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Motivation

L1 Wireless Communication vulnerable to attacks

Broadcast medium is open to adversarial attacks
Resiliency against malicious behavior is of great significance

[J Spread Spectrum (SS)

One of the most efficient anti-jamming mechanisms
Mostly used in military applications, but gaining civilian interest
Biggest Limitation:

[0 Requires pre-shared key, thus usually not considered fit for usage in:
B Systems that employ large number of associating/disassociating nodes
B Lack of a safe medium to pre-share secret in the presence of jammers

[0 Problem described as the Circular Dependency Problem [CDP].




CDP Formulation and Previous Work

1 M. Strasser, C. Popper, S. Capkun, and M. Cagalj.
Jamming-resistant key establishment using uncoordinated
frequency hopping. In ISSP, 2008

First to formulate CDP

Proposed Uncoordinated Frequency Hopping [UFH] as a solution
[0 New SS anti-jamming technique that does not rely on shared secret
B Basic idea of UFH:

= Sender randomly picks frequency channels to hop on w/o a coordination
= After sufficient transmissions, sender/receiver settle on the same channel

B Establishes key that can be used to support coordinated FH (CFH)
[1 Achieves similar jamming resiliency as that of CFH

Lower communication throughput and incurs higher
storage/processing costs due to transmission repetitions.




Our Contribution

1 Propose a communication paradigm
B [Intractable forward-decoding
B Efficient backward-decoding

[1 Based on such a paradigm, we propose TREKS

B Time-Reversed Message Extraction and Key Scheduling

Zero pre-shared key

Efficient anti-jamming technique that can be used to establish a SS key
Zero energy overhead compared to the traditional SS

Propose optimized decoding mechanism

Essentially low communication overhead, computation, and storage cost

B Show that the computational cost of TREKS is at most twice the
computational cost of traditional SS system with a pre-shared key.
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Outline

[1 System Model and Adversary Model

1 Time-Reversed Key Scheduling in DSSS
B Nawve ZPK-DSSS
B ZPK-DSSS with key scheduling

[l Message Extraction

B Phase |I: End of Message (EoM) Detection
[0 Algorithm and Design

B Phase Il: Spreading-Key Infer and Message Despreading
[ Algorithm and Design

[1 Performance Evaluation
[1 Conclusion and Future Work




System Model

LI Systems that are traditionally @WUH _ &
capable of doing SS + L 7

sender

0 Assumptions: - recelver
_ _ sniffing
B CAsigned public key y
B Protocol publically known to jamiming
sender, receiver and jammer

jammer

Our work Is focused on allowing a secure
transmission of the information required for the key
establishment process over an unsafe medium




Adversary Model

[1 Co-located with the sender and the receiver

1 Jammer’s primary goal:

B Prevent the successful reception of sender’s message (Packet Loss)
Make the original message undecodable (High Bit Error)
Increase the delay of message extraction (Denial of Service Attack)
Increase computation and storage cost (Message Extraction Failure)
B Damage the integrity of the message

1 Assumptions:

B Ignore the gain of configuring physical layer parameters

B Adversary cannot tunnel the signals for brute-forcing before the end
of the message transmission (few milliseconds)




Zero Pre-shared Key DSSS

[1 Notations:
M M: Plain message, |[M |=1bits
B K : Spreading Key, |K | =k bits
M N : Spread Sequence, N = f(K) and |[N| = n bits
B S : Spread Message, |S| =n x| bits
1 1

M=101

0 0 0 0 N = K)

ol1lo ol1 1 1]o]1]o0 S=MXN




Zero Pre-shared Key DSSS

1 In ZPK-DSSS, to despread the message It requires a

B Brute-force search O(2%) keys
[0 No knowledge of the communication happening
[J The search has to occur per incoming chip

1 Thus, jamming is inefficient
B Needs to know the spreading-key K in order to jam efficiently

B Jammer Resilient
[0 Impossible if k is chosen to be large enough

B Applies to both the receiver and the jammer (Limitation)




l. Intractable Forward Decoding

D - Sender traf;msﬂsfiﬂn trarfsr:gi:;iﬂn
Message delivered } y
. Time —= 7k >
before the key Is broken! \ x
Time -
Jammer/ jt-— Brute force 2" keys 4-3

Receiver st arrives.

start searching key finish searching key

1 Security definition:
B We call the key size k secure if
given, T, ,.(I) - Transmission time of I bits

T,(k) - Time required to brute-force search a k-bit key

Ttrans(l) << Ts(k)
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|. Intractable Forward Decoding (Contd..)

[ Resiliency and Limitation go hand-in-hand

B Jamming Resiliency
B Basically, chips are collected first then processed

= Luxury that jammers do not have
= Late for jamming, but OK for key establishment

B Limitation
B Resiliency feature is also the limitation
= High computation overhead for the receiver to process the samples

= Impractical for real-time communication, O(2¥) per incoming chip
[1 Exploit the luxury of the receiver to be able to process after
the communication is over
B Efficient Backward Decoding




|1. Efficient Backward-Decoding

[1 Idea: Sender weakens the spreading-key as communication
nears the end while maintaining the key-security

[1 Maintaining the key security

The message is divided into segments from start to the end
A weaker key (easier to guess) is used to spread the later segments
[1 Weaker: Less information is revealed about the key

[0 Near the end, the key used to spread the last segment might have just
one-bit entropy

However, the security is still maintained, I.e.,

O T,..(D) << T (k) if Lis the last segment and k is the key used
spread the last segment

[0 Done by implementing a key schedule into the spreading




|1. Efficient Backward-Decoding (Contd..)

[0 ZPK-DSSS Spreading:

B Each message bit spread with a n-bit PN-sequence generated by
having a k-bit key as a seed

B From here onwards, we use the PN-sequence and the key
Interchangeably

[J With a Key Schedule:

Plain message M Ir{ll/ /
ﬁ Spreading dﬁ Spreading
112|314 === K 112(3]4] cennns K
Spreading key A11..k] Spreading key A12..k]
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11. Efficient Backward-Decoding (Contd..)

[1 Key schedule used in TREKS:

Plain message M

Ttrans (l) < TS (k) ‘ Ttmns(

t Spreading

k

Spread with only
1 bit key!!

Spreading Key K/k/

|M]|

2—) & T,(k = 0)
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11. Efficient Backward Decoding (Contd..)

[1 Result:

B Efficient backward decoding:

1 Only two possibilities for the last key used to spread the last segment

[J By induction, we see that inferring the spreading key backward in time
with two possibilities at each key bit (time-reversed decoding)
B Costis reduced from O(27k) to O(2k)

[1 Theorem: The computation cost of TREKS message

despreading is at most twice the cost of message extraction
In a traditional SS system with a pre-shared secret.




Optimized Decoding

[l Observation 1:

Message size has to be too long to have the key scheduled as above
0 Fore.g.: k=20 will require a message size of length at least 1Mbits.

[0 Optimization 1 - Key Scheduling w/ Linear Talil
B Linear Tail: For last x bits, we allow the sender to weaken the key size at a
linear rate of 1 key-bit per message-bit.

= XxIs picked in such a way that T,,..(Xx bits) < T,where T,.,,(x bits) is the
transmission time for x bits over the air and Tj is the radio turn-around time

. Though this implies it is equally easier for the adversary to figure out the key used
to spread the last x bits as it is for the receiver, T,,,(x bits) is too small to jam

| |AL] = T033 bits -

1
Segment size 2% 2% 2 i |0 —|
] [ ] .. [0
start of msg + + /ll' / f.
Kev scheduled for K, K, Ko Ko Ky K oa
each segment ‘i
| 2 - r — & ati ey
|- Exponential segmentation 4—11‘__—'2””(1”um?|
_"I- f,l - Ji _-"b'f,:,r —~ 202
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Optimized Decoding (Contd..)

[l Observation 2:

The key used to spread the last segment is overly exposed
B The bit entropy of the last key is only one bit
B Jammer can continuously jam the last message segment affecting all receivers

B Optimization 2 — MAC-masked key schedule
[0 Each key schedule is masked with a part of the receiver's MAC address

o schedule
.% K[1..k] MAC[k+1..1] !
Potential 0/1 attack £ K[2.k] MAC[k..7]
becomes a Q :
destination-oriented é‘- X MAC[2..1]
attack S
E Y MAC[..n] \ =S
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Message Extraction

[1 A two-phase process:

B Reverse-time decoding
[ Phase I: Finding the EoM

B EoM Detection using FFT
[0 Phase II: Message Decoding

Sampling/Buffering

Backward Inferring of the
Spreading-Key
Despreading the Message

Message Integrity
Verification

Receiver

N 'L+ N'L=2N'L

Y | Step 1. Sampling/Buffering |

Old_Buffer

Current_Buffer

&&@m

Tsme-am_s

—

Possiblp EoM{

auNng
waund

Ftep 2. FFT EoM Detection /’/

Each Possible
EoM

Phase-ll

Thrgshold !!!

S .
(Step 3. Key Inferring

fStep 4. Despreading|

Y

<

«— Peak Detection «— Key inferred
“Time-Reversed” [ Orginal
Decoding Message
(Possible Message)

L Lengh=N'L ) Message
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Finding the EoM (Phase-1)

Sender Message

[1 Phase-I a: Sampling/Buffering Messagel= v cips

B Signal Samples buffered into a FIFO

2nl chips

B Only 2*n*| chips is kept in the buffer at anytime
[0 Whole message of length n*l will be inside the block

1 Phase-1 b: EoM detection using FFT
B Bit synchronization is achieved by computing the cross correlation
between the received signal and PN-sequence candidates
[0 Use FFT to reduce the computation cost from O(N?) to O(NlogN)
[0 Threshold is picked empirically (explained later in the eval section)

B Optimization

[0 Unlike the traditional SS, in TREKS, we process a batch of n*l chips
instead of n-chips (a bit) at a time




EoM Detection using FFT

Animated
matlab plots to
show the
correlation
vector and the
peak detection

Symbol Definition
m message sent by the sender, as z segments
Segli] Segments of a message, where 1 <i < z
K] Key used to generate spread PN-sequence, 1 <7 < z
K; Possible set of keys, 1 < |K;| <2,

that receiver tries to despread Segli] with.
Si] Real-time Signal that is sampled at the receiver side.
PEoM][i] Array of possible EoM indices.
M[i] Array of extracted complete messages.
GetBuf fer(.) Gets the next n [ chips from the signal stream for sampling.
Dot Prod(.) Dot product of two vectors (correlation function).
FFT(.) Fast Fourier Transform.
IFFT(.) Inverse Fast Fourier Transform.

Fast_Correlate(.)
Key Infer(.)
Peak_Detection/.)
Despread(.)
Signature_Verify(.)

Calculating Convolution between a short and a long signal.
Function to infer the key.

Function to detect peaks at Segli], 1 <i <z

Standard Spread Spectrum function to despread received signal.
Function to verify the sender.

Algorithm 2: Finding the End of the Message (EoM)

1. Old_Buffer =

GetBuffer(S5);

2. for each buffer of length (n * () do

Else

Current_Buffer = GetBuffer(5);
Set k = MAC_ADDRESS( Rcvr);
(7()1't'['l T ok H:[t“;l,&-:r_,_(7()t'r(*l;l,t:\((7111'1':\|lr,_BuH‘t_‘_l'J.:):
for each 5 € {1, ,n*l} do

If Corr /} > threshold then

L push j into PEoM][];
If PEoM][] is empty
Old_Buffer = Current_Buffer;

Buffer = concat(Old_Buffer,Current_Buffer);
Key_Infer(Buffer, PEoM);

Fast_Correlate(Buff,key){
Temp_Key[1:n*1] = Zeros;
Temp_Key[1l:n] = key;
Inputl = FEFT(Buff);
Input2 = FFT(Temp_Key); //Pre- (()Ill[)llf( »d

Corr[1:m*]] =
return Corr;}

IFET (lllplll’l*lllplll") )s
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Despreading the Message (Phase-11)

Algorithm 3. Message Extraction

1. Key_Infer(Buffer, PEoM){
for each possible EoM j € PEoM do
PeakPos = n+j; //EoM = Buffer[n+j]
endIndx = PeakPos-n; //End of Seg[z-1]
for each p € {1,--- ,z} do
startIndx = endIndx—|Seg[z]| + 1;
CntOfSucc = 0;
for each key candidate k € K._, do
succ = Peak Detection(k,Buffer,
startIndx, endIndx);
CntOfSuce = CntOfSuce + succ;
If (CntOfSuce==1)
K[p] = k;
Else
Abort Key_Infer(Buffer, PEoM);
| endIndx = startIndx;
m = Despread(Buffer[j — (n = 1) + 1, j], K[]);
| Enqueue m into M[];}

<mMX OUAP>PSXO>WD

2. Signature_Verify (M][]);

Peak Detection(key, Buf, startIndx, endIndx)
i
ExpNumofPeaks = (endIndx - startIndx)/n;
CntOfPeaks = 0;
for each d € {1, .- ,ExpNumOfPeaks} do
P=DotProd(key,Buf[startIndx,startIndx-+n]);
If P > threshold then
CntOfPeaks = CntOfPeaks+1;

startIndx = startIndx—+(d = n) — 1;

If CntOfPeaks > 50%*ExpNumOfPeaks
succ = 1;

Else

. . . . succ = 0;

Fig: Reveal a key-bit at each stage of inferring | e suce:

€
OQZ—-VAMMZ -
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Despreading the Message (Phase-11 Contd..)

[1 Phase-ll a: Inferring the spreading-key

B Once a candidate for EoM is identified
[0 Do backward decoding (two guesses at each key-bit position)
B Multiple candidates for EoM is possible (False Positives)
[0 Computation delay, but negligible compared to overall decoding cost
B At each segment, 50% of the expected bits detection imply a true positive

[1 Phase-ll b: Once all key-bits are inferred, message despread

[1 Phase-ll c: Message Integrity verification
B 160-bit Elliptic Curve based Digital Signature Algorithm (ECDSA)

[1 Key Establishment Protocol
B ECDH, a possible choice




Performance Evaluation

|
1 Matlab Simulation

L1 Simulation Parameters:

Spreading Factor (n) = 100
Packet Size (I) = 1033 bits

Key Size (k) =19

Jammer Power to Signal Power Ratio (JSR)=[1...100]
Normalized Signal Power = 0 dBW

Noise Power = -20 dBW

[1 Evaluation Metric:
[J Packet Loss Rate (PLR)

[] False Positives (FP)
[0 Computation and Storage Cost

O0O0000




Performance Evaluation (Contd..)

[1 Evaluation Categories:

B Based on FPs generated during the message extraction process and
PLR, we generalize our adversary model to the following:

[0 TREKS vs. Gaussian Jammers (Noise-Only)
[0 TREKS vs. A-jammer

B ). The probability that a jammer sends a jamming message at a given time-
slot under an assumption that the communication time is discretized into
timeslots of duration n*| chips.

M \We also assume that the sender is always sending the message
. Note: This benefits the jammer under our model. In reality, it is less effective.

M Two sub-kinds of A-jammers:

. Random Jammer : Inserts an |-bit message, each bit spread with a random PN-Seq

. MAC Jammer: Inserts an I-bit message, each bit spread with a PN-Seq generated by
using MAC address of the receiver as seed.




TREKS vs. Gaussian Jammer

[0 PLR

[0 Varying threshold

PLR vs. SNR

B t=25vs.t=1
B Nonoise (ideal)

[0 BER

L

[0 Varying threshold

FP

SNR vs. BER

B t=25vs.t=1
B Nonoise (ideal)

Only first two stages

Bit Error Rate (BER)

Percentage of FPs Detected

0.1

0.01

0.001
0.0001 £

1e-05 |

(b) FP Detection Stage Distribution (Threshold 2.5)
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Picking the Right Threshold

[1 Threshold Value

Determines the peaks of the correlation vector used for bit-detection.

Under our model, threshold = t*avg where avg is the average of the
elements in the correlation vector.

We empirically decide the threshold value to be 2.5 based on PLR and
FP it produces when evaluated against the scenario with noise-only.

SNR (dB) | t=1.0 |t =20 |t=23 |t=25 |t = 3.0
—10 11.79% 1.48% 0.94% 0.58% 0.22%

—5 11.80% 1.48% 0.94% 0.58% 0.22%

0 11.79% 1.47% 0.96% 0.59% 0.22%

5 11.79% 1.51% 0.98% 0.61% 0.23%

10 11.78% 1.57% 1.01% 0.64% 0.25%
SNR (dB) | t=1.0 |t =21 |t =23 | t=25 |t =29
—10 19.00% | 48.00% 49.50% A7.50% | 64.50%

-5 0.00% 0.20% 0.50% 1.50% 4.00%

0 0.00% 0.00% 0.00% 0.00% 0.00%

<= Packet Loss Rate

<= False Positives




TREKS vs. A-dJammer

Ll

Jamming Scenarios:

«—— Sender Message ——
T51 T82

+——Jammer Message ——»

B Based on the occurrence of the jammer message in a 2-TS block

O

O

O

O

O

Scenario-1: Jammer message occurs in the first TS.

B Impact: Key-inferring process.

Scenario-2: Jammer message occurs in the second TS.

B Impact: EOM detection.

Scenario-3: Jammer message intersects both TS.

B Impact: Key-inferring and EoM detection.

Scenario-4: Jammer message misses both TS.

B Impact: None.

Scenario-5: Jammer message perfectly synchronized with sender’s.
B Impact: EOM detection.
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Simulation Results

[l PLRvs.JSR

B Scenarios: Scenario-3
B Jammer Type : MAC

[0 FPvs.JSR

B Scenarios: Indifferent
B Jammer Type: MAC

[1 Expected PLR vs. Budget

B Optimum budget
0 MAC: When10<JSR <15
[0 Random: When 10<JSR <15

Packet Loss Rate (PLR)

Packet Loss Rate (PLR)
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a. PLR due to different jammers (n=100)
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b. FP due to different jammers (n=100)
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Computation Benchmark & Storage Cost

[0 Computation Benchmark:

Operation Using GPU | Lab Computer
FFET benchmark Ims 28ms
Key Inferring - Ims
Signature Verification - Ims

] Storage Cost:
B FIFO buffer size = (n*)/4 bytes

B Total number of messages recovered
[J If the jammer injects j messages, then we store at most ((j+1)*1)/8 bytes
[0 Total storage cost = 4*n*| + ((j+1)*1)/8 bytes
B Assuming each sample is a 32-bit I/Q value
[0 Negligible. Clearly within the storage capacity of today’s computers.




Conclusion & Future Work

[1 Conclusion

Establishing a SS system against jamming w/o pre-shared secret
Zero energy overhead in comparison to traditional SS system
Introduce a communication paradigm; intractable forward decoding
and efficient backward decoding

Optimized decoding

TREKS Computation cost < 2 * traditional SS communication cost

Allowing destination-specific transmission and inability to detect packet
transmission until last few bits are transmitted.

[1 Future Work

Extension of TREKS for long-lived communication
Implementation of TREKS in a real-world system.




