern and simultane-
ously enables clearly delimited conversations; data sharing automatically takes
care of failures. Our incremental semantics for Syndicate explains how to im-
plement the language in a uniformly efficient, scalable way.
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