
Zero Pre-shared Secret

Key Establishment in the presence of Jammers

-Tao Jin, Guevara Noubir, Bishal Thapa

Motivation

 Wireless Communication vulnerable to attacks
 Broadcast medium is open to adversarial attacks

 Resiliency against malicious behavior is of great significance

 Spread Spectrum (SS)
 One of the most efficient anti-jamming mechanisms

 Mostly used in military applications, but gaining civilian interest

 Biggest Limitation:

 Requires pre-shared key, thus usually not considered fit for usage in:

 Systems that employ large number of associating/disassociating nodes

 Lack of a safe medium to pre-share secret in the presence of jammers

 Problem described as the Circular Dependency Problem [CDP].

2

CDP Formulation and Previous Work

 M. Strasser, C. Popper, S. Capkun, and M. Cagalj.
Jamming-resistant key establishment using uncoordinated
frequency hopping. In ISSP, 2008
 First to formulate CDP

 Proposed Uncoordinated Frequency Hopping [UFH] as a solution

 New SS anti-jamming technique that does not rely on shared secret

 Basic idea of UFH:

 Sender randomly picks frequency channels to hop on w/o a coordination

 After sufficient transmissions, sender/receiver settle on the same channel

 Establishes key that can be used to support coordinated FH (CFH)

 Achieves similar jamming resiliency as that of CFH

 Lower communication throughput and incurs higher
storage/processing costs due to transmission repetitions.

3

Our Contribution

 Propose a communication paradigm

 Intractable forward-decoding

 Efficient backward-decoding

 Based on such a paradigm, we propose TREKS

 Time-Reversed Message Extraction and Key Scheduling

 Zero pre-shared key

 Efficient anti-jamming technique that can be used to establish a SS key’

 Zero energy overhead compared to the traditional SS

 Propose optimized decoding mechanism

 Essentially low communication overhead, computation, and storage cost

 Show that the computational cost of TREKS is at most twice the

computational cost of traditional SS system with a pre-shared key.

4

Outline

 System Model and Adversary Model

 Time-Reversed Key Scheduling in DSSS

 Naïve ZPK-DSSS

 ZPK-DSSS with key scheduling

 Message Extraction

 Phase I: End of Message (EoM) Detection

 Algorithm and Design

 Phase II: Spreading-Key Infer and Message Despreading

 Algorithm and Design

 Performance Evaluation

 Conclusion and Future Work

5

System Model

6

 Systems that are traditionally

capable of doing SS

 Assumptions:

 CA signed public key

 Protocol publically known to

sender, receiver and jammer

• Our work is focused on allowing a secure

transmission of the information required for the key

establishment process over an unsafe medium

Adversary Model

7

 Co-located with the sender and the receiver

 Jammer’s primary goal:

 Prevent the successful reception of sender’s message (Packet Loss)

 Make the original message undecodable (High Bit Error)

 Increase the delay of message extraction (Denial of Service Attack)

 Increase computation and storage cost (Message Extraction Failure)

 Damage the integrity of the message

 Assumptions:

 Ignore the gain of configuring physical layer parameters

 Adversary cannot tunnel the signals for brute-forcing before the end

of the message transmission (few milliseconds)

Zero Pre-shared Key DSSS

 Notations:

 M : Plain message, |M | = l bits

 K : Spreading Key, |K | = k bits

 N : Spread Sequence, N = f(K) and |N| = n bits

 S : Spread Message, |S| = n x l bits

8

t

t

t

N = f(K)

M = 101

S = M X N

1

0

1

1

0

1

0

1

0 0

11 1

1 1 11 10 00 00

Zero Pre-shared Key DSSS

 In ZPK-DSSS, to despread the message it requires a

 Brute-force search O(2k) keys

 No knowledge of the communication happening

 The search has to occur per incoming chip

 Thus, jamming is inefficient

 Needs to know the spreading-key K in order to jam efficiently

 Jammer Resilient

 Impossible if k is chosen to be large enough

 Applies to both the receiver and the jammer (Limitation)

9

I. Intractable Forward Decoding

 Security definition:

 We call the key size k secure if

given, Ttrans(l) - Transmission time of l bits

Ts(k) - Time required to brute-force search a k-bit key

Ttrans(l) << Ts(k)

Message delivered

before the key is broken!

10

I. Intractable Forward Decoding (Contd..)

 Resiliency and Limitation go hand-in-hand

 Jamming Resiliency

 Basically, chips are collected first then processed

 Luxury that jammers do not have

 Late for jamming, but OK for key establishment

 Limitation

 Resiliency feature is also the limitation

 High computation overhead for the receiver to process the samples

 Impractical for real-time communication, O(2k) per incoming chip

 Exploit the luxury of the receiver to be able to process after

the communication is over

 Efficient Backward Decoding

11

II. Efficient Backward-Decoding

 Idea: Sender weakens the spreading-key as communication

nears the end while maintaining the key-security

 Maintaining the key security

 The message is divided into segments from start to the end

 A weaker key (easier to guess) is used to spread the later segments

 Weaker: Less information is revealed about the key

 Near the end, the key used to spread the last segment might have just

one-bit entropy

 However, the security is still maintained, i.e.,

 Ttrans(l) << Ts(k) if l is the last segment and k is the key used

spread the last segment

 Done by implementing a key schedule into the spreading

12

II. Efficient Backward-Decoding (Contd..)

 ZPK-DSSS Spreading:

 Each message bit spread with a n-bit PN-sequence generated by

having a k-bit key as a seed

 From here onwards, we use the PN-sequence and the key

interchangeably

 With a Key Schedule:

13

Plain message M

Spreading key K[1..k]

1 ……2 3 4 k

Spreading

|M| /
2

Spreading

1 ……2 3 4 k

Spreading key K[2..k]

II. Efficient Backward-Decoding (Contd..)

 Key schedule used in TREKS:

14

Plain message M

Spreading Key K[k]

1 ……2 3 4 k

Spreading

Spread with only

1 bit key!!

II. Efficient Backward Decoding (Contd..)

 Result:

 Efficient backward decoding:

 Only two possibilities for the last key used to spread the last segment

 By induction, we see that inferring the spreading key backward in time

with two possibilities at each key bit (time-reversed decoding)

 Cost is reduced from O(2^k) to O(2k)

 Theorem: The computation cost of TREKS message

despreading is at most twice the cost of message extraction

in a traditional SS system with a pre-shared secret.

15

Optimized Decoding

16

 Observation 1:

Message size has to be too long to have the key scheduled as above

 For e.g.: k=20 will require a message size of length at least 1Mbits.

 Optimization 1 - Key Scheduling w/ Linear Tail

 Linear Tail: For last x bits, we allow the sender to weaken the key size at a

linear rate of 1 key-bit per message-bit.

 x is picked in such a way that Ttrans(x bits) < Tδ,where Ttrans(x bits) is the

transmission time for x bits over the air and Tδ is the radio turn-around time

 Though this implies it is equally easier for the adversary to figure out the key used

to spread the last x bits as it is for the receiver, Ttrans(x bits) is too small to jam

Optimized Decoding (Contd..)

17

 Observation 2:

The key used to spread the last segment is overly exposed

 The bit entropy of the last key is only one bit

 Jammer can continuously jam the last message segment affecting all receivers

 Optimization 2 – MAC-masked key schedule

 Each key schedule is masked with a part of the receiver's MAC address

Potential 0/1 attack

becomes a

destination-oriented

attack

Message Extraction

18

 A two-phase process:

 Reverse-time decoding

 Phase I: Finding the EoM

 Sampling/Buffering

 EoM Detection using FFT

 Phase II: Message Decoding

 Backward Inferring of the

Spreading-Key

 Despreading the Message

 Message Integrity

Verification

Finding the EoM (Phase-I)

 Phase-I a: Sampling/Buffering

 Signal Samples buffered into a FIFO

 Only 2*n*l chips is kept in the buffer at anytime

 Whole message of length n*l will be inside the block

 Phase-I b: EoM detection using FFT

 Bit synchronization is achieved by computing the cross correlation

between the received signal and PN-sequence candidates

 Use FFT to reduce the computation cost from O(N2) to O(NlogN)

 Threshold is picked empirically (explained later in the eval section)

 Optimization

 Unlike the traditional SS, in TREKS, we process a batch of n*l chips

instead of n-chips (a bit) at a time

19

EoM Detection using FFT

Animated
matlab plots to
show the
correlation
vector and the
peak detection

20

Despreading the Message (Phase-II)

21

Fig: Reveal a key-bit at each stage of inferring

Despreading the Message (Phase-II Contd..)

22

 Phase-II a: Inferring the spreading-key

 Once a candidate for EoM is identified

 Do backward decoding (two guesses at each key-bit position)

 Multiple candidates for EoM is possible (False Positives)

 Computation delay, but negligible compared to overall decoding cost

 At each segment, 50% of the expected bits detection imply a true positive

 Phase-II b: Once all key-bits are inferred, message despread

 Phase-II c: Message Integrity verification

 160-bit Elliptic Curve based Digital Signature Algorithm (ECDSA)

 Key Establishment Protocol

 ECDH, a possible choice

Performance Evaluation

 Matlab Simulation

 Simulation Parameters:

 Spreading Factor (n) = 100

 Packet Size (l) = 1033 bits

 Key Size (k) = 19

 Jammer Power to Signal Power Ratio (JSR) = [1…100]

 Normalized Signal Power = 0 dBW

 Noise Power = -20 dBW

 Evaluation Metric:

 Packet Loss Rate (PLR)

 False Positives (FP)

 Computation and Storage Cost

23

Performance Evaluation (Contd..)

24

 Evaluation Categories:

 Based on FPs generated during the message extraction process and

PLR, we generalize our adversary model to the following:

 TREKS vs. Gaussian Jammers (Noise-Only)

 TREKS vs. λ-jammer

 λ: The probability that a jammer sends a jamming message at a given time-

slot under an assumption that the communication time is discretized into

timeslots of duration n*l chips.

 We also assume that the sender is always sending the message

 Note: This benefits the jammer under our model. In reality, it is less effective.

 Two sub-kinds of λ-jammers:

 Random Jammer : Inserts an l-bit message, each bit spread with a random PN-Seq

 MAC Jammer: Inserts an l-bit message, each bit spread with a PN-Seq generated by

using MAC address of the receiver as seed.

TREKS vs. Gaussian Jammer

 PLR

 PLR vs. SNR

 Varying threshold

 t = 2.5 vs. t = 1

 No noise (ideal)

 BER

 SNR vs. BER

 Varying threshold

 t = 2.5 vs. t = 1

 No noise (ideal)

 FP

 Only first two stages

25

Picking the Right Threshold

 Threshold Value

 Determines the peaks of the correlation vector used for bit-detection.

 Under our model, threshold = t*avg where avg is the average of the

elements in the correlation vector.

 We empirically decide the threshold value to be 2.5 based on PLR and

FP it produces when evaluated against the scenario with noise-only.

Packet Loss Rate

False Positives

26

TREKS vs. λ-Jammer

27

 Jamming Scenarios:

 Based on the occurrence of the jammer message in a 2-TS block

 Scenario-1: Jammer message occurs in the first TS.

 Impact: Key-inferring process.

 Scenario-2: Jammer message occurs in the second TS.

 Impact: EoM detection.

 Scenario-3: Jammer message intersects both TS.

 Impact: Key-inferring and EoM detection.

 Scenario-4: Jammer message misses both TS.

 Impact: None.

 Scenario-5: Jammer message perfectly synchronized with sender’s.

 Impact: EoM detection.

Simulation Results

 PLR vs. JSR

 Scenarios: Scenario-3

 Jammer Type : MAC

 FP vs. JSR

 Scenarios: Indifferent

 Jammer Type: MAC

28

 Expected PLR vs. Budget

 Optimum budget

 MAC: When 10 ≤ JSR ≤ 15

 Random: When 10 ≤ JSR ≤ 15

Budget = λ * JSR

Computation Benchmark & Storage Cost

 Computation Benchmark:

 Storage Cost:

 FIFO buffer size = (n*l)/4 bytes

 Total number of messages recovered

 If the jammer injects j messages, then we store at most ((j+1)*l)/8 bytes

 Total storage cost = 4*n*l + ((j+1)*l)/8 bytes

 Assuming each sample is a 32-bit I/Q value

 Negligible. Clearly within the storage capacity of today’s computers.

29

Conclusion & Future Work

 Conclusion

 Establishing a SS system against jamming w/o pre-shared secret

 Zero energy overhead in comparison to traditional SS system

 Introduce a communication paradigm; intractable forward decoding

and efficient backward decoding

 Optimized decoding

 TREKS Computation cost ≤ 2 * traditional SS communication cost

 Allowing destination-specific transmission and inability to detect packet

transmission until last few bits are transmitted.

 Future Work

 Extension of TREKS for long-lived communication

 Implementation of TREKS in a real-world system.

30

