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Abstract― Ubiquitous wireless networking calls for efficient 
dynamic spectrum allocation (DSA) among heterogeneous users 
with diverse transmission types and bandwidth demands. To 
meet user-specific quality-of-service (QoS) requirements, the 
power and spectrum allocated to each user should lie inside a 
bounded region in order to be meaningful for the targeted 
application. Most existing DSA methods aim at enhancing the 
total system utility. As such, spectrum wastage may arise when 
the system-wise optimal allocation falls outside the desired 
region for QoS provisioning. The goal of this paper is to develop 
QoS-aware distributed DSA schemes using the game-theoretic 
approach. We derive DSA solutions that respect QoS and avoid 
naively boosting or sacrificing some users’ utilities to maximize 
the network spectrum utilization. Specifically, we propose two 
game-theoretic DSA techniques: one resorts to proper scaling of 
the transmission power according to each user's useful utility 
range, and the other embeds the QoS factor into the utility 
function used for dynamic gaming. In addition, we introduce two 
new metrics to evaluate DSA schemes from a practical QoS 
perspective, namely “system useful utility” and “fraction of QoS 
satisfied users.” Simulations confirm that the proposed DSA 
techniques outperform existing game models in terms of 
spectrum sharing efficiency in heterogeneous networks.  

 

I. INTRODUCTION 

Current wireless networks are characterized by wasteful 
static spectrum allocation and limited user coordination, 
resulting in very low efficiency in radio spectrum utilization. 
The emerging paradigm of dynamic spectrum access (DSA) 
shows promise in alleviating today’s spectrum scarcity 
problem by ushering in new spectrum agile networks [1], [2]. 
Equipped with cognitive radios, users in a network can sense 
and utilize available spectrum opportunistically [1]. In such 
an open spectrum approach, each user faces intricate tradeoffs 
between avoiding interference and maximizing spectrum 
utilization. This challenging DSA issue is further exacerbated 
in distributed networks where there is little or no central 
control over the allocation of wireless resources across users.  

From an information-theoretic viewpoint, the achievable 
capacity/utility of a radio is determined by its received signal 
to interference and noise ratio (SINR) as well as its occupied 
spectrum bandwidth. In a distributed network, each radio 
decides on its transmission power and bandwidth based on the 
sensed radio environment. Its decision not only impacts its 
own achievable utility, but also affects that of its neighboring 
radios via negative interference. Hence, radio resource 
allocation is an interactive decision making process, which 
can be suitably modeled as a multi-player game. Cognitive 
radios are game players, each of which takes action on 

transmission power and spectrum occupancy from the action 
space consisting of available spectrum and allowable power. 

The game theoretic approach has recently attracted 
increasing attention for the distributed DSA problem [3]-[8]. 
Some applicable game models are summarized in [3]. For a 
network of cooperative users, the DSA problem can be 
modeled as a potential game, whose objective is maximize 
the total network utility by minimizing the sum of the 
interference generated by a user and received from its 
neighbors [4]. A notion of “interference price” is introduced 
in [6], which reflects interference levels on available channels 
at different locations. Single-/multi-channel asynchronous 
distributed pricing (SC-/MC-ADP) algorithms that exchange 
information on users’ interference prices during spectrum 
sharing are shown to outperform their counterparts ignoring 
interference prices [5]-[7]. Besides the game theoretic 
approach, other tools such as the genetic algorithm [8] have 
also been investigated for the DSA problem.  

However, most existing DSA methods aim at enhancing 
the overall network efficiency, defining the figure of merit to 
be the total system utility achieved by all users. As such, 
unbalanced channel allocation is likely to arise, that is, some 
users gain large portions of the total system utility whereas 
others get unfairly treated with little spectrum shares. This 
issue is aggravated in a heterogeneous network consisting of 
users with diverse application-specific QoS requirements. 
Based on the existing figure of merit, a naïve DSA scheme 
might allocate some users with large resources exceeding the 
needs for their intended low-rate transmissions, while some 
other users might gain merger capacity below the minimum 
for successful transmissions. In both cases, the user utility 
corresponding to its allocated power and spectrum falls 
outside the acceptable range specified by the user-specific 
QoS, giving rise to radio resource wastage.  

The objective of this paper is to develop distributed DSA 
solutions that efficiently utilize spectrum with QoS awareness. 
We introduce QoS information into the game model to avoid 
spectrum wastage. Specifically, we propose two DSA 
strategies: the QoS-ps-DSA algorithm performs external 
power scaling to modify the local decision made by each user 
in order to meet its QoS, and the QoSe-DSA algorithm 
embeds the QoS factor into the utility function so as to make 
QoS-aware decisions during gaming. The interference price 
concept is also borrowed to construct a secondary local 
objective for interference management. Simulations confirm 
that the proposed DSA techniques offer efficient spectrum 
sharing in heterogeneous networks with QoS constraints.  



II. SYSTEM MODEL 

We consider a network of spectrum agile users N={1,…,N} 

sharing access of K orthogonal channels K={1,…,K}. Each 

user corresponds to one dedicated pair of transmitting and 
receiving nodes. Each active transmitter Ti, 1 ≤ i ≤ N, intends 
to communicate with only one receiver Ri, while its 
transmission may interfere other receivers tuned to the same 
channel. The distance between transmitter Ti and receiver Ri 
is denoted by dij. The transmission power of each user is 
constrained within the range min max[ , ]i iP P , min max0 i iP P≤ ≤ , 

which is determined by the radio design of the transmitter Ti.  
Throughout this paper, we consider two DSA problems. 

The first one targets the single-channel scenario, in which 
each user can only select and transmit over one channel at a 
time from the K available orthogonal channels. The second 

problem aims at the multi-channel scenario, in which each 
user can simultaneously transmit over multiple channels. 

In our DSA problems, user i allocates power j
ip  for 

transmission over channel j, while j
ip =0 means that j is not 

selected. Complying with the total power constraint, we set 
up a game model by expressing the action space for user i as 
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where ip  is the action vector of user i across all channels. 

Accordingly, the action vector for all users across all channels 
is p=<p1, p2,…, pN>. Let 1 2, ,...,k k k k
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power allocations on channel k across all users. The SINR 
received by user i on channel k is given by  
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where 0n  is the ambient noise level and ijh  is the link gain 
between Ti and Rj determined by the distance dij  We assume 
that the background noise level is the same on all channels, 
and the link gains are static within the transmission period. 
For each user, we could adopt the total channel capacity 
gained by this user as its utility function, given by  
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,  i=1, …, N.     (2) 

Specializing the action space in (1) to the single channel 
allocation case, we denote ϕ(i) as the channel selection of 
user i, which takes a single value from channel indices 1 to K. 
If ϕ(i) = j, then 0j

ip ≠ , and  
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j
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Accordingly, the utility function in (2) is simplified to 
( ) ( )( ) log(1 ( ))i i

tot i iu ϕ ϕγ− = +p p .   (3) 

From a network perspective, the objective is to determine p 
that maximizes the total utility summed over all users, i.e.,  
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This is a centralized non-convex optimization problem 
subject to scalability issues [5]. We turn to the game theoretic 
approach to design simple distributed DSA algorithms.  

 

III. SC-ADP AND MC-ADP Algorithms 
Our solutions to QoS-aware DSA build upon the single-
channel and multi-channel asynchronous distributed pricing 
algorithms SC-ADP and MC-ADP introduced in [6], [7]. We 
briefly summarize the results in [6], [7] in this section.  

In game-based DSA, each user strives to maximize its own 
local utility defined by (2) or (3). However, the optimal 
solution for individual user can deviate from the network-
wise optimal solution to problem P1, because individually 
maximized utility corresponds to increased transmit power, 
which negatively affects others’ utilities by raising 
interference. To strike a desired tradeoff between individual 
utility and the negative impact it makes on the system, Huang 
et al. introduced the notion of “interference price” defined as  
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where the derivative operation indicates how much user i ’s 
utility ( ( )k k

tot i i ku γ− p  would increase if its received total 

interference ∑ ≠ij ji
k
j hp  is decreased by one unit. In the ADP 

algorithms, users announce their interference prices to all 
neighboring users. Give the “price rate” information, each 
user chooses channels and allocates powers to maximize it net 
benefit, which is defined to the surplus of utility minus 
interference prices, expressed as a new utility in the form  
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where 1 - 1, 1,..., ,...,i i i N− +=< >p p p p p  is p excluding pi of user i.  

At each decision making stage of SC-/MC-ADP, user i 
update its power and channel selections pi as follows:  

a) selects i i∈p P  to maximize the surplus in (6) 

b) updates price information according to (5) and 
announce to all neighbors 

In general, the updates can be asynchronous across users. 
Users go through a number of decision making stages until 
reaching steady states, in which case there is no incentive for 
any user to change its decision. Simulations in [6] show that 
SC-ADP and MC-ADP outperform other algorithms that do 
not exchange interference prices, in term of the total system 
utility achieved by all users. Albeit their high-efficiency in 
utilizing network spectrum, the ADP algorithms do not take 
into account of user traffic types and capacity demands, 
which may lead to performance degradation in heterogeneous 
networks with critical QoS requirements, as we discuss next.  



IV. QoS SUPPORTED DSA SOLUTIONS 

Future wireless networks call for ubiquitous access from 
heterogeneous users. Users sharing the network resources 
may have application-specific QoS requirements, which 
translate into a set of user-specific predefined ranges of the 
desired rates/utilities Ri: [Ri,min, Ri,max], i=1, …, N. Here Ri,min 
is the minimum transmission rate required for user i to have a 
successful transmission, while Ri,max is the maximum rate 
needed for user i to support its application. For example, 
multimedia video traffic requires high rates, while voice 
traffic only needs to acquire relatively low rates from the 
network. As such, the total system utility used in conventional 
DSA does not meaningfully describe the practical system 
utilization efficiency of a heterogeneous network. When QoS 
is not accounted for, a conventional spectrum allocation 
solution is subject to the following two degrading issues:  
(a) Some user sacrifices its utility to reduce the interference 

it causes to neighbors. When the utility cannot meet the 
lower bound Ri,min of its application, a transmission 
failure arises, and the utility becomes meaningless.  

(b) Some user gains more than desired (i.e. maximum Ri,max) 
rate predefined for its QoS. The extra utility gained not 
only makes no contribution to the user’s performance, 
but also causes unnecessary interference to the network. 

Both of the two issues could cause considerable wastage of 
spectrum resources, from a practical QoS perspective. Indeed, 
the ADP algorithms are subject to degrading effects caused 
by these issues, which we elaborate in Section V. Overall, 
there is a need for new DSA designs that support QoS.   

Next, we propose QoS-aware DSA schemes based on the 
distributed game approach. Our goal is to maximize the 
meaningful network utility under QoS constraints, taking 
advantage of the interference suppression capacity of ADP.  

 
A. QoS Provisioning via External Power Scaling 

The first DSA scheme we propose resorts to proper scaling 
of the transmit power level in accordance to the QoS 
requirements Ri: [Ri,min, Ri,max]. At every decision-making 
stage of the game for user i, we first employ the game 
approach to make a tentative decision on the action space pi 
defined by power allocation. Depending on whether the 
resulting utility falls within or outside the desired range Ri, 
the user decides to retain or adjust the tentative decision. 
Adjustment is performed by scaling up or down the transmit 
power level to the closest point within the predefined QoS 
requirement. Details of the QoS-aware game with power 
scaling, which we term as the QoS-ps-DSA algorithm, are 
described next for the single-channel and multi-channel cases. 

 
A.1 Single Channel Spectrum Allocation 

In single channel spectrum allocation, for user i who 
selects channel ϕ(i), the resulting utility (3) is an increasing 
function of power ( )i

ipϕ . Thus, in order to scale the utility, we 

simply need to scale ( )i
ipϕ  in the same direction. The 

following two cases of QoS violation may arise after the local 
utility optimization step at each decision making stage.  

[Case 1] min,
)()( )),(( ii

i
i

i
iitot Rpu <−− pϕϕγ   

In this case, user i needs to increase its power level to a 
new level ( ) 'i

ipϕ  in order to scale utility up to min,iR , which is 

the minimum requirement for a success transmission. 
However, if channel ϕ(i) is of bad quality for user i, it is 
possible that user i cannot provide QoS at the current stage, 
even at the maximum transmit power Pi,max, i.e., 

( )
max( ( , ))i

tot i i i iu Pϕγ− −p < Ri,min. When this situation occurs, user 

i should avoid transmission by setting ( ) 'i
ipϕ = miniP . 

Summing up, power scaling is performed as follows: 
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[Case 2]  max,
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i
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In this case, user i  needs to decrease its power level to 
scale utility down to Ri,max, which is the desired rate for a best 
transmission, so that it could eliminate the extra power.  

user i selects ( ) 'i
ipϕ ∈ [ miniP , ( )i

ipϕ ],   

s.t. max,
)()( )),'(( ii

i
i

i
iitot Rpu =−− pϕϕγ  

In both Cases 1 and 2, once the game output ( )i
ipϕ  is 

externally adjusted to the new level ( ) 'i
ipϕ  according to QoS, 

the next stage of game-based decision making starts, until all 
users reach the steady-state actions/allocations. 
 
A.2. Multiple Channel Spectrum Allocation 

In multi-channel spectrum allocation, each user distributes 
its transmit power over multiple or even all channels. It is 
quite complex to find an optimal power scaling approach 
across multiple channels. To simplify the problem, we select 
only one candidate channel according to some judicious 
criteria, and perform power scaling on this channel only. 
Given that the candidate channel has been decided, the same 
power scaling operation used in the single channel case can 
be applied, viewing the candidate channel as ϕ(i). The only 
remaining issue is how to select the candidate channel, which 
we present in the following two cases.  

[Case 3] min( ( , ))k k k
tot i i i i

k

u p Rγ− −
∈

<∑ p
K

 

When the locally optimized utility is below the lower 
threshold, user i needs to increase the transmit power on one 



channel to increase the utility collected from that channel, 
which in turn raises the interference level to neighbors 
sharing the same channel. To balance between QoS 
provisioning and interference alleviation, our objective is 
select a candidate channel that causes the minimum extra 
interference due to power up-scaling. To this end, we define 
the channel selection criterion as follow: 

( )
arg min k

j ij
k i

j i

hπ
∈ ≠
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where ∑ ≠ij ij
k
j hπ  represents the sum of interference pricing 

rates that user i would be charged by all other users. Thus, 
selecting the channel with the lowest sum price can minimize 
the increased negative influence due to power up-scaling.  

[Case 4] max( ( , ))k k k
tot i i i i

k

u p Rγ− −
∈
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In this case, user i  decreases its power on certain channel 
to get rid of the extra utility that gives rise to unnecessary 
interference to other users. Following the rationale in Case 3, 
in this case power down-scaling on the channel with the 
highest interference pricing rate can maximally reduce the 
unwarranted interference caused by the extra utility. Thus, we 
define the channel selection criterion as follow: 

( )
arg max k

j ij
k i

j i

hπ
∈ ≠
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Both Cases 3 and 4 adopt the power scaling scheme used 
in the single-channel case to reduce system utility wastage 
according to user-specific QoS, while the candidate channel is 
selected optimally by minimizing the negative impact of the 
interference profile changes incurred by power scaling.  

 
B. QoS Provisioning via QoS-embedded Dynamic Gaming 

Besides power scaling, QoS provisioning can be factored into 
the distributed dynamic gaming process by redefining the 
utility function of each user. In this section, we propose an 
alternative QoS-aware DSA scheme that embeds the QoS 
information Ri: [Ri,min, Ri,max] in the local utility function.  

First, we introduce a new figure of merit for evaluating the 
performance of DSA solutions in heterogeneous networks. 
Replacing the conventional utility, we define a new metric 
useful utility, which refers to the portion of acquired utility 
considered to be useful based on QoS criteria. Specifically, if 
the utility is lower than Ri,min, then transmission fails and the 
useful utility is in fact zero; on the other hand, if the acquired 
utility exceeds Ri,max, then the extra utility does not result in 
meaningful improvement to user’s performance, and the 
useful utility should be bounded at Ri,max. It is only when the 
utility falls within the QoS range Ri that it can be fully 
appreciated by the user, and thus coincides with the useful 
utility. Summing up, given action p, the useful utility 

( )tot ig − p  of user i is related to its total achievable utility in (2) 

and (3) by  

( )tot iu − p    max,min, )( iitoti RuR ≤≤ − p   

( )tot ig − p =       max,iR    max,)( iitot Ru >− p           (7) 

  0    min,)( iitot Ru <− p   

Next, we present a QoS-embedded dynamic gaming 
scheme for DSA in heterogeneous networks, which we terms 
as the QoSe-DSA algorithm. Following the game-theoretic 
approach, each user adopts the useful utility in (7) as its local 
objective, which yields the best action pi at each decision-
making stage. Respecting the power constraint min max[ , ]i iP P , 

user i’s best response to the utility function is 

{ }
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i
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p

p p  

The above response reflects two situations that user i could 
encounter, given fixed actions i−p  from other users. In the 

first situation, the power range min max[ , ]i iP P  covers at least 

one optimal allocation pi that maximizes the useful utility. In 
the second situation, there does not exist a valid pi that 
satisfies user i’s QoS lower bound, in which case user i should 
transmit at its minimum power miniP . Coming back to the first 
situation, ( )i i−pB  might consist of multiple alternatives, each 

of which yields the same best possible useful utility. In this 
case, we further screen the action space based on the negative 
impact that each action makes, namely interference. Restating, 
we select among the multiple alternatives the action that is 
charged with lowest interference price, refining ( )i i−pB  to  

( )
arg min

i

ik ijjk
i i

k j i

p hπ
∈

×
− ∈ ≠

×∑ ∑
p p KB

  (9) 

The above QoSe-DSA algorithm applies to both the single- 
and multi-channel cases. The steps are summarized below.  

a) selects i i∈p P  to maximize the utility function (7) 

according to (8); 
b) if multiple actions are selected in a)  

further screen the action set obtained from a)  
according to (9) 

c) announce updated interference price according to (5) 

Comparing ADP with the proposed QoS-ps-DSA and 
QoSe-DSA algorithms, several remarks are in order.  
•  The proposed algorithms are QoS-aware by adopting the 

useful utility rather the conventional utility to reflect each 
user’s local objective. In contrast, ADP’s are QoS-blind; 
as such, the proposed algorithms are more suitable for 
heterogamous networks with user-specific QoS. 

•  All algorithms conduct interference management, but in a 
different manner. The ADP algorithms subtract the 
interference prices in the utility functions and make 
decisions based on surplus; in contrast, the proposed 
QoS-aware algorithms directly use the (useful) utility as 
its local objective, and resort to interference prices as a 



secondary objective only when multiple actions yielding 
the same utility need to be screened, such as in Case 4 of 
QoS-ps-DSA and Step 2 of QoSe-DSA.  

Intuitively, the network interest in resource utilization 
efficiency (i.e., maximizing total utility) is directly reflected 
in the local objectives of our QoS-aware algorithms, and is 
only indirectly reflected in the surplus used in ADP. As such, 
we expect our proposed algorithms to outperform ADP under 
QoS constraints, which we will testify via simulations next.  

 
V. NUMERICAL RESULTS 

This section presents numerical results that illustrate the 
performance of QoS-aware DSA solutions, with reference to 
ADP algorithms that are QoS-blind. In all tests, we set 

0n =10-2, 4
ij ijh d −= , and the feasible power range for each 

user is min max[ , ]i iP P  = [0, 200] for any i. A number of K 

channels are available, each having the same bandwidth of 1 
unit. A number of N transmitters are uniformly distributed 
within a 10m × 10m square area. The N corresponding 
receivers are randomly distributed within 2m × 2m square area 
centered at their dedicated transmitters. The minimum 
distance between each transmitter-receiver pair is set to be 1m 
to avoid trivial solutions. Based on the network setup in our 
simulations and with reference to (4), we define the numerical 
QoS bounds R for three types of network applications:   

web browsing R: [2,3] 

stream audio R: [3,5] 

stream video R: [5,10] 
In our simulations, 40% users run web browsing 

applications, another 40% users run stream audio, and the rest 
run stream video. In view of the QoS requirements, we adopt 
two new performance metrics to evaluate DSA algorithms, 
namely, “system useful capacity” and “fraction of QoS 
satisfied users”. The former metric is the sum of useful 
utilities of all users in the network, which represent the 
overall network spectrum utilization with QoS provisioning. 
The latter metric refers to the fraction of users in the entire 
network whose utilities meet their QoS lower bounds Ri,min. 
This is a conservative measure of how well the DSA solution 
contributes to individual users’ applications, and is a good 
indicator of QoS outage. The game approach in both ADP 
and our QoS-aware algorithms involve repeated games, in 
which users announce the new price information at the end of 
each decision-making stage, and proceed to the next stage 
until the decisions converge, or after a maximum of 50 
iterations have been executed. Each simulate data point is 
averaged over 20 random topologies. 

We first compare DSA algorithms with respect to the 
number of users N in the network, for K=3 channels. Fig. 1 
shows the results for the single-channel allocation problem. 
As N increases, the system useful utility increases until 
saturating to flat levels when N >25. The saturation is due to 
the limited channel bandwidth resources, which constrained 
the total utility that can support the QoS. Both the single-
channel power scaling scheme SC-QoS-ps-DSA and the QoS-

embedded scheme SC-QoSe-DSA outperform the SC-ADP 
solution that does not account for QoS during decision 
making. The performance gap increases as the network 
becomes dense, until reaching saturation. Meanwhile, the 
fraction of QoS satisfied users decreases as N becomes larger. 
This indicates that improving the system total utility in a 
dense network leads to a larger percentage of users sacrificing 
their utilities, and thus most spectrum resources are consumed 
by a smaller percentage of users. Similar observations can be 
made for the multi-channel resource allocation case, as shown 
in Fig. 2. Overall, QoS awareness is more critical for 
spectrum sharing in denser heterogeneous dense networks.  

 
Fig. 1. System useful utility and fraction of QoS satisfied users 

versus number of users for single-channel DSA solutions 
 

  
Fig. 2. System useful utility and fraction of QoS satisfied users 

versus number of users for multi-channel DSA solutions 
 

Next, we turn focus on the existing ADP algorithms to shed 
light on how QoS-blind DSA algorithms behave in a 
heterogamous network. For SC-ADP and MC-ADP in a 
network with 10 users and 3 channels, Fig. 3 shows the 

    SC-QoS-ps-DSA 
    SC-QoSe-DSA 

    SC-QoS-ps-DSA 
   SC-QoSe-DSA 

  MC-QoS-ps-DSA 
  MC-QoSe-DSA 

  MC-QoS-ps-DSA 
  MC-QoSe-DSA 



acquired utility of each user after convergence or 50 iterations 
are reached. The individual utilities are calculated using (2). It 
can be observed that MC-ADP has higher deviation of utility 
values across all users than SC-ADP does. This phenomenon 
implies that MC-ADP is more likely to cause QoS outage 
than SC-ADP. As a result, single-channel DSA solutions 
generally outperform multi-channel DSA ones when the 
number of users N is small. As N increases, multi-channel 
networks are more advantageous, since they can afford more 
flexibility in spectrum sharing, and thus overweight the 
drawback of imbalanced allocation among users at the 
convergence state. This assessment is confirmed by Fig. 4.  

Fig. 5 depicts the average processing time needed for each 
DSA algorithm to converge. In general, it takes longer time to 
converge in a denser network, and the QoS-aware schemes 
have slower convergence rates than QoS-blind algorithms.  

 
VI. SUMMARY 

Taking on a game approach, we have proposed two QoS-
aware distributed DSA schemes for heterogeneous wireless 
networks with user-specific QoS. The proposed schemes 
either resort to external power scaling or embed the QoS 
information in the utility function, both using the useful 
utility as local objectives. Interference pricing is incorporated 
into our schemes as a secondary objective to diffentiating 
multiple actions yielding the same utility. When both 
objectives are optimized, the proposed schemes yield good 
performance in terms of both total network useful utility and 
interference suppression. We have also introduced two new 
metrics, “system useful utility” and “fraction of QoS satisfied 
users”, which are suitable for quantifying the performance of 
DSA solutions from the QoS perspective. Simulations 
confirm the effectiveness of our proposed schemes in 
efficiently sharing spectrum along with QoS provisioning.  
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Fig. 3. Steady-state capacity for each user in the network  

with 10 users and 3 channels 

 
Fig. 4. Comparison of system useful utility between SC and MC 

networks 
 

Fig. 5. Comparisons of the average convergence time between the 
ADP algorithms and the QoS-aware DSA solutions 

 

  SC-QoS-ps-DSA 
  MC-QoS-ps-DSA 

  SC-QoSe-DSA 
  MC-QoSe-DSA 

     SC-QoSe-DSA 
     MC-QoSe-DSA 

SC-QoS-ps-DSA 
MC-QoS-ps-DSA 


