
Zero Pre-shared Secret
Key Establishment in the Presence of Jammers

Tao Jin
College of Computer Science

Northeastern University
Boston, MA 02115

taojin@ccs.neu.edu

Guevara Noubir
College of Computer Science

Northeastern University
Boston, MA 02115

noubir@ccs.neu.edu

Bishal Thapa
College of Computer Science

Northeastern University
Boston, MA 02115

bthapa@ccs.neu.edu

ABSTRACT
We consider the problem of key establishment over a wireless
radio channel in the presence of a communication jammer,
initially introduced in [14]. The communicating nodes are
not assumed to pre-share any secret. The established key
can later be used by a conventional spread-spectrum commu-
nication system. We introduce new communication concepts
called intractable forward-decoding and efficient backward-
decoding. Decoding under our mechanism requires at most
twice the computation cost of the conventional SS decod-
ing and one packet worth of signal storage. We introduce
techniques that apply a key schedule to packet spreading
and develop a provably optimal key schedule to minimize
the bit-despreading cost. We also use efficient FFT-based
algorithms for packet detection. We evaluate our techniques
and show that they are efficient both in terms of resiliency
against jammers and computation. Finally, our technique
has additional features such as the inability to detect packet
transmission until the last few bits are being transmitted,
and transmissions being destination-specific. To the best of
our knowledge, this is the first solution that is optimal in
terms of communication energy cost with very little storage
and computation overhead.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Design—
Wireless Communication

General Terms
Algorithms, Design, Security

Keywords
Anti-jamming, Spread Spectrum, Zero Pre-shared Secret

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’09, May 18–21, 2009, New Orleans, Louisiana, USA.
Copyright 2009 ACM 978-1-60558-531-4/09/05 ...$5.00.

1. INTRODUCTION
Radio-Frequency wireless communication occurs through

the propagation of electro-magnetic waves over a broadcast
medium. Such broadcast medium is not only shared be-
tween the communicating nodes but is also exposed to ad-
versaries. The resiliency against malicious behavior is obvi-
ously of significant importance for military communication
in a battle-field. It is also rapidly gaining significance in
civilian and commercial applications due to the increased
reliance on wireless networks for connectivity to the cyber-
infrastructure, and applications that monitor our physical
infrastructure such as tunnels, bridges, landmarks, build-
ings, etc.

Jamming and anti-jamming techniques for the physical
layer of wireless systems supporting mostly voice communi-
cation have been extensively studied for several decades [13].
However, it is only recently that the popularity of multi-hop
data networks with complex medium sharing, coding, and
application protocols opened the door for sophisticated at-
tacks and resulted in the exploration of new resilience mech-
anisms. Emerging attacks include ultra low-power cross-
layer attacks that aim at disturbing the operation of net-
works by targeting control-mechanisms such as packet rout-
ing, communication beacons or pilots, carrier sensing mech-
anism, collision avoidance exponential back-off mechanism,
network topology, and size of the congestion control win-
dow. For example, by transmitting a few pulses at the right
frequency, right time and right location, highly efficient (en-
ergy/computation wise) attacks can be deployed with off-
the-shelf hardware [10, 2, 11, 4, 16, 5].

1.1 Motivation
Spread Spectrum (SS) is one of the most efficient mecha-

nisms used for anti-jamming communication. Military sys-
tems, in particular, rely on SS systems along with antenna
nulling, channel coding to counteract malicious attacks. In
civilian systems however, SS has been discarded from usage
mainly because it requires a pre-shared secret, which may
not be available [1, 7]. For example, in systems which em-
ploy large number of dynamically associating/disassociating
nodes, the pre-sharing has to be done over an open chan-
nel making it an easy target by an adversary who focuses
all its jamming energy on the key establishment protocol.
The problem has been introduced previously as the anti-
jamming/key establishment circular dependency problem [14].
Strasser et al. also propose a new mechanism called Unco-
ordinated Frequency Hopping (UFH) to break this circular
dependency, however, at a high communication cost.

In this paper, we propose a novel approach for breaking
the anti-jamming/key establishment circular dependency with
significant energy efficiency advantages over UFH. Our mech-
anism relies on two main properties: (1) intractable forward-
decoding (preventing an adversary from detecting or de-
coding an on-going communication), (2) efficient backward-
decoding (allowing any receiver to decode the time-reversed
signals). Note that although the adversary can also decode
the time-reversed signal (and find out which Pseudo ran-
dom (PN) spreading sequence was used), it will be too late
for it to jam by the time it retrieves the PN-sequence (See
Figure 1). The basic idea behind our scheme is that the
sender spreads the message with a cryptographically-strong
PN-sequence. Forward-decoding the packet requires guess-
ing the whole key initially, which we will show to be in-
feasible for the jammer to accomplish (by brute force) in
time to jam the packet before the end of the packet trans-
mission. As communication progresses, the entropy of the
spreading sequence decreases (See Figure 4), thus on the re-
ceiver side, decoding the time-reversed version of the packet
only requires the receiver to guess one bit of the key at each
stage of the decoding process. We will also show that under
our scheme, at each instant the time it takes for a node to
brute-force the PN sequence plus the TX/RX turn-around
time and propagation time is larger than the time it takes
for the sender to send the remaining bits of the message.
This makes forward-decoding intractable.

The main advantage of our solution, in comparison with
UFH [14], is that it does not require extra energy for trans-
mitting packets. It is in fact as energy efficient as the conven-
tional SS communication where the communicating nodes
pre-share a secret key. UFH, on the other hand, requires on
average n times more energy than traditional SS, n being
the spreading factor that is in the order of hundreds. We
achieve this communication-energy efficiency with a slight
increase in the receiver computation and storage cost. We
show that the computation/decoding cost is at most twice
the computation cost of conventional SS (See Theorem 2)
and the storage required is of one packet length. A sec-
ondary advantage of our technique is the delayed communi-
cation detection, which makes it practically impossible for
an adversary to sense an ongoing communication until it is
“almost” over. This stealthiness further increases the ineffi-
ciency of the adversary by forcing it to be a channel-oblivious
jammer [2].

1.2 Related Work
Anti-jamming techniques have been studied for decades [13].

Most of the earlier mechanisms however, only focussed on a
physical layer protection and made use of SS techniques, di-
rectional antennas, and coding schemes. At the time, most
wireless communication was not packetized nor networked.
Furthermore, the small size of the networks then (mostly
military), and the way they were deployed allowed for pre-
configuration with shared secret keys to be possible.

Reliable communication in the presence of adversaries re-
gained significant interest in the last few years. New at-
tacks emerged with the advent of more complex applications
and deployment environments. Several specifically crafted
attacks and counter-attacks were proposed for: packetized
wireless data networks [11, 10], multiple access resolution in
the presence of adversaries [3, 2, 1], multi-hop networks [16,
15, 10], broadcast communication [6, 5], cross-layer attacks [11],

and navigation information broadcast [12]. While many re-
cently proposed countermeasure techniques can (and are as-
sumed to) be layered on a SS physical layer, it is usually
taken for granted that the communicating nodes pre-share
a secret key. Strasser et al. recognized this as a significant
impediment to the use of SS, even when the communicating
nodes possess public keys and certificates that potentially
allow them to setup a shared secret key [14].

Strasser et al. proposed UFH, a technique for establish-
ing a symmetric secret key in the presence of adversaries. In
UFH, the sending node hops at a relatively fast rate (e.g.,
1600 hops per second) over n channels. It repeatedly sends
fragments of the mutual authentication and key establish-
ment protocol. The receiver hops, on the other hand, are
significantly slower. Therefore, although the receiver does
not know the sender’s hopping sequence, statistically, it can
receive 1/n of the sent packets. The authors show that an
adversary has a very low probability of jamming these pack-
ets. They build upon this basic mechanism to construct a
jamming-resilient mutual authentication and key establish-
ment protocol. Their paper introduces the first reliable key
establishment protocol for SS without a pre-shared secret.
However, unlike traditional SS systems with pre-shared keys,
the proposed mechanism incurs an increase in energy cost by
a factor of n due to the implicit redundancy in packet trans-
missions (retransmissions of message fragments that are not
received) required by their scheme. This is the closest work
related to our paper. Our mechanism, unlike UFH, retains
the main benefits of the original SS communication in terms
of communication energy (all transmitted energy is used in
the packet decoding process). It does incur a higher compu-
tation cost, which we show later is no more than twice the
cost of the traditional SS with pre-shared secret. With ever
increasing computation power of computers today, this is a
negligible issue.

Other countermeasure techniques discard the possibility
of using SS because of the narrow RF bands available to
ad hoc networks, or because of the absence of a pre-shared
key as mentioned above [7, 1]. These techniques are much
less energy efficient than SS. Note that SS can still be used
in narrow band if the signal is spread in time at no addi-
tional energy cost. The tradeoff in that will be a reduced
data rate by a factor equal to the spreading length, which is
not necessarily a limitation as two nodes can have multiple
simultaneous communications as in Code Division Multiple
Access systems.

1.3 Contributions
The contributions of this paper are both conceptual and

algorithmic:

• Zero communication-energy overhead key establishment
of a shared key without pre-agreed knowledge (in com-
parison with conventional SS with pre-shared keys): a
novel approach based on intractable forward-decoding
and efficient backward-decoding.

• Undetectable communication until end of transmis-
sion (delayed detection) forcing the jammer to become
energy-inefficient and channel-oblivious [2].

• A destination-oriented scheme that prevents efficient
simultaneous-attacks on multiple receivers.

• Computationally efficient end of the message detection
(a FFT-based technique), and message extraction (use
of a key-scheduling algorithm that requires at most
twice the decoding cost of conventional SS).

2. SETUP MODEL
Our setup model considers systems that are traditionally

capable of doing SS, such as mobile ad hoc network. In
particular, it is not applicable to systems with low compu-
tational power, e.g., wireless sensor network. The imple-
mentation of our scheme requires systems to have at least a
GB of memory to carry out FFT computations.

2.1 System Model
We consider a wireless communication network where sev-

eral nodes are trying to establish pairwise-shared secret that
would enable SS communication. Our model and the prob-
lem formulation is very similar to [14]. We focus on a pair
of communicating nodes along with a jammer, all sharing
a RF channel. The jammer’s objective is to prevent the
establishment of the secret key between the communicating
nodes, because once this key is established, the communicat-
ing nodes can use conventional SS for communication mak-
ing them resilient to jamming. Our main objective is to de-
vise a jammer-resilient message-delivery mechanism with no
pre-shared information. which can be used by any Mutual
Authentication and Key Agreement Protocol (MAKAP) to
deliver few messages and establish a key for future SS com-
munication. In this paper, we consider the same MAKAP
as in [14], namely Elliptic Curve Diffie Hellman (ECDH)
because of the small number of messages exchanged (two)
and their short length. Our method uses Direct-Sequence
SS (DSSS), but it easily generalizes to Frequency-Hoping
SS (FHSS).

Assumption

• We assume that there exists a trusted Certificate Au-
thority (CA) that issues digital certificates attesting
each user’s public key.1

• Anything that is known to the receiver about the pro-
tocol and the sender is known to the jammer. This
includes the encoding the decoding mechanism that
makes our system so efficient.2

2.2 Adversary Model
We consider an adversary that is co-located with the sender

and the receiver that can jam, replay previously collected
messages, insert fake messages and/or modify bits of the
message. The primary goal of the adversary is to prevent
successful reception of the sender’s message by the receiver.
However, in an attempt to do so, a jammer may simply in-
crease the delay of the message extraction process or cause
denial of service (DoS) attack on the receiver side. So, it’s
secondary goal may very well be to increase the computa-
tion and energy cost of the receiver while minimizing its

1Note that given the energy, computation, and storage effi-
ciency of our techniques, if no certification authority is avail-
able, we can consider using our scheme to transmit all packet
without ever establishing a key.
2Regardless of the attacker being one of the participating
nodes or an outside jammer, it has the same amount of in-
formation available to the receiver.

own jamming cost. We define jammer’s performance as the
trade-off function relating the packet loss rate (PLR) with
the total jamming cost. Our classification of the adversary
attacks is inspired by the well known active attack catego-
rization and the attacker model of [14]. However, the specific
attacker strategies we designed and implemented for evalu-
ation of our scheme are protocol-specific. In Section 5, we
also present the empirical optimal jammer strategy and show
that it is cost-inefficient under our proposed scheme.

Assumption

• We ignore the gain of configuring physical layer pa-
rameters such as antenna gains, coding schemes, and
power-control (e.g., near-far problem) since they can
be optimized the same way as they are optimized in
conventional SS, independent of our mechanism.

• Our model does not consider the case where the jam-
mer can block the propagation of the radio signal (e.g.,
by putting a node into a Faraday’s cage)

• We assume that the adversary cannot tunnel the chan-
nel signals for remote brute-forcing before the end of
the packet transmission (few milliseconds).

Taxonomy of the Attacks

1. Jamming: The attacker can jam the communication
link in various ways, such as sending a high-power
pulse either at periodic intervals, continuously, or in
a memoryless fashion [2]. The goal is to distort pack-
ets and cause failure of correct packet decoding.

2. Replay Attack: The attacker can replay previously
captured communication messages. The goal is to in-
crease the computation cost of (1) packet decoding,
and/or (2) signature verification.

3. Targeted Modification: The attacker can modify
some bits of the message by focusing the jamming en-
ergy on some portion of the message. The jammer can-
not deterministically carry out this attack since it can
not detect on-going communication under our mecha-
nism until last few bits of message are sent.

4. Computation Denial of Service: The attacker in-
serts partial or complete messages to overwhelm re-
ceiver’s (1) packet decoding, and/or (2) signature ver-
ification.

Notice that we do not make any additional assumption on
the limitation of jammer’s computation power and energy
more than what a traditional SS does. Obviously, if the
jammer is infinitely powered energy-wise and continuously
jams all the time, it could reduce the throughput to 0%,
just like it would in a traditional SS. Our main goal here is
to devise a jammer resilient key establishment protocol with
no pre-shared key and at no additional cost compared to the
traditional SS.

In Section 5, we evaluate the performance of the jammer
types described above and present simulation results.

3. TREKS IN DSSS
Time-Reversed Message Extraction and Key Scheduling

(TREKS) is a communication approach based on zero pre-
shared key spread spectrum (ZPKS), specifically DSSS (ZPK-
DSSS) in this paper. We will first present the core idea of
ZPK-DSSS and its efficiency against jamming. Then we pro-
pose a novel key scheduling scheme, which enables efficient
backward-decoding making TREKS very applicable to sys-
tems in terms of communication energy, computation and
storage cost.

3.1 Zero pre-shared key DSSS
Assume that sender S, receiver R, and jammer J all share

the same channel. Let M denote the message that S wants
to send to R, l the bit-length of M . Prior to the start of
transmission, S randomly generates a secret key K of k bit
length. Unlike conventional DSSS, K is not known to any-
one but S when communication occurs. S generates a cryp-
tographically strong PN-sequence using S and spreads M .
Although, a PN-sequence cryptographically generated from
the key (as a seed to a symmetric encryption algorithm such
as AES) are not optimal in terms of orthogonality, they per-
form reasonably well and have been used in many military
SS systems [13].

In conventional DSSS, R keeps attempting to despread
incoming signals with the key, that is pre-shared between S
and R, until it detects the beginning of the message, then
the forward-decoding of whole message starts. In ZPK-
DSSS, there is no pre-sharing of the key. Thus, R needs
to first identify the key K chosen by S. Without knowing
K, R does not even know when the DSSS communication
occurred. The only possibility is to brute force all possi-
ble keys on every chip of the incoming signal until a key
is found that could properly decode the complete message.
Given that the key size is k bit, the complexity of exploring
the key space by brute force is O(2k). This cost is infeasible
for real-time communication. In Section 3.3, we introduce
our backward-decoding mechanism with a key schedule to
be integrated into this approach that make its efficient and
viable for real-time communication.

3.2 Jamming resiliency
We first demonstrate the fundamental strengths of the

proposed approach from the standpoint of key recovery in-
tractability and energy efficiency against jammers.

3.2.1 Communication energy efficiency
In this section, we present the way the message bits are

spread and how the total energy per packet is preserved. We
also show that the energy cost of the jammer to counter the
effect of spreading increases by factor of n.

Symbol Definition
d ∈ {+1,−1} BPSK symbols that are estimated and mapped to {0, 1} equiprobably
d̂ ∈ {+1,−1} Received BPSK symbols that are estimated and mapped to {0, 1}
n Spreading Factor
pn i 2 f 1; : : : ; n g ∈ {−1, +1} i t h chip of cryptographically designed SSEQ unknown to adversary.
Eb Energy per transmitted bit assuming w.l.o.g 1 bit sent per unit time.

u i = d
√

E b
n pn i BPSK modulated signal transmitted by the sender.

J Jammer energy per unit time
I i 2 f 1; : : : ; n g Adversary’s transmitted signals indexed at the chip level.
J
n Mean square of I i
v i Received signal indexed at chip level.
r i jamming chip with unit mean square.
BER(x, y, z) Bit Error Rate of despread signal when Eb = x, J = y and n = z

Table 1: Terminology

FACT 1. Spreading a signal by a factor n # 1 allows,
the communicating nodes to counter an n-times stronger
jammer at no extra-energy cost for the sender:

P r o o f . Since, we are only interested in the impact of
jamming, we normalize the path loss and antenna gains to
1. For simplicity, we ignore thermal (white) noise. The same
result still holds in the general case. By definition,

v i = u i + I i = d

√
Eb

n
pn i +

√
J

n
r i

Consider the following decoding technique3:

d̂ = 1 iff
n∑

i=1

v i pn i > 0

We consider BPSK modulation but the results generalize
to other modulations as well. Then BER(Eb, J, n)

= Pr[d̂ = 1 and d = −1] + Pr[d̂ = −1 and d = 1]

= 2 ∗ Pr[
n∑

i=1

v i pn i > 0 and d = −1]

= 2 ∗ Pr[d

√
Eb

n

n∑

i=1

pn i pn i +

√
J

n

n∑

i=1

r i pn i > 0 and d = −1]

= 2 ∗ Pr[−
√

Eb

n

n∑

i=1

pn i pn i +

√
J

n

n∑

i=1

r i pn i > 0 and d = −1]

= 2 ∗ Pr[−
√

Ebn +

√
J

n

n∑

i=1

r i pn i > 0] ∗ Pr[d = −1]

= Pr[
n∑

i=1

r i pn i >

√
Eb

J
n]

where pn i is a random variable independent from the adver-
sary’s r i choices. Therefore,

∑ n
i=1 r i pn i is the sum of n ran-

dom variables of equal probability taking values {−1, +1}.
The distribution of the sum can be derived from the Bi-
nomial distribution. For n # 1, this distribution can be
approximated by a Normal distribution of zero mean and
variance n: N(0, n). Thus,

BER(Eb, J, n) =

∫ 1

n
√

E b
J

1
√

2πn
e ° x2

2n
dx

=

∫ 1
√

E b n
J

1
√

2π
e ° x2

2
dx (1)

Eq. (1) indicates that when the spreading factor is increased
by a factor c, the adversary needs to scale its jamming en-
ergy J by a factor c to maintain the same BER. On the
transmitter side, since the energy per bit is kept constant,
transmitter still spends the same amount of energy while
being resilient to c times more jamming.

3.2.2 Computational infeasibility for jammer
In order to jam in a cost efficient way, the jammer needs

to identify the spreading key. As shown above, the com-
plexity of finding the key is O(2k). If k is designed such
that identifying the key takes significantly more time than
the packet transmission then even if the jammer eventually
finds the key, it is too late to jam the packet as the trans-
mission is already over. For example, given a key size of
3Note that we are assuming that the receiver knows the bit
synchronization. This is a common assumption in analyzing
SS systems. We will see in Section 4 how this is achieved.

k = 20, n = 100, and sender chip rate of 100Mcps (10ns
chip duration), it takes few milliseconds to transmit (e.g.,
1 ms for 1000 bits spread with n = 100). That means it
requires the jammer in the order of 10 multiplication opera-
tions per picosecond to brute-force 220 possible keys within
few milliseconds of transmission time, which is not possible
for a field deployed jammer to accomplish. We call this in-
tractable forward-decoding, which is illustrated in Figure 1.

3.2.3 Limitations
Intractable forward-decoding is due to zero pre-shared se-

cret in ZPK-DSSS, which in-turn also applies to the receiver.
Since the receiver needs to try O(2k) possibilities on each in-
coming chip signal to figure out the spreading key , it causes
a considerably high computation overhead. This is a major
limitation of the basic ZPK-DSSS.

In the following section, we introduce a novel spreading
key scheduling scheme, which builds upon ZPKS and enables
both intractable forward-decoding and efficient backward-
decoding. This drastically reduces the computation overhead
for the receiver from O(2k) to O(2k) while the jamming re-
siliency remains the same.

3.3 Key scheduled reverse-time decoding

3.3.1 Key size vs. jamming resiliency
Before delving into the details of our key scheduling scheme,

we first show how the key-entropy is reduced as the trans-
mission gets closer to the end, which significantly cuts down
the cost to identify the key for the receiver but still requires
the same effort from an adversary.

T h e o r em 1. Let T t r a n s(l) denote the transmission time
of l bits, Ts(k) the time required to brute force all possible k
bit keys. Given a message M and key size k, if it is secure4

to spread M with a k-bit key, it is secure to spread the last
j M j
2 i bits with k − i bit key, where i ≤ log2 (|M |).

Figure 1: Message delivered before the key is bro-
ken.

P r o o f . We first show that it is secure to spread the sec-
ond half of M with k−1 bit key. Since it is secure to spread
M with a k bit key, we have

T t r a n s(|M |) $ Ts(k)

T t r a n s(
j M j
2) =

1

2
T t r a n s(|M |)

$
1

2
Ts(k) = Ts(k − 1) (2)

4In the rest of the paper, secure key size implies it takes
significantly more time to brute-force all possible keys used
to spread than to transmit the message.

Eq. (2) shows that it is secure to encode j M j
2 bits with k− 1

bit key. Therefore, even if we use a 1-bit weaker key to
encode the second-half of M , we can guarantee that the
whole message can still be delivered before the jammer brute
forces all possible keys. By induction, it is easy to get that
T t r a n s(

j M j
2 i) % Ts(k − i). Thus, it is secure to spread the

last j M j
2 i bits with k − i bit key.

The intuition behind Theorem 1 is that as transmission
goes on, less time is left for jammer to find the key, so it is
safe to encode the rest of the message with slightly weaker
keys 5.

3.3.2 Spread key scheduling
Based on Theorem 1, we introduce a key scheduling

scheme to TREKS. As shown in figure 2, instead of spread-
ing the complete message with a fixed key, we partition the
message into k segments (note that the segments are trans-
mitted in a continuous way), where k is the key size. We
call each segment “schedule”. The size of ith segment M i is
& j M j

2 i '. At the start of spreading process, we use full length
key to spread M1. After each schedule, we set the most sig-
nificant bit of the key to a known value and resume encoding
the next segment with this 1-bit weaker key. We repeat this
process until the last schedule, which is encoded with a key
with only 1 bit secret. So, it is easy to see that the message
length l has to be at least 2k such that k could be decreased
to 1 bit towards the end of the key schedule. For simplicity,
we assume that l = 2k . We loosen this assumption in the
later section. Algorithm 1 outlines the message segmenta-
tion and key scheduling.

Symbol Definition
M message to be transferred
K secret key
l length of message in bits
k size of secret key in bits
K[m . . . n] part of the K from m t h bit to n t h bit
M [m . . . n] part of the M from m t h bit to n t h bit
K i key used in schedule i
M i message segment belonging to schedule i
N i size of rest of message at the start of schedule i

Table 2: Summary of the notations.

Algorithm 1: Sender encoding message with key schedule.

1. N1 ← M
2. for i = 1 . . . k do

K i ← K[i . . . k]

M i ← N i [1 . . . " | N i |
2 #]

cryptographically generate PN i from K i
encode M i with PN i
N i+1 ← N i [|M i | + 1 . . . |N i |]

Intractable forward-decoding: By the definition of the
key schedule and theorem 1, the property of intractable
forward-decoding is maintained.
Efficient backward-decoding: Due to the decreasing key
entropy, it becomes easier for the receiver to identify the key
as the transmission is closer to the end. Specifically, since
the last key schedule has entropy of 1 bit, the receiver needs

5Additional measures can be taken to prevent overlap be-
tween weakened key spaces.

to try just two keys on each incoming chip to detect the po-
tential end of message (EoM). Once the receiver detects a
potential EoM, it starts inferring the key from previously re-
ceived signals using the knowledge that the entropy of K i ° 1

from that of K i in the key schedule increase by only a bit in
reverse time. So the receiver needs to try 2k keys in total be-
fore realizing all the k bits of the key, significantly lowering
the cost of finding the key from the basic scheme.

Figure 2: TREKS with key scheduling.

3.4 Further improvements and discussion

3.4.1 MAC-masked key scheduling
In the key scheduling scheme above, the last scheduled

key Kk is always either 0 or 1 for any sender/receiver pair.
Thus, the jammer could jam with a PN-sequence generated
by 0 or 1, which is likely to compromise the last message
segment. Once the EoM is jammed and the receiver is not
able to detect it, the reverse decoding cannot start. In order
to tackle this issue, we take the receiver’s MAC address to
mask the key at each schedule. The revised key scheduling
strategy is illustrated in figure 3. The key K i used to en-
code M i is generated by replacing the most significant i− 1
bits of the receiver’s MAC address with the most significant
i− 1 bits of K. It is easy to see that the hardness of the key
inferring remains the same. Whereas, the last scheduled key
is different across different receivers. Thus, the jammer can
only target one receiver at a time. The potential jamming
attack mentioned earlier becomes a destination-oriented at-
tack.

In section 5 we will discuss the impact of the MAC jammer
and show that our system is highly resilient against such
jammer as it is against other jammers.

3.4.2 Key scheduling with linear tail
As mentioned at the end of 3.3.2, we assumed that l =

2k so that key size can be decreased down to 1 bit by k t h

schedule, and total message length l for k = 20 would be
1M bits. Obviously this is too large for a message size.

We also observed that if T t r a n s(|M |) ≤ T± , where T± is
the radio turn around time of the jammer, it is impossible
for the jammer to jam M . In this case, when the jammer
detects the transmission and switches to a transmit mode,
the message has already been delivered. Take 802.11 as an
example, the radio turn around time is 10us. Consider a

Figure 3: MAC-masked key scheduling.

Figure 4: Key scheduling with linear tail.

spreading factor n = 100, chip rate of 100Mcps, then we
have T t r a n s(1) = 1us. So for the last 10 bits of the message,
the sender can weaken the key at a linear rate of 1 key
bit per packet bit. Therefore, only the first 10 bits of the
key need to be scheduled. Thus, the message size becomes
10 +

∑9
i=0 2 i = 1033 bits, which is a reasonable size. Note

that if T± allowed for only the transmission of a smaller
number of bits, we can linearly weaken the key by more
than one key-bit per transmitted bit. This slightly increases
the computation cost of key inferring but only on a small
number of bits. The revised key scheduling algorithm is
illustrated in Figure 4.

Next, we present the efficient backward decoding algo-
rithm, its computation complexity and briefly discuss the
key establishment protocol under TREKS.

4. EFFICIENT BACKWARD-DECODING

Figure 5: Workflow of TREKS Message Decoding

4.1 Overview of TREKS Decoding
MAC-masked TREKS enables efficient backward-decoding,

which is best described as a two-phase phenomenon [See Fig-
ure 5]:

• Phase-I : Finding EoM by computing the cross-correlation
between received chips and the PN-sequence generated
with receiver’s MAC address.

• Phase-II : Inferring the key in time-reversed fashion,
which is used to despread the message.

4.2 Finding the EoM (Phase-I)
As shown in Figure 5, Phase-I consists of two steps, (a)

sampling and buffering, and (b) FFT EoM detection. When
new signal samples arrive, the receiver enqueues them into
a FIFO. At any instance, the receiver only have to keep 2nl
chips in his buffer because after finding the EoM, he will
have to traverse at most nl length before he recovers the
message. We compute cross-correlation to achieve bit syn-
chronization, a very common practice in SS systems [13].
However, calculating cross correlation is computationally ex-
pensive. We optimize this calculation (a) by using FFT,
which reduces the cost of computing cross correlation from
2n2l to nl log(nl), and (b) by processing a batch of nl chips
at once during FFT computation unlike conventional SS sys-
tems that process n chips (spread of a bit) at a time.

Symbol Definition
m message sent by the sender, as z segments
Seg[i] Segments of a message, where 1 ≤ i ≤ z
K[i] Key used to generate spread PN-sequence, 1 ≤ i ≤ z
K i Possible set of keys, 1 ≤ |K i | ≤ 2,

that receiver tries to despread Seg[i] with.
S[i] Real-time Signal that is sampled at the receiver side.
PEoM [i] Array of possible EoM indices.
M [i] Array of extracted complete messages.
GetBuffer(.) Gets the next n ∗ l chips from the signal stream for sampling.
DotProd(.) Dot product of two vectors (correlation function).
FFT (.) Fast Fourier Transform.
IFFT (.) Inverse Fast Fourier Transform.
Fast Correlate(.) Calculating Convolution between a short and a long signal.
Key Infer(.) Function to infer the key.
Peak Detection(.) Function to detect peaks at Seg[i], 1 ≤ i ≤ z
Despread(.) Standard Spread Spectrum function to despread received signal.
Signature V erify(.) Function to verify the sender.

Table 3: Additional notations

Algorithm 2: Finding the End of the Message (EoM)

1. Old Buffer = GetBuffer(S);
2. for each buffer of length (n ∗ l) do

Current Buffer = GetBuffer(S);
Set k = MAC ADDRESS(Rcvr);
Corr[1 : n ∗ l]=Fast Correlate(Current Buffer,k);
for each j ∈ {1, · · · , n ∗ l} do

If Corr[j] > threshold then
push j into PEoM[];

If PEoM[] is empty
Old Buffer = Current Buffer;

Else
Buffer = concat(Old Buffer,Current Buffer);
Key Infer(Buffer,PEoM);

Fast Correlate(Buff,key){
Temp Key[1:n*l] = Zeros;
Temp Key[1:n] = key;
Input1 = FFT(Buff);
Input2 = FFT(Temp Key); //Pre-computed
Corr[1:n*l] = IFFT(Input1*Input2′);
return Corr;}

As illustrated in Algorithm 2, our FFT detection process
iterates over each chip in the buffer to find the EoM. One
challenge is that there might be more than one candidate for
EoM, i.e., multiple values of the correlation vector may pass
the threshold test to produce false positives. Thus, we en-
queue all possible EoMs into PEoM[], and pass it to Phase-II
for further processing. We pick threshold value empirically
by observing TREKS performance over large number of sim-
ulation runs, details of which is given in Section 5.

4.3 Message Extraction (Phase-II)
Phase-II consists of Step 3 and 4 as shown in Figure 5. In

Step-3, we infer the key by finding the legitimate EoM out of

all PEoM found in Phase-I. For each PEoM, we begin time-
reversed key inferring. For each key bit, we try two possible
choices. Algorithm 3 shows this process. For a certain guess,
if more than 50% of the total bits are detected in a schedule,
then we confirm the value for this key bit and move onto the
next. Otherwise, we abort the key inferring. Hence, we get
Theorem 2.

T h e o r em 2. The computational cost of TREKS message
despreading is at most twice the computational cost of con-
ventional SS systems with a pre-shared key.

P r o o f . For each segment, the receiver attempts to de-
spread the bits with two potential keys. Therefore each bit
is despread twice. Leading to a computational cost of twice
a conventional spread-spectrum. Note, that this cost can be
reduced by eliminating one of the two keys after attempting
only few bits of a packet.

In Phase-II, another optimization we employ is that af-
ter we find the EoM, instead of computing FFT each time
to synchronize with the bits of the message, we compute
the dot-product between n chips and the PN-sequence. The
abortion of key inferring process implies a packet loss other-
wise we despread the message using the key inferred [Step-4].
We discuss the choice of the threshold values used in Algo-
rithm 2 in Section 5.

Algorithm 3: Message Extraction

1. Key Infer(Buffer,PEoM){
for each possible EoM j ∈ PEoM do

PeakPos = n+j; //EoM = Buffer[n+j]
endIndx = PeakPos-n; //End of Seg[z-1]
for each p ∈ {1, · · · , z} do

startIndx = endIndx−|Seg[z]| + 1;
CntOfSucc = 0;
for each key candidate k ∈ K z−p do

succ = Peak Detection(k,Buffer,
startIndx, endIndx);

CntOfSucc = CntOfSucc + succ;

If(CntOfSucc==1)
K[p] = k;

Else
Abort Key Infer(Buffer,PEoM);

endIndx = startIndx;

m = Despread(Buffer[j − (n ∗ l) + 1, j], K[]);
Enqueue m into M [];}

2. Signature Verify(M[]);

Peak Detection(key, Buf, startIndx, endIndx)
{

ExpNumofPeaks = (endIndx - startIndx)/n;
CntOfPeaks = 0;
for each d ∈ {1, · · · ,ExpNumOfPeaks} do
P=DotProd(key,Buf[startIndx,startIndx+n]);
If P > threshold then

CntOfPeaks = CntOfPeaks+1;
startIndx = startIndx+(d ∗ n)− 1;

If CntOfPeaks > 50%*ExpNumOfPeaks
succ = 1;

Else
succ = 0;

return succ;
}

Signature Authentication and Key Establishment
At the end of Algorithm 3, depending on the type of jam-
mer and its strategy, a receiver might end up recovering
more than one message, namely the jammer messages. In
that case, the receiver has to verify the sender using some

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-20 -15 -10 -5 0 5 10 15

Bi
t E

rro
r R

at
e

(B
ER

)

Signal to Noise Ratio (SNR) in dB

(a) SNR vs. BER

t=1
t=2.5

No

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15

Pa
ck

et
 L

os
s

Ra
te

 (P
LR

)

Signal to Noise Ratio (SNR) in dB

(b) SNR vs. PLR

t=2.5
t=1
No

Figure 6: Two graphs (a) SNR vs. BER (b) SNR
vs. PLR. t = T h r e s h o l d

a v e r a g e and “No”−→without TREKS.

kind of mutual authentication and identification mechanism.
TREKS uses 160 bit Elliptic Curve based Digital Signature
Algorithm (ECDSA) to authenticate the nodes and their
data sent over the channel. A 160-bit ECC key provides the
same level of security as that of a 1024-bit RSA key [8], which
is sufficiently secure for the purposes of a session-based en-
crypted message transmission of TREKS. The choice of the
key establishment protocol for TREKS need not be a spe-
cific key establishment protocol. Similar issue is already dis-
cussed extensively in [14]. So, we will use the same protocols
of [14].

5. PERFORMANCE EVALUATION
We evaluate the performance of TREKS in terms of the

Packet Loss Rate (PLR) as a function of communication/jammer
energy, computation cost, and storage cost. Based on Fact
1, we can focus on two jammers: (1) additive white gaussian
jammer (whose energy is reduced by a factor n) evaluated
in Section 5.1, and (2) jammers spreading a signal with the
receiver MAC address evaluated in Section 5.2. Without
knowing the beginning of the transmission, the jammer is
forced to operate as a memoryless jammer with a rate λ.
We call these λ-jammers. Note that if λ = 1, it becomes a
continuous jammer.

Simulation Setup: We use MATLAB to simulate the
communication, jamming, and message extraction under var-
ious settings of the configurable parameters to depict dif-
ferent types of jammers under different scenarios. All the
graphs are based on 10K simulation runs of same parameter
setting. The variables of our simulations are:

Spreading Factor, n 100
Packet Size, l 1033 bits
Key Size, n 19

Jammer Power to Signal Power Ratio, JSR [1..100]
Normalized Signal Power 0 dBW

Noise Power -20 dBW

Table 4: Parameters for Simulation.

5.1 TREKS vs. Gaussian Jammers
We consider the case where the sender and the receiver

communicate under a white Gaussian jammer. From Fact
1, this corresponds to interferers not using the destination
MAC address. Their interference results in Gaussian noise
of energy reduced by a factor n.

5.1.1 Packet Loss Rate (PLR)
The PLR under our model implies one of the following:

(a) Key Infer Failure, (b) EoM missing, and (c) High BER
(over 15% [11]). Figure 6 shows the PLR and the BER in-

curred using TREKS, as a function of an increasing SNR
and different detection threshold. Note that due to the im-
perfect synchronization and EoM recovery, we only obtain a
gain of 15− 17 dB (i.e., 20 to 50 times resiliency gain).

5.1.2 False Positives
The number of False Positives (FP) encountered during

the FFT EoM detection process affects the performance of
TREKS in terms of its computational delay. In fact, we
use the PLR and the number of FPs observed while running
TREKS at a fixed noise level of 0dB to choose the peak
detection threshold used in Algorithm-2.

We define threshold as t ∗ avg where avg is the average
of the correlation vector produced by fast correlate(.) of
Algorithm-2, and t is a multiplier. Based on the results from
Tables 5 and 6, we chose t to be 2.5 because of a much smaller
FP rate observed at threshold = 2.5 ∗ avg, even though we
loose about 2dB of jammer resiliency.

SNR (dB) t=1.0 t = 2.0 t = 2.3 t = 2.5 t = 3.0
−10 11.79% 1.48% 0.94% 0.58% 0.22%
−5 11.80% 1.48% 0.94% 0.58% 0.22%
0 11.79% 1.47% 0.96% 0.59% 0.22%
5 11.79% 1.51% 0.98% 0.61% 0.23%
10 11.78% 1.57% 1.01% 0.64% 0.25%

Table 5: False Positives (FP)

SNR (dB) t=1.0 t = 2.1 t = 2.3 t = 2.5 t = 2.9
−10 19.00% 48.00% 49.50% 47.50% 64.50%
−5 0.00% 0.20% 0.50% 1.50% 4.00%
0 0.00% 0.00% 0.00% 0.00% 0.00%

Table 6: Packet Loss Rate (PLR).

Important Observation: Figure 7 shows that we detect
almost all of the FPs among PEoMs by the first two itera-
tions (stages) of key infer() in Algorithm 3 when threshold
= 2.5 ∗ avg. Thus, FP does not impact TREKS compu-
tationally by much. The increase in computation cost is
negligible compared to the decoding cost, which itself is less
than double the cost of decoding in traditional SS.

5.1.3 Computation Cost

Operation Using GPU Lab Computer
FFT benchmark 1ms 28ms
Key Inferring - 1ms

Signature Verification - 1ms

Table 7: TREKS Computation Cost.

Table 7 shows the computation cost of TREKS performed
in our lab computer versus using a GPU NVidia GeForce
8800 GTX. Using the latter, we can accelerate the FFT com-
putation by 28 times [9]. The specification of our lab com-
puter is a 64-bit Intel(R) Core(TM)2 CPU 6400 @2.13GHz
with 3GB memory. It clearly shows that with appropriate
off-the-shelf hardware, TREKS can operate in real time with
its total execution time under 3ms. We used OPENSSL-
0.9.8 version to calculate the benchmark for verifying 160-bit
ECC-DSA.

5.1.4 Storage Cost
The storage cost of TREKS accounts for (a) the total num-

ber of messages recovered at the end of message extraction,
and (b) the size of the FIFO used in buffering the signal

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

S1 S2 S3 S4 S5 S6 S7 S8 S9

Pe
rc

en
ta

ge
 o

f F
Ps

 D
et

ec
te

d

Key Inferring Stages

(b) FP Detection Stage Distribution (Threshold 2.5)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

S1 S2 S3 S4 S5 S6 S7 S8 S9

Pe
rc

en
ta

ge
 o

f F
Ps

 D
et

ec
te

d

Key Inferring Stages

(a) FP Detection Stage Distribution (Threshold 1)

Figure 7: Distribution of the FP detection stage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pa
ck

et
 L

os
s

Ra
te

 (P
LR

)

Jammer Power to Signal Power Ratio(JSR)

a. PLR due to different jammers (n=100)

(Random) Scenario-1
(Random) Scenario-2
(Random) Scenario-3

(MAC) Scenario-1
(MAC) Scenario-2
(MAC) Scenario-3

 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

 0.011
 0.012
 0.013

 0 10 20 30 40 50 60 70 80 90 100

Fa
lse

 P
os

itiv
es

 (F
P)

Jammer Power to Signal Power Ratio(JSR)

b. FP due to different jammers (n=100)

(Random) Overlap
(Random) No Overlap

(MAC) Overlap
(MAC) No Overlap

Figure 8: Jammer performance comparison.

samples in Algorithm-2. Even if a jammer injects j packets,
we store at most (j +1)∗ l/8 bytes, and the current buffer
in Algorithm-3 holds n∗l samples. Hence, the storage cost of
TREKS is 4∗n∗ l+(j+1)∗ l/8 bytes (assuming each sample
is a 32-bit I/Q value), clearly within the storage capacity of
today’s computer.

5.2 TREKS vs. λ-Jammers
Consider a discretized time with timeslots of duration n∗l

chips. We define two different kinds of jammers that take
parameters λ and JSR. λ represents the probability that a
jammer sends a jamming message at a given timeslot (this
corresponds to discretization of a Poisson memoryless jam-
mer to a Bernoulli jammer), and JSR is the jammer to signal
power ratio. The cost of the jammer is λ∗JSR, and its goal
is to maximize the PLR for a given budget. In our simula-
tion, we assume that the sender is always sending messages.
Note that the actual jammer impact will be less than the
simulation graph’s because the jammer does not know when
a transmission occurs. Thus, a source transmitting with
probability µ would cause a jammer efficiency decrease by a
factor of 1/µ.

Jammer Types: Jammers could also send partial mes-
sages but this can be independently addressed with appro-
priate interleaving and coding [11]. Hence, we consider fol-
lowing jammers in our simulation:

• (Random) Jammer-1: Inserts an l-bit message, each
bit spread with a random PN-sequence.

• (MAC) Jammer-2: Inserts an l-bit message, each
bit spread with the PN-sequence generated using the
MAC address of the receiver as the seed.

Jamming Scenarios: Consider a data message that oc-
curs inside a two timeslot (TS) window. Now, a jammer
message might occur in the first, second, both or none of
the timeslots. This gives rise to following possible scenarios:

• Scenario-1: Jammer message occurs in the first TS.
Impact : Key inferring.

• Scenario-2: Jammer message occurs in second TS.
Impact : EoM detection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pa
ck

et
 L

os
s

Ra
te

 (P
LR

)

Jammer Power to Signal Power Ratio(JSR)

a. PLR as a function of Budget (Random Jammer)

Budget=1
Budget=5

Budget=10
Budget=15
Budget=20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pa
ck

et
 L

os
s

Ra
te

 (P
LR

)

Jammer Power to Signal Power Ratio(JSR)

b. PLR as a function of Budget (MAC Jammer)

Budget=1
Budget=5

Budget=10
Budget=15
Budget=20

Figure 9: Jammer performance under fixed budget.

• Scenario-3: Jammer message intersects both TS.
Impact : Key inferring and EoM detection.

• Scenario-4: Does not occur during those two TS.
Impact : None.

• Scenario-5: Jammer’s packet is perfectly synchro-
nized with the sender packet at the receiver side.
Impact : If perfect synchronization was possible, then
there is a 0.5 probability that the last bit of the mes-
sage is jammed, hence causing to miss the EoM.

Observation: In Figure 8(b), we show that no matter
which of the four scenarios we run, there is no incentive for
the jammer to increase its JSR if its objective is to increase
the FPs. With overlapping or without, the resulting number
of FPs that impacts EoM detection is same.

For a given λ, let’s define the expected PLR:

E[PLR] = E1∗λ(1−λ)+E2∗λ(1−λ)+E3∗λ2+E4∗(1−λ)2

where E1, E2, E3,and E4 are the expected PLR for above
defined Scenarios-1,2,3 and 4 respectively.

Figure 8(a) shows that for both the MAC and Random
jammer, scenario-2 has more impact on PLR than Scenario-
1 and Scenario-3 has slightly more impact than the both.
Obviously, E4 = 0. Figure 9 shows that Random Jammer
and the MAC Jammer attain their optimum (expected) PLR
approximately when 10 ≤ JSR ≤ 15. Note that these re-
sults are based on the assumption that the communication
is always happening. In reality, the impact of the jammer
will be much less.

Case of the MAC Jammer: The MAC jammer out-
performs the Random jammer only in terms of the numbers
of FP produced. However, Figure 7 shows that by the third
stage of key inferring, almost all of the FPs are detected.
Thus, its impact in terms of computation and delay is neg-
ligible compared to decoding cost. In terms of PLR, it is a
very close race between the MAC jammer and the Random
jammer with MAC jammer winning by a slight margin. This
is simply because only the last bit of the message is spread
with receiver’s MAC address.

Case of Perfect Synchronization (Scenario 5): We
believe that it is very hard for the jammer to attain Sce-
nario 5, i.e., achieve perfect synchronization, because under
our mechanism the jammer does not know when the commu-
nication is happening, and only one (last) bit of the packet
is actually spread with receiver’s MAC address. Therefore,
the probability of Scenario 5 is 1/n.

6. CONCLUSION AND FUTURE WORK
We introduce a method for achieving SS anti-jamming

without a pre-shared key. Our method has zero energy over-
head in comparison with conventional SS communication.

Our solution relies on intractable forward-decoding and ef-
ficient backward-decoding. We propose several algorithms
to optimize the decoding and show that the computational
cost of despreading is less than twice the conventional SS
cost. Our method has additional benefits of delayed detec-
tion and destination-oriented transmission making jamming
infeasible and keeping its impact to minimal by prohibiting
jammers from simultaneously jamming multiple receivers.

Future Work: Since we focus on the key establishment
for systems like SS, graceful degradation of the system through-
put due to small PLR and intermittent losses won’t affect
our protocol. However, if we were to extend TREKS for
long-lived communication without key establishment, then
it would be interesting to investigate their impact. That is
our future work. Furthermore, we believe that extending
TREKS to today’s popular systems, such as Wideband Or-
thogonal Frequency Division Multiplexing (W-OFDM), can
increase the applicability of our scheme. We plan on study-
ing different extensions of TREKS in future.

7. ACKNOWLEDGMENTS
This work was partially funded by NSF grant 0448330

(CAREER) and NSF CyberTrust grant 0716581.

8. REFERENCES
[1] B. Awerbuch, A. Richa, and C. Scheideler. A

jamming-resistant mac protocol for single-hop wireless
networks. In ACM PODC, 2008.

[2] E. Bayraktaroglu, C. King, X. Liu, G. Noubir,
R. Rajaraman, and B. Thapa. On the performance of
ieee 802.11 under jamming. In Infocom, 2008.

[3] M. A. Bender, M. Farach-Colton, S. He, B. C.
Kuszmaul, and C. E. Leiserson. Adversarial contention
resolution for simple channels. In SPAA, 2005.

[4] T. Brown, J. James, and A. Sethi. Jamming and
sensing of encrypted wireless ad hoc networks. In
ACM MobiHoc, 2006.

[5] A. Chan, X. Liu, G. Noubir, and B. Thapa. Control
channel jamming: Resilience and identification of
traitors. In IEEE ISIT, 2007.

[6] J. Chiang and Y.-C. Hu. Cross-layer jamming
detection and mitigation in wireless broadcast
networks. In MobiCom, 2007.

[7] S. Gilbert, R. Guerraoui, and C. Newport. Of
malicious motes and suspicious sensors: On the
efficiency of malicious interference in wireless
networks. In OPODIS, 2006.

[8] B. Gupta, S. Gupta, and S. Chang. Performance
analysis of elliptic curve cryptography for ssl. In
MobiCom, 2002.

[9] http://www.cv.nrao.edu/pdemores/gpu/. Gpu
benchmarking.

[10] M. Li, I. Koutsopoulos, and R. Poovendran. Optimal
jamming attacks and network defense policies in
wireless sensor networks. In INFOCOM, 2007.

[11] G. Lin and G. Noubir. On link layer denial of service
in data wireless lans. Wireless Communication and
Mobile Computing, 2005.

[12] K. B. Rasmussen, S. Capkun, and M. Cagalj. Secnav:
Secure broadcast localization and time synchronization
in wireless networks. In MobiCom, 2007.

[13] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K.
Levitt. Spread spectrum communications; vols. 1-3.
Computer Science Press, Inc., NY, 1986.

[14] M. Strasser, C. Popper, S. Capkun, and M. Cagalj.
Jamming-resistant key establishment using
uncoordinated frequency hopping. In ISSP, 2008.

[15] P. Tague, D. Slater, G. Noubir, and R. Poovendran.
Linear programming models for jamming attacks on
network traffic flows. In WiOpt, 2008.

[16] W. Xu, K. Ma, W. Trappe, and Y. Zhang. Jamming
sensor networks: attack and defense strategies. IEEE
Network, 2006.

