EPFL, Lausanne, Switzerland; 20140407 // ESOP 2014, Grenoble, France; 20140410

The Network as a Language Construct

Tony Garnock-Jones Sam Tobin-Hochstadt Matthias Felleisen

Routing | Hierarchical
Events | Layering

Publish /Subscribe for Actors

Network
Calculus

Actor Programming Languages
Erlang/OTP, Scala/Akka, ...

Actor
Calculus

PART I: The Problem

Functional 1/0 Distributed Systems

Scaling up big-bang from Implementing RabbitMQ
domain-specific to general and using it to build
functional 1/0 distributed systems

Apps in a functional I/0O style: Investigated other paradigms:

* echo server « OO languages

* multi-user chat * Network architecture
 DNS server « CORBA services

* SSH server « Erlang applications

* Modern Unix services

Ubiquitous Patterns and Problems

Event broadcasting
Naming service
Service discovery
Startup ordering
Crash/exit signalling

Conversation management

Ubiquitous Patterns and Problems

Event broadcasting

Naming service

Uniform Linguistic Solution

Crash /exit signalling

Conversation management

Recipe for Actor Languages

Base language actor

f(()z,u) — (aa u/)

a = event, a = action

"Network"

log messages
Log producers — Log consumers

(log, [subsystem, severity, data))

Consumers filter by subsystem, severity

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

HEEINANAEE NN

PART II: Why Publish /Subscribe? How?

Q¢
O
o5

&)

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

¢ "Router"
¢ "Router"
"Router"
"Router"

000 0RQN

actor
actor
actor
actor

C3

C2

C1

R

P1 P2

(log, %) | | (log, %) | | (log, *)

Route by address Route by content

Messages m, = (1

m = (v)

v=u | v,V
/‘ Patterns P = U ’ D, P ’ *
T 7 Interests T = (p)

ddresses

(log, %) | | (log, %) | | (log, *)

Route by address Route by content
(log, *)
(C].,*) or

(log, [, error, x|)

(log, [Porl, *, %])

or

Basic Actor Model + Pub/sub

f = Base language functions
u = Base language values

B = (fvu)

)
A
C

a< B

~

:Z_
@ A

Behayviors

Actor States
Actors
Configurations

Events

Actions

Message values
Message patterns
Interests

T:a<B
T 1B
a; A

Actors

Quiescent Actors

Configurations

QQuiescent Configurations

Event broadcast

Ag -2 A/

[oidg; Ag) — [ao; A

f(O‘ f% ,U) — (aau/)
C — ' —

T-a(f,u) = 7ra<a(f,u)

Actions interpreted Event interpreted

Event Broadcast

Ag -2 A’

[a@o; Ag] — [@o; Z/]

T

OO1el Qv -

Event Filtering

alz:aXT— «

o] v x
D p

(v) [= (v), if I(p) € 7 such that v .

o [= otherwise undefined

Event Interpretation, 4 -2 A

T:.9B - %:.94B

(a[% is undefined)
7
T

8%

f(a E >u) — (5, u/)

(a % is defined)
<(f,u) —Traa(f,u)

Action Interpretation: Spawn

[@; Ag(7: A/a<B)A] — [a; Ag(F:a<B)A A]

Action Interpretation: Message send

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce it someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

¢ pub/sub
¢ pub/sub

¢ pub/sub
¢ pub/sub
#= no need!
[]

[]
¢ pub/sub

PART III: Why Routing Events? How?

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce if someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

SSISIRTNLIN(N

Shared Conversational Interest

Interests Subscription Advertisement

= ® | @

(p) M () =10
(@) " (@) =0
(p) M (q) = (pNq)
(@) m{p) = (PN q)

Any pattern language will do — if it supports n

What is a Routing Event?

/‘?{%new} 1

/

Told Tnew

From Actor to Network

T}

causes

é

il

From Network to Actor

Routing Events for Service Discovery

Client

{};‘/

(srv,)

Routing Events for Service Discovery

Client Server

{(srv,*)};! , {(srv,*>}4 P
(srv, %) (srv, %)

Routing Events for Presence Detection

(=

P
{}4/

(log, |[P1, %, x|)

Routing Events for Presence Detection

{(log, [P1,error,«])} *| } {{log, [P1, error, %]} ;‘ ,

(log, [P1, x, %]) (log, [*, error, x|)

log, [P1,%x,%x|] N log,[x,error,x] = log,|P1,error, x|

pager

Routing Events for Crash Detecti

®)

Cl1

“ {}4/

: e (log, [*, error, x|)

cf. Erlang's links/monitors [Armstrong 2003|

Basic Actor Model + Pub/sub + Routing Events

f = Base language functions
u = Base language values

B = (fvu)

)
A
C

a< B

~

:Z_
@ A

Behayviors

Actor States
Actors
Configurations

o =

()

| AT

a=a | A

v=u | v,V

p=u | p,p | *

(p)

| (p)

Events

Actions

Message values
Message patterns
Interests

Action Interpretation: Routing event

@ i AF: {FlaaB)A
— [@{F.); Ag(®: @< B4

5 () 1 m(8) s

0.9 FEo0 — 0.9 | ?w

—~~ N,

s s

{Fe} ™

Te = interests(Ag) U 7 U interests(A)

Event Filtering

alz:aXT—«

o] :vxp

(7T1n (N 7'('21) J-.-- U (7T1n (N 7T2m)}

o [= otherwise undefined

Logging: Requirements Scorecard

Route log entries from producers to consumers U pub /sub
Consumers filter log messages v pub /sub
Decouple producers from consumers Jz pub /sub
Avoid shared-state explosion {f pub/sub

Discovery of logging service U routing events

Only produce if someone's listening U routing events

Alert when a producer crashes/exits U routing events

Uniform treatment of I/O == not finished!

PART IV: Why Hierarchical Layering? How?

Logging: Requirements Scorecard

Route log entries from producers to consumers
Consumers filter log messages

Decouple producers from consumers

Avoid shared-state explosion

Discovery of logging service

Only produce it someone's listening

Alert when a producer crashes/exits

Uniform treatment of 1/0

(N

V4
V4
V4
V4
v 4
[]

not finished!

Layers make I/O Uniform

pager
N
- O
O
&7
Cl1
|
Logging —_— Logging pager

ordinary
actions

Pager communication

Layers Scope Conversations

OO OO C

~

A TR TC1 TC2 D

~ ~

[T T 1 1

!

Layers Scope Conversations

e

Q Q - %02

[T 1

A B Ye;

Layers Compose

One Layer = One Protocol

?34? Speak L3 (&Ls)

I 2.9

Speak L2 (&Ll)

I 0.9

Lo Speak L4

I 2.9

One Layer = One Protocol

TCP header

Encrypted payload

SSH comman d
App messag
ﬁ)ﬁ)? App protocol (&SSH)
L 9.9
App (REPL) Speak SSH (&TCP)
I 29.9
SSH commands Speak TCP

I

2.9

TCP

UDP header
DNS header

Question| Answer| Answer]|...

One Layer = One Protocol

Snoops via pub/sub to populate cache!

Network
subquery

Request
handler

Speak DNS (&UDP)

T T %929

DNS Speak UDP

I 2.9

Full Network Calculus

1) 79
; [1

7 7
LIIT] — ~

87 To
f = Base language functions a=m | {7} Events
u = Base language values a=a | A Actions
B=(f,u) | C Behaviors m=(v) | |« Messages
Y =a<dB Actor States v=u | v,v Message values
A=7m:¥ Actors p=u | pp | * Message patter:
C=[a; 7 ; A] Configurations ’

) m=(p) | (p) | |m Interests

Event Interpretation, 4 -2 A

inject (a % ,C) =’

7490 5 F. .40

T
C

(% is defined) /‘
T
)

Q

Event Interpretation: Routing event arrival

inject : a x C' — C
inject ({7}, [@; 7o ; A)) = [@ {7} ; () ; 4

Yl U il

~ ~ ~ ~ ~ ~

T o . T o . T

T
mamn %O {%.} Camnm lzft(%)

@ |

~

Fo =71 UTa U - - U,U lift(7)

C —

|

a<1C —a «C’

Action Interpretation: Routing event (with layering)

agp

— ao{drop(m

. ()
e N —

029 FFIo0.9

q[a

o)} <[TeTo) ;

~

T

o

—

I

Te = interests(Ag) U 7 U interests(A)

2.9 1

’7‘.‘_"/

???

To

WE{dmp(?f-)}

Logging: Requirements Scorecard

Route log entries from producers to consumers U pub /sub
Consumers filter log messages U pub /sub
Decouple producers from consumers U pub /sub
Avoid shared-state explosion v pub /sub
Discovery of logging service U routing events
Only produce if someone's listening U routing events
Alert when a producer crashes/exits U routing events
Uniform treatment of I/O {f layering
+ great additional benefits from layering

PART V: Conclusions

Marketplace Minimart JS-Marketplace

Typed Racket Racket Javascript
DNS server (UDP) Websocket driver Websocket driver
SSH server (TCP) Generic msg broker DOM driver

Chat server jQuery driver
Echo server Chat + roster

GUI composition

Details and experience report in the paper!

Thank you!

—— Network Calculus
Actor Calculus

. (see paper)
Actor Programming Language

+ Publish /Subscribe
+ Routing Events
+ Hierarchical Layering

Experience reports
(see paper)

http:/ /www.ccs.neu.edu/home /tonyg/marketplace/

Network Calculus Summary

1) 99

Q
L\
N L
Q
N\
< T
Q

7 7
(IT1] — ~
@7 To
f = Base language functions a=m | {7} Events
u = Base language values a=«a | A Actions
= (f,u) | ¢ Behaviors v=1u | v,V Message values
=a<b Actor States p— ¢ | pp | * Message patterns

(DY Actors
= [@; 7o ; A] Configurations (p) | {(p) | |m Subscriptions
m = (v) | |m Messages

A=7m:a«x B Actors

Ao =7%:. 4B Quiescent Actors
Ar=m:- 4By Inert Actors

C=la;T; Al Configurations
Co=[-;7; Ag] Quiescent Configurations

82
||
=
w
=

Inert Configurations

Br=(f,u) | C; Inert Behaviors

interests : A — 7

interests(m : X)) =T

Lift . m— 7

lift(T) = |m

drop : m — T

drop(7) = drop’ ()

/ f —
drop’ (1) = {7‘(’ it m=|m

otherwise

/

o] ioxp
(v) [= (v), if d(p) € 7 such that v|p
Imlz = |m,itm [drop(?r/)

(T} 7 = {(m11 M m21) U= U (11 M m20m)U

(7T1n (/) 7'('21) J---U (7T1n (/) 7T2m)}

a [otherwise undefined

TNT:TXT—T

)
)

pAp:pXp—p

unu=mu
P11, P12 N P21, P22 = (P11 N p21) , (P12 N P22)
pN*x=p
*(Ip=0p
vily, vy,
u vl,vg} v

P1,P2 *

Ag -2 A’

~ —_ _ . ~ —/
a<|adg; To; Agl —a<|ap; oy A

(a[% is undefined)

7:.9B -2 %:.4B

f(Oé E 7u> — (67 ’U,/)

(o[is defined)

T:-<a(f,u) =7 aa(f,u)

inject (a]z ,C) = C’

7490 5 7. .40

(% is defined)

ingect : aa x C' — C

inject (m, [a; o ; Z]) = [a]m ; 7o ; Z]

~ ~

m T2
oo

|

2

EIITT]

~

To

Fa jjj?) ?
B

o

ingect : a x C' — C
inject ({7}, [@; 7o ; A) = [a@{Te} ; lift(7) ; A

~ ~

T T2
mumal

%_1 %2 7~Tn
{Te

OO0

o

SR A i
|

{%}%

~

To =7 U U - - UT,U Lift(7)

??? W’

w () 2
—

???1 2.9

ap <@ ; To; Ag(T:lma< B)A] — agm<[@ ; 7o ; Ag(T : a< B)A]

% (2) 3 6

77-9 "2 ??? 2.9

I

ao [; T3 Ag(T: {7'}a< B)A]
— ao{drop(Te)} < [@{TeTo} ; To; Ag(T : a< B)A|

~

Te = interests(Aqg) U & U interests(A)

ao ala ' To 3 Ag(T: A< B)A]

— ao{drop(Te)} < [a{TeTo} ; To; Ag(T: a<B)A A']

Te = interests(Ag) U T U interests(A) U interests(A’)

.49 B —a«<B’

ao <[; To; Ar(T:-<aB)Ag] — ap <

w (o) =
—

: To A_QA_I(%:GQB’)]

5w m ()

029 990 29.970.9

s

€ ~
To

~

s

€

I

i

flalz ,u) = exception

7o<a(fiu) =7 {}<a(,)

(o [is defined)

