OPEN NETWORKING INFRASTRUCTURE BOOSTING WIRELESS NETWORKS IN THE ERA OF CLOUD COMPUTING

Ph.D. Proposal Defense

Tao JinCollege of Computer and Information ScienceNortheastern University

Sept. 20, 2012

Evolution of Mobile Networks

- Mobile networks and devices are rapidly evolving
- Our daily life is on mobile

"More users may connect to the Internet via mobile devices than desktop PCs within 5 years" - Morgan Stanley, **The Mobile Internet Report 2009**

New Challenges

- Fast growing demand of ubiquitous network access
- Cellular technology is facing critical challenges
 - High capacity shared by a large number of users
 - Not scalable as mobile population keeps growing
 - High maintenance/upgrade cost
- New trend: Offload data to WiFi networks
 - Carrier approach: AT&T, T-Mobile, China Mobile
 802.11u, hotspot 2.0

Community approach:
 FON encourages users to share their idle home bandwidth with others over millions of users

Advantage of WiFi

- WiFi ubiquitous in devices
- Much wider spectrum than cellular licensed band
 - 80MHz in 2.4GHz, 240MHz in 5GHz
- Widely deployed, <u>"ready-to-use"</u> infrastructure
- Increasingly powerful (CPU, RAM, Flash, Easy to upgrade, etc.)
 - Distributed storage service
 - Micro CDN nodes

Leverage **community WiFi** to provide better ubiquitous access to **wireless**, **data** and **computation**

Research Focus

BaPu

Harness the Idle Backbone Uplink Capacity through Neighboring WiFi

WiZi-Cloud

Reduce Energy Consumption with the Assistance of Urban WiFi Infrastructure

Outline

- Introduction
- Open Infrastructure Testbed
 A Residential Wi-Fi Research Testbed @ Boston
- BaPu
- WiZi-Cloud
- Task Schedule

Why Build Open Infrastructure Testbed?

 Many testbeds run in university/enterprise environment

- Residential networks have unique characteristics
- We need a "PlanetLab" in residential networks
 - Provide first-hand information of residential networks (wireless & wired)
 - A realistic environment to try research ideas

Open Infrastructure Testbed

- 30 home WiFi APs in Boston (since 02/2011)
- Customized OpenWRT firmware
- 16GB USB Flash

9/20/12

- A suite of management tools
- Traffic monitoring at 10sec granularity
- 1.3TB full data trace (6 month)

ummary		AP List	Map				
_	_		untime first	-	Beller Obert	Course and	Loui Dadata
-	version		optime (M)	WHI ESSED	Priew (Kopu)	creation (cobio	Last opeans
٠	0.63	129.10.115.200	3028.82		0.66	0.00	2012-08-05 03:1
٠	0.63	65.96.165.130	1946.94		0.59	0.00	2012-08-05 03:1
٠	0.63	71.232.32.247	1.22		10.49	0.00	2012-08-05 03:1
	0.61	129.10.115.200	0.04		0.00	0.00	2012-07-19 18:2
٠	0.63	24.63.24.189	4117.74		0.59	0.00	2012-08-05 03:1
٠	0.61	174.62.207.20	471.97		0.23	0.00	2012-08-05 03:1
	0.6	209.6.232.79	47,44		0.00	0.00	2012-04-12 19:4
٠	0.63	76.175.169.116	773.54		10.30	0.00	2012-08-05 03:1
٠	0.63	24.34.221.134	1434.77		0.80	0.00	2012-08-05 03:1
	0.63	24.147.69.225	4523.30		2086.77	0.00	2012-05-27 09:2
٠	0.63	75.67.17.113	777.22		0.47	0.00	2012-08-05 03:1
	0.6	24,218,216,22	0.24		0.00	0.00	2012-02-26 16:1

Testbed Measurement Findings

- Residential broadband is mostly under utilized
 - Over 90% chance, DL bw. < 1Mbps, UL bw. < 100Kbps
- WiFi APs generally have good connectivity to Internet
 - inter-ISP, intra-ISP, ISP to major public servers
 - Latency: 24ms
 - Throughput: 2.3Mbps (off peak hrs) vs 2.5Mbps (peak hrs)
- Wardriving in Boston (Dec. 2011) to verify our findings in a large scale
 - 26K APs
 - Instrumented latency measurements with hundreds of them

Outline

- Introduction
- Open Infrastructure Testbed
- BaPu

Practical **B**unching of **A**ccess **P**oint **U**plinks

- WiZi-Cloud
- Task Schedule

Introduction

Uplink Bottleneck in Today's Residential Broadband

Backhaul broadband uplink is highly throttled

Proposed Research Backhaul Uplink Aggregation through WiFi

Generally, multiple proximate APs are available in residential area.

Proposed Research Backhaul Uplink Aggregation through WiFi

All APs in communication range may each forward a share of the upload traffic

Why is Backhaul Uplink Aggregation Feasible?

- Rely on three observations
 - Asymmetric WiFi bandwidth and backhaul uplink
 WiFi BW. (54 ~ 600Mbps) >> Uplink BW. (1 ~ 3Mbps)
 - High density of WiFi APs (esp. in urban area)
 - On average 17 APs available per scanning
 - Internet backbone is over provisioned
 - Under utilized home broadband
 - Over 90% chance, uplink BW usage less than 100Kbps
 - Consistent with related study [Marcon et.al. NOSSDAV 2011]

BaPu Design Goals

- Efficient harnessing of idle bandwidths
- Transparent to clients
- TCP/UDP friendly

Get existing network apps work out of the box

- Ensure fairness among APs ____ Better user incentive

Related Work AP Grouping

- FatVAP [Kandula et.al., NSDI '08]
 - custom client WiFi driver fast switching among legacy APs
 - multiplex sessions through different APs
 - one session assigned to one AP (cannot overcome uplink bottlenck)
 - FatVAP variants
 - fairness among APs
 - more efficient AP switching
 - security

۲

FatVAP architecture

Related Work Uplink Aggregation

- Link-alike [Jakubczak et.al., MC2R '08]
 - designed for UDP based large file transfer
 - require modifications on client, AP and destination
 - central scheduling + rate control
 - TCP unfriendly!

Example Scenario

BaPu System Design

BaPu-Gateway

Legacy dest.

Experiment Setup

- Deploy up to 7 BaPu-APs, similar to our latest Wardriving measurement in Boston
- Emulate realistic network settings with Linux TC

Preliminary Results

Aggregated Throughput

Look Into Poor TCP Throughput

- BaPu-APs forwards Out-of-order TCP segments due to diverse uplinks
- TCP congestion control mistakenly reduces
 Congestion Window Size

BaPu-Pro

- Proactive-ACK
 - Spoof TCP ACKs on receiving reports of continuous TCP sequence

BaPu-Pro Performance

Aggregated Throughput

Discussion and Future Work

- Thorough evaluation in various network settings
 - network latency
 - AP traffic load
 - wireless diversity
 - ...
- Feasibility study in residential area
 - WiFi reception from neighboring APs
 - Performance limit in residential broadband

Outline

- Introduction
- Open Infrastructure Testbed
- BaPu

WiZi-Cloud

Application Transparent Dual ZigBee-WiFi Radios for Low Power Internet Access

Task Schedule

Introduction

- Mobile technology outpacing battery technology
 - No battery tech. improvement since 2005
- Mobile apps are much reliant on battery

Energy Usage Breakdown on Android G1: Active vs. Idle

Network interfaces are major energy consumer

Related Work Reduce Energy Usage of Mobile Comm.

Optimize existing network interfaces, WiFi, GSM, BT

- Power saving protocols design
- Energy efficient HW design

Use alternative low power radio to offload work from energy consuming interfaces

- "Wake-on-Wireless" uses a low power paging radio to wake up PDA [Shih et.al. MobiCom '02]
- Cell2Notify uses cellular radio to wake up WiFi on incoming VoIP call [Agarwal et.al. MobiSys '07]
- CoolSpot uses BT to offload traffic from WiFi [Pering et.al MobiSys '06]

Our Solution

Dual ZigBee-WiFi radios

- Seamless dual-radio solution to OS, applications, etc.
- Feasibility: low power, but low data rate (250Kbps)
- Characteristics of energy consumption
- Complete design and prototype
 - Sufficient throughput to sustain main stream apps
 - 300% more energy efficient
 - Good coverage

What can 250Kbps do?

What can 250Kbps do?

WiZi-Cloud System Design

Intra-device interface handover

WiZi-Cloud System Design

WiZi-Cloud System Design

Kernel Stack

Client Prototype

- Android G1, with modified Linux kernel, UART support
- User space WiZi stack
- ZigBee USB dongle

AP Prototype

- OpenWrt based (Linux) AP firmware
- On-board serial port, USB port

Demo: Audio Streaming over ZigBee

Evaluation 1. iperf Throughput

Evaluation 2. Energy Efficiency

- VoIP & Stream Radio
 - High delay sensitivity
 - Moderate traffic load

In active mode, total energy cost reduced by 50%

Discussion and Future Work

- How WiZi-Cloud performs with other mobile apps?
 - Mobile apps have various characteristics
 - Trade-off: energy cost, throughput, user experience
- ZigBee coverage
 - Low power, but high Energy Per Bit
 - Comparable to WiFi
 - mechanisms to mitigate packet loss
 - Coding mechanism
 - Multiple antenna

Thanks! Q & A?