
Zero Pre-shared Secret

Key Establishment in the presence of Jammers

-Tao Jin, Guevara Noubir, Bishal Thapa

Motivation

 Wireless Communication vulnerable to attacks
 Broadcast medium is open to adversarial attacks

 Resiliency against malicious behavior is of great significance

 Spread Spectrum (SS)
 One of the most efficient anti-jamming mechanisms

 Mostly used in military applications, but gaining civilian interest

 Biggest Limitation:

 Requires pre-shared key, thus usually not considered fit for usage in:

 Systems that employ large number of associating/disassociating nodes

 Lack of a safe medium to pre-share secret in the presence of jammers

 Problem described as the Circular Dependency Problem [CDP].

2

CDP Formulation and Previous Work

 M. Strasser, C. Popper, S. Capkun, and M. Cagalj.
Jamming-resistant key establishment using uncoordinated
frequency hopping. In ISSP, 2008
 First to formulate CDP

 Proposed Uncoordinated Frequency Hopping [UFH] as a solution

 New SS anti-jamming technique that does not rely on shared secret

 Basic idea of UFH:

 Sender randomly picks frequency channels to hop on w/o a coordination

 After sufficient transmissions, sender/receiver settle on the same channel

 Establishes key that can be used to support coordinated FH (CFH)

 Achieves similar jamming resiliency as that of CFH

 Lower communication throughput and incurs higher
storage/processing costs due to transmission repetitions.

3

Our Contribution

 Propose a communication paradigm

 Intractable forward-decoding

 Efficient backward-decoding

 Based on such a paradigm, we propose TREKS

 Time-Reversed Message Extraction and Key Scheduling

 Zero pre-shared key

 Efficient anti-jamming technique that can be used to establish a SS key’

 Zero energy overhead compared to the traditional SS

 Propose optimized decoding mechanism

 Essentially low communication overhead, computation, and storage cost

 Show that the computational cost of TREKS is at most twice the

computational cost of traditional SS system with a pre-shared key.

4

Outline

 System Model and Adversary Model

 Time-Reversed Key Scheduling in DSSS

 Naïve ZPK-DSSS

 ZPK-DSSS with key scheduling

 Message Extraction

 Phase I: End of Message (EoM) Detection

 Algorithm and Design

 Phase II: Spreading-Key Infer and Message Despreading

 Algorithm and Design

 Performance Evaluation

 Conclusion and Future Work

5

System Model

6

 Systems that are traditionally

capable of doing SS

 Assumptions:

 CA signed public key

 Protocol publically known to

sender, receiver and jammer

• Our work is focused on allowing a secure

transmission of the information required for the key

establishment process over an unsafe medium

Adversary Model

7

 Co-located with the sender and the receiver

 Jammer’s primary goal:

 Prevent the successful reception of sender’s message (Packet Loss)

 Make the original message undecodable (High Bit Error)

 Increase the delay of message extraction (Denial of Service Attack)

 Increase computation and storage cost (Message Extraction Failure)

 Damage the integrity of the message

 Assumptions:

 Ignore the gain of configuring physical layer parameters

 Adversary cannot tunnel the signals for brute-forcing before the end

of the message transmission (few milliseconds)

Zero Pre-shared Key DSSS

 Notations:

 M : Plain message, |M | = l bits

 K : Spreading Key, |K | = k bits

 N : Spread Sequence, N = f(K) and |N| = n bits

 S : Spread Message, |S| = n x l bits

8

t

t

t

N = f(K)

M = 101

S = M X N

1

0

1

1

0

1

0

1

0 0

11 1

1 1 11 10 00 00

Zero Pre-shared Key DSSS

 In ZPK-DSSS, to despread the message it requires a

 Brute-force search O(2k) keys

 No knowledge of the communication happening

 The search has to occur per incoming chip

 Thus, jamming is inefficient

 Needs to know the spreading-key K in order to jam efficiently

 Jammer Resilient

 Impossible if k is chosen to be large enough

 Applies to both the receiver and the jammer (Limitation)

9

I. Intractable Forward Decoding



 Security definition:

 We call the key size k secure if

given, Ttrans(l) - Transmission time of l bits

Ts(k) - Time required to brute-force search a k-bit key

Ttrans(l) << Ts(k)

Message delivered

before the key is broken!

10

I. Intractable Forward Decoding (Contd..)

 Resiliency and Limitation go hand-in-hand

 Jamming Resiliency

 Basically, chips are collected first then processed

 Luxury that jammers do not have

 Late for jamming, but OK for key establishment

 Limitation

 Resiliency feature is also the limitation

 High computation overhead for the receiver to process the samples

 Impractical for real-time communication, O(2k) per incoming chip

 Exploit the luxury of the receiver to be able to process after

the communication is over

 Efficient Backward Decoding

11

II. Efficient Backward-Decoding

 Idea: Sender weakens the spreading-key as communication

nears the end while maintaining the key-security

 Maintaining the key security

 The message is divided into segments from start to the end

 A weaker key (easier to guess) is used to spread the later segments

 Weaker: Less information is revealed about the key

 Near the end, the key used to spread the last segment might have just

one-bit entropy

 However, the security is still maintained, i.e.,

 Ttrans(l) << Ts(k) if l is the last segment and k is the key used

spread the last segment

 Done by implementing a key schedule into the spreading

12

II. Efficient Backward-Decoding (Contd..)

 ZPK-DSSS Spreading:

 Each message bit spread with a n-bit PN-sequence generated by

having a k-bit key as a seed

 From here onwards, we use the PN-sequence and the key

interchangeably

 With a Key Schedule:

13

Plain message M

Spreading key K[1..k]

1 ……2 3 4 k

Spreading

|M| /
2

Spreading

1 ……2 3 4 k

Spreading key K[2..k]

II. Efficient Backward-Decoding (Contd..)

 Key schedule used in TREKS:

14

Plain message M

Spreading Key K[k]

1 ……2 3 4 k

Spreading

Spread with only

1 bit key!!

II. Efficient Backward Decoding (Contd..)

 Result:

 Efficient backward decoding:

 Only two possibilities for the last key used to spread the last segment

 By induction, we see that inferring the spreading key backward in time

with two possibilities at each key bit (time-reversed decoding)

 Cost is reduced from O(2^k) to O(2k)

 Theorem: The computation cost of TREKS message

despreading is at most twice the cost of message extraction

in a traditional SS system with a pre-shared secret.

15

Optimized Decoding

16

 Observation 1:

Message size has to be too long to have the key scheduled as above

 For e.g.: k=20 will require a message size of length at least 1Mbits.

 Optimization 1 - Key Scheduling w/ Linear Tail

 Linear Tail: For last x bits, we allow the sender to weaken the key size at a

linear rate of 1 key-bit per message-bit.

 x is picked in such a way that Ttrans(x bits) < Tδ,where Ttrans(x bits) is the

transmission time for x bits over the air and Tδ is the radio turn-around time

 Though this implies it is equally easier for the adversary to figure out the key used

to spread the last x bits as it is for the receiver, Ttrans(x bits) is too small to jam

Optimized Decoding (Contd..)

17

 Observation 2:

The key used to spread the last segment is overly exposed

 The bit entropy of the last key is only one bit

 Jammer can continuously jam the last message segment affecting all receivers

 Optimization 2 – MAC-masked key schedule

 Each key schedule is masked with a part of the receiver's MAC address

Potential 0/1 attack

becomes a

destination-oriented

attack

Message Extraction

18

 A two-phase process:

 Reverse-time decoding

 Phase I: Finding the EoM

 Sampling/Buffering

 EoM Detection using FFT

 Phase II: Message Decoding

 Backward Inferring of the

Spreading-Key

 Despreading the Message

 Message Integrity

Verification

Finding the EoM (Phase-I)

 Phase-I a: Sampling/Buffering

 Signal Samples buffered into a FIFO

 Only 2*n*l chips is kept in the buffer at anytime

 Whole message of length n*l will be inside the block

 Phase-I b: EoM detection using FFT

 Bit synchronization is achieved by computing the cross correlation

between the received signal and PN-sequence candidates

 Use FFT to reduce the computation cost from O(N2) to O(NlogN)

 Threshold is picked empirically (explained later in the eval section)

 Optimization

 Unlike the traditional SS, in TREKS, we process a batch of n*l chips

instead of n-chips (a bit) at a time

19

EoM Detection using FFT

Animated
matlab plots to
show the
correlation
vector and the
peak detection

20

Despreading the Message (Phase-II)

21

Fig: Reveal a key-bit at each stage of inferring

Despreading the Message (Phase-II Contd..)

22

 Phase-II a: Inferring the spreading-key

 Once a candidate for EoM is identified

 Do backward decoding (two guesses at each key-bit position)

 Multiple candidates for EoM is possible (False Positives)

 Computation delay, but negligible compared to overall decoding cost

 At each segment, 50% of the expected bits detection imply a true positive

 Phase-II b: Once all key-bits are inferred, message despread

 Phase-II c: Message Integrity verification

 160-bit Elliptic Curve based Digital Signature Algorithm (ECDSA)

 Key Establishment Protocol

 ECDH, a possible choice

Performance Evaluation

 Matlab Simulation

 Simulation Parameters:

 Spreading Factor (n) = 100

 Packet Size (l) = 1033 bits

 Key Size (k) = 19

 Jammer Power to Signal Power Ratio (JSR) = [1…100]

 Normalized Signal Power = 0 dBW

 Noise Power = -20 dBW

 Evaluation Metric:

 Packet Loss Rate (PLR)

 False Positives (FP)

 Computation and Storage Cost

23

Performance Evaluation (Contd..)

24

 Evaluation Categories:

 Based on FPs generated during the message extraction process and

PLR, we generalize our adversary model to the following:

 TREKS vs. Gaussian Jammers (Noise-Only)

 TREKS vs. λ-jammer

 λ: The probability that a jammer sends a jamming message at a given time-

slot under an assumption that the communication time is discretized into

timeslots of duration n*l chips.

 We also assume that the sender is always sending the message

 Note: This benefits the jammer under our model. In reality, it is less effective.

 Two sub-kinds of λ-jammers:

 Random Jammer : Inserts an l-bit message, each bit spread with a random PN-Seq

 MAC Jammer: Inserts an l-bit message, each bit spread with a PN-Seq generated by

using MAC address of the receiver as seed.

TREKS vs. Gaussian Jammer

 PLR

 PLR vs. SNR

 Varying threshold

 t = 2.5 vs. t = 1

 No noise (ideal)

 BER

 SNR vs. BER

 Varying threshold

 t = 2.5 vs. t = 1

 No noise (ideal)

 FP

 Only first two stages

25

Picking the Right Threshold

 Threshold Value

 Determines the peaks of the correlation vector used for bit-detection.

 Under our model, threshold = t*avg where avg is the average of the

elements in the correlation vector.

 We empirically decide the threshold value to be 2.5 based on PLR and

FP it produces when evaluated against the scenario with noise-only.

Packet Loss Rate

False Positives

26

TREKS vs. λ-Jammer

27

 Jamming Scenarios:

 Based on the occurrence of the jammer message in a 2-TS block

 Scenario-1: Jammer message occurs in the first TS.

 Impact: Key-inferring process.

 Scenario-2: Jammer message occurs in the second TS.

 Impact: EoM detection.

 Scenario-3: Jammer message intersects both TS.

 Impact: Key-inferring and EoM detection.

 Scenario-4: Jammer message misses both TS.

 Impact: None.

 Scenario-5: Jammer message perfectly synchronized with sender’s.

 Impact: EoM detection.

Simulation Results

 PLR vs. JSR

 Scenarios: Scenario-3

 Jammer Type : MAC

 FP vs. JSR

 Scenarios: Indifferent

 Jammer Type: MAC

28

 Expected PLR vs. Budget

 Optimum budget

 MAC: When 10 ≤ JSR ≤ 15

 Random: When 10 ≤ JSR ≤ 15

Budget = λ * JSR

Computation Benchmark & Storage Cost

 Computation Benchmark:

 Storage Cost:

 FIFO buffer size = (n*l)/4 bytes

 Total number of messages recovered

 If the jammer injects j messages, then we store at most ((j+1)*l)/8 bytes

 Total storage cost = 4*n*l + ((j+1)*l)/8 bytes

 Assuming each sample is a 32-bit I/Q value

 Negligible. Clearly within the storage capacity of today’s computers.

29

Conclusion & Future Work

 Conclusion

 Establishing a SS system against jamming w/o pre-shared secret

 Zero energy overhead in comparison to traditional SS system

 Introduce a communication paradigm; intractable forward decoding

and efficient backward decoding

 Optimized decoding

 TREKS Computation cost ≤ 2 * traditional SS communication cost

 Allowing destination-specific transmission and inability to detect packet

transmission until last few bits are transmitted.

 Future Work

 Extension of TREKS for long-lived communication

 Implementation of TREKS in a real-world system.

30

