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Abstract

We study a distributed randomized information propagation mechanism in networks we call the
coalescing-branching random walk (cobra walk, for short). A cobra walk is a generalization of the
well-studied “standard” random walk, and is useful in modeling and understanding the SIS-type of epi-
demic processes in networks. It can also be helpful in performing light-weight information dissemination
in resource-constrained networks. A cobra walk is parameterized by a branching factor k. The process
starts from an arbitrary node, which is labeled active for step 1. (For instance, this could be a node that
has a piece of data, rumor, or a virus.) In each step of a cobra walk, each active node chooses k random
neighbors to become active for the next step (“branching”). A node is active for step t + 1 only if it is
chosen by an active node in step t (“coalescing”). This results in a stochastic process in the underlying
network with properties that are quite different from both the standard random walk (which is equivalent
to the cobra walk with branching factor 1) as well as other gossip-based rumor spreading mechanisms.

We focus on the cover time of the cobra walk, which is the the number of steps for the walk to reach
all the nodes, and derive almost-tight bounds for various graph classes. Our main technical result is an
O(log2 n) high probability bound for the cover time of cobra walks on expanders, if either the expansion
factor or the branching factor is sufficiently large; we also obtain an O(log n) high probability bound
for the partial cover time, which is the number of steps needed for the walk to reach at least a constant
fraction of the nodes. We show that the cobra walk takes O(n log n) steps on any n-node tree for k ≥ 2,
and O(n1/d log n) steps on a d-dimensional grid for k ≥ d, with high probability.
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1 Introduction
We study a distributed propagation mechanism in networks, called the coalescing-branching random walk
(cobra walk, for short). A cobra walk is a variant of the standard random walk, and is parameterized by a
branching factor, k. The process starts from an arbitrary node, which is initially labeled active. For instance,
this could be a node that has a piece of data, rumor, or a virus. In a cobra walk, for each discrete time step,
each active node chooses k random neighbors (sampled independently with replacement) to become active
for the next step; this is the “branching” property, in which each node spawns multiple independent random
walks. A node is active for step t if and only if it is chosen by an active node in step t − 1; this is the
“coalescing” property, i.e., if multiple walks meet at a node, they coalesce into one walk.

A cobra walk generalizes the standard random walk [35, 39], which is equivalent to a cobra walk with
k = 1. Random walks on graphs have a wide variety of applications, including being fundamental prim-
itives in distributed network algorithms for load balancing, routing, information propagation, gossip, and
search [15, 16, 8, 45]. Being local and requiring little state information, random walks and their variants are
especially well-suited for self-organizing dynamic networks such as Internet overlay, ad hoc wireless, and
sensor networks [45]. As a propagation mechanism, one parameter of interest is the cover time, the expected
time it takes to cover all the nodes in a network. Since the cover time of the standard random walk can be
large — Θ(n3) in the worst case, Θ(n log n) even for expanders [35] — some recent studies have studied
simple adaptations of random walks that can speed up cover time [1, 5, 17]. Our analysis of cobra walks
continues this line of research, with the aim of studying a lightweight information dissemination process that
has the potential to improve cover time significantly.

Our primary motivation for studying cobra walks is their close connection to SIS-type epidemic processes
in networks. The SIS (standing for Susceptible-Infected-Susceptible) model (e.g., [19]) is widely used for
capturing the spread of diseases in human contact networks or propagation of viruses in computer networks.
Three basic properties of an SIS process are: (a) a node can infect one or more of its neighbors (“branching”
property); (b) a node can be infected by one or more of its neighbors (“coalescence” property) and (c) an
infected node can be cured and then become susceptible to infection at a later stage. Cobra walks satisfy all
these properties, while standard random walks and other gossip-based propagation mechanisms violate one
or more. Also, while there has been considerable work on the SIS model ([28, 43, 31, 19, 40, 18, 6]), it has
been analytically hard to tackle basic coverage questions: (1) How long will it take for the epidemic to infect,
say, a constant fraction of network? (2) Will every node be infected at some point, and how long will this
take? Our analysis of cobra walks in certain special graph classes is a step toward a better understanding of
such questions for SIS-type processes.

1.1 Our results and techniques
We derive near-tight bounds on the cover time of cobra walks on trees, grids, and expanders. These special
graph classes arise in many distributed network applications, especially in the modeling and construction
of peer-to-peer (P2P), overlay, ad hoc, and sensor networks. For example, expanders have been used for
modeling and construction of P2P and overlay networks, grids and related graphs have been used as models
for ad hoc and sensor networks, and spanning trees are often used as backbones for various information
propagation tasks.

We begin with an observation that Matthew’s Theorem [37, 35] for random walks extends to cobra walks;
that is, the cover time of a cobra walk on an n-node graph is at most lnn times the maximum hitting time
of a node; for many graphs, this is also a tight bound. This enables us to focus on deriving bounds for the
hitting time.

We face two technical challenges in our analysis. First, unlike in a standard random walk, cobra walks
have multiple “active” nodes at any step, and in almost all graphs, it is difficult to characterize the distribution
of the active nodes at any point of time. Second, the combination of the branching and coalescing properties
introduces a non-trivial dependence among the active nodes, making it challenging to quantify the probability
that a given node is made active during a given time period. Surprisingly, these challenges manifest even in
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tree networks. We present a result that gives tight bound on the cover time for trees, which we obtain by
establishing a recurrence relation for the expected time taken for the cobra walk to cross an edge along a
given path of the tree.

• For an arbitrary n-node tree, a cobra walk with k ≥ 2 covers all nodes in O(n log n) steps with high
probability (w.h.p., for short)1 (Theorem 5 of Section 3.1).

For a matching lower bound, we note that the cover time of a cobra walk in a star graph is Ω(n log n) w.h.p.
We conjecture that the cover time for any n-node graph is O(n log n). By exploiting the regular structure of
a grid, we establish improved and near-tight bounds for the cover time on d-dimensional grids.

• For a d-dimensional grid, we show that a cobra walk with k ≥ d takes O(n1/d log n) steps, w.h.p. (cf.
Theorem 9 of Section 3.2).

Our main technical result is an analysis of cobra walks on expanders, which are graphs in which every set
S of nodes of size at most half the number of vertices has at least α|S| neighbors for a constant α, which is
referred to as the expansion factor.

• We show that for an n-node constant-degree expander, a cobra walk covers a constant fraction of nodes
in O(log n) steps and all the nodes in O(log2 n) steps w.h.p. assuming that either the branching factor
or the expansion factor is sufficiently large (cf. Theorems 10 and 11 of Section 4).

Our analysis for expanders proceeds in two phases. We show that in the first phase, which consists of
O(log n) steps, the branching process dominates resulting in an exponential growth in the number of active
nodes until a constant fraction of nodes become active, with high probability. In the second phase, though
a large fraction of the nodes continues to be active, dependencies caused by the coalescing property prevent
us from treating the process as multiple independent random walks, analyzed in [2] (or even d-wise inde-
pendent walks for a suitably large d). We overcome this hurdle by carefully analyzing these dependencies
and bounding relevant conditional probabilities, and define a time-inhomogeneous Markov process that is
stochastically dominated by the cobra walk in terms of coverage. We then use the notion of merging conduc-
tance and the machinery introduced in [38] to analyze time-inhomogeneous Markov chains, and establish an
O(log n) bound w.h.p. on the maximum hiting time, leading to an O(log2 n) bound on the cover time.

1.2 Related work and comparison
Branching and coalescing processes. There is a large body of work on branching processes (without coales-
cence) on various discrete and non-discrete structures [33, 36, 4]. A study of coalescing random walks (with-
out branching) was performed in [14] with applications to voter models. Others have looked at processes
that incorporate branching and coalescing particle systems [3, 41]. However, these studies treat the parti-
cle systems as continuous-time systems, with branching, coalescing, and death rates on restricted-topology
structures such as integer lattices. To the best of our knowledge, ours is the first work that studies random
walks that branch and coalesce in discrete time and on various classes of non-regular finite graphs.
Random walks and parallel random walks. Feige [24, 23] showed that the cover time of a random walk
on any undirected n-node connected graph is between Θ(n log n) and Θ(n3) with both the lower and upper
bounds being achieved in certain graphs. With the rapidly increasing interest in information (rumor) spread-
ing processes in large-scale networks and the gossiping paradigm (e.g., see [9] and the references therein),
there have been a number of studies on speeding up the cover time of random walks on graphs. One of the
earliest studies is due to Adler et al [1], who studied a process on the hypercube in which in each round a
node is chosen uniformly at random and covered; if the chosen node was already covered, then an uncov-
ered neighbor of the node is chosen uniformly at random and covered. For any d-regular graph, Dimitrov
and Plaxton showed that a similar process achieves a cover time of O(n + (n log n)/d) [17]. For expander

1By the term “with high probability” (w.h.p., for short) we mean with probability 1− 1/nc, for some constant c > 0.
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graphs, Berenbrink et al showed a simple variant of the standard random walk that achieves a linear (i.e.,
O(n)) cover time [5].

It is instructive to compare cobra walks with other mechanisms to speed up random walks as well as with
gossip-based rumor spreading mechanisms. Perhaps the most related mechanism is that of parallel random
walks which was first studied in [7] for the special case where the starting nodes are drawn from the stationary
distribution, and in [2] for arbitrary starting nodes. Nearly-tight results on the speedup of cover time as a
function of the number of parallel walks have been obtained by [21] for several graph classes including the
cycle, d-dimensional meshes, hypercube, and expanders. (Also see [20] for results on mixing time.) Though
cobra walks are similar to parallel random walks in the sense that at any step multiple nodes may be selecting
random neighbors, there are significant differences between the two mechanisms. First the cover times of
these walks are not comparable. For instance, while k parallel random walks may have a cover time of
Ω(n2/ log k) for any k ∈ [1, n] [21], a 2-branching cobra walk on a line has a cover time of O(n). Second,
while the number of active nodes in k parallel random walks is always k, the number of active nodes in
any k-branching cobra walk is continually changing and may not even be monotonic. Most importantly, the
analysis of cover time of cobra walks needs to address several dependencies in the process by which the set
of active nodes evolve; we use the machinery of time-inhomogenous Markov chains to obtain the cover time
bound for bounded-degree expanders (see Section 4).

The works of [15, 16] presented distributed algorithms for performing a standard random walk in sub-
linear time, i.e., in time sublinear in the length of the walk. In particular, the algorithm of [16] performs a
random walk of length ` in Õ(

√
`D) rounds w.h.p. on an undirected network, where D is the diameter of

the network. However, this speed up comes with a drawback: the message complexity of the above faster
algorithm is much worse compared to the naive sequential walk which takes only ` messages. In contrast,
we note that the speedup in cover time given by a cobra walk over the standard random walk comes only at
the cost of a slightly worse message complexity.

Gossip-based mechanisms. Gossip-based information propagation mechanisms have also been used for
information (rumor) spreading in distributed networks. In the most typical rumor spreading models, gossip
involves either a push step, in which nodes that are aware of a piece of information (being disseminated) pass
it to random neighbors, or a pull step, in which nodes that are unaware of the information attempt to extract
the information from one of their randomly chosen neighbors, or some combination of the two. In such
models, the knowledgeable nodes or the ignorant nodes participate in the dissemination problem in every
round (step) of the algorithm. The main parameter of interest in many of these analyses is the number of
rounds needed till all the nodes in the network get to know the information.

The rumor spreading mechanism that is most closely related to cobra walks is the basic push protocol, in
which in every step every informed node selects a random neighbor and pushes the information to the neigh-
bor, thus making it informed. Feige et al. [22] show that the push process completes in every undirected
graph in O(n log n) steps, with high probability. Since then, the push protocol and its variants have been
extensively analyzed both for special graphs, as well as for general graphs in terms of their expansion proper-
ties (see e.g., [10, 11, 12, 30, 29, 26, 25]). Again, though cobra walk and push-based rumor spreading share
the property that multiple nodes are active in a given step, the two mechanisms differ significantly. While
the set of active nodes in rumor spreading is monotonically nondecreasing, this is not so in cobra walks, an
aspect that makes the analysis challenging especially with regard to full coverage. Furthermore, the message
complexity of the push protocol can be substantially different than that of cobra. A simple example is the
star network, which the push protocol covers in Θ(n log n) steps with a message complexity of Θ(n2 log n),
while the 2-branching cobra walk has both cover time and message complexity Θ(n log n). This can be ex-
tended to show similar results for star-based networks that have been proposed as models for Internet-scale
networks [13].
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1.3 Potential applications
As mentioned at the outset, cobra walks are closely related to SIS model in epidemics, but they may be
easier to analyze using tools from random walk and Markov chain analyses. While the persistence time and
epidemic density of SIS-type epidemic models are well studied [27, 34, 44], to the best of our knowledge
the time needed for a SIS-type process to affect a large fraction (or the whole) of the network has not been
well-studied. Our results and analyses of cobra walks on more general networks can be useful in predicting
the time taken for a real epidemic process following an SIS-type model to spread in a network [27, 34, 44].

Cobra walks can also serve as a lightweight information dissemination protocol in networks, similar to
the push protocol. As pointed out earlier, in certain types of networks, the message complexity incurred by a
cobra walk to cover a network can be smaller than that for the push protocol. This can be useful, especially
in infrastructure-less anonymous networks, where nodes don’t have unique identities and and may not even
know the number of neighbors. In such networks, it is difficult to detect locally when coverage is completed2.
If nodes have a good upper bound on n (the network size), however, then nodes can terminate the protocol
after a number of steps equal to the estimated cover time. In such a scenario, message complexity is also an
important performance criterion.

2 Preliminaries
Let G be a connected graph with vertex set V and edge set E, and let |V | = n. We define a coalescing-
branching (cobra) random walk on G with branching factor k starting at some arbitrary v ∈ V as follows: At
time t = 0 we place a pebble at v. Then in the next and every subsequent time step, every pebble in G clones
itself k − 1 times (so that there are now k pebbles at each vertex that originally had a pebble). Each pebble
independently selects a neighbor of its current vertex uniformly at random and moves to it. Once all pebbles
make their one-hop moves, if two pebbles are at the same vertex they coalesce into a single pebble, and the
next round begins. In a cobra-walk, a vertex can be active an arbitrary number of times.

For a time step t of the process, let St be the active set, the set of all vertices of G that have a pebble.
We will use two different definitions of the neighborhood of St: Let N(St) be the inclusive neighborhood,
the union of the set of neighbors of all vertices in St (which can include members of St itself). Let Γ(St) be
the non-inclusive neighborhood, which is the union of the set of neighbors of all vertices of St such that
St ∩ Γ(St) = ∅.

Let the expected maximum hitting time hmax of a cobra-walk on G be defined as the maxu,v∈V E[hu,v]
where hu,v is the time it takes a cobra-walk starting at vertex u to first reach v with at least one pebble.

We are interested in two different notions of cover time, the time until all vertices of G have been visited
by a cobra-walk at least once. Let τv be the minimum time t such that, for a cobra-walk starting from v,
∀u ∈ V − v, u ∈ St for some t ≤ τv. Then we define the cover time of a cobra-walk on G to be maxv∈V τv.
We define the expected cover time to be maxv∈V E[τv]. Note that in the literature for simple random walks,
cover time usually refers to the expected cover times. In this paper we will show high-probability bounds on
the cover time.

In Section 6 we will be proving results for cobra-walks on expanders. In this paper, we will use a
spectral definition for expanders and then use Tanner’s theorem to translate that to neighborhood and cut-
based notions of expanders.

Definition 1. An ε - expander graph is a d-regular graph whose adjacency matrix has eigenvalues such that
|αi| ≤ εd for i ≥ 2.

We also want to define the notion of an ε-approximation:

Definition 2. G is an ε-approximation for a graph H if (1− ε)H 4 G 4 (1 + ε)H , where H 4 G if for all
x, xTLHx ≤ xTLGx, where LG and LH are the Laplacians of G and H, respectively.

2In networks with identities and knowledge of neighbors, a node can locally stop sending messages when all neighbors have the
rumor. This reduces the overall message complexity until cover time.
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Finally, we will rely on the neighborhood expansion of a set S on G, where we define N(S) as the
inclusive neighborhood. For this we will use Tanner’s theorem [42], which gives us a lower bound on the
size of the neighborhood of S for sufficiently strong expanders.

Theorem 3. Let G be a d-regular graph that ε-approximates d
nKn. Then for all S ⊆ V with |S| = δn,

|N(S)| ≥ |S|
ε2(1−δ)+δ ·

3 Cover Time for Trees and Grids
A useful tool in bounding the cover time for simple random walks is Matthew’s Theorem [37, 35], which
bounds the expected cover time of a graph by the maximum expected hitting time hu,v between any two
nodes u and v times the harmonic number Hn. Here we show that this result can be extended to cobra
walks.

Theorem 4 (Matthew’s Theorem for Cobra Walks). Let G be a connected graph on n nodes. Let w be a
cobra walk on G starting at an arbitrary node. Then the cover-time of w on G, C(G), is bounded from above
by hmax lnn in expectation and by O(hmax lnn) with high probability.

Proof. We adopt the language of [37]. Rather than viewing a cobra walk as multiple pebbles moving over a
graph, we will view it as a Markov processM ′ of its own. In this process, the state space consists of 2n states,
each of which corresponds to a particular subset of the nodes that contain pebbles. Transitions between states
occur with a probability equal to the probability of one particular pebble configuration in the original graph
giving rise to the next state.

We fix an initial position a0 ofM ′ and a collection ofN Borel subsets ofM ′, {A1, . . . , An} to be visited.
Here Ai represents the set of all states of M ′ in which node i in G contains a pebble. For any non-empty
collection {A1, . . . , Ai} of Borel subsets of M ′ we then define T (Aj) = inf{t ≥ 0 : X(t) ∈ Aj} for
j = 1, . . . , i. That is, T (Aj) is the smallest time t such that the walk X on M ′ visits a member of Aj . We
also define T (A1, . . . , Ai) = maxj=1,...,i T (Aj). We now define:

µ+ = max
i=1,...,N

sup
a/∈Ai

EaT (Ai).

µ+ is hmax in the standard language of random walks. Then from Theorem 2.6 of [37],

ET (A1, . . . , AN ) ≤ µ+
N∑
i=1

1

i

thus proving the lemma.

Matthew’s theorem for cobra walks is used in proving the cover time for trees and grids.

3.1 Trees
Theorem 5. For any tree, the cover time of a cobra walk starting from any node is O(n lnn) w.h.p.

We will prove our main result by calculating the maximum hitting time of a cobra walk on a tree T and
then applying Matthew’s theorem. Cobra walks on trees are especially tractable because they follow two nice
properties. Since a tree has a unique path between any two nodes, we only need keep track of the pebble
closes to the target. In addition, the fact that there is one simple path between any two nodes limits the
number of collisions we need to keep track of, a property which is not true for general graphs and makes
cobra walk harder to analyze on them. For this section, we fix the branching factor k = 2. For k > 2 but still
constant, the cover time would not be asymptotically better.

The general idea behind the proof is as follows. We take the longest path w.r.t. hitting time in the tree.
Along each node in this path, except for the first and last, there will be a subtree rooted at that node. If a cobra
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walk’s closest pebble to the endpoint is at node l, the walk from this point can either advance with at least
one pebble, or it can not advance by either backtracking along the path, going down the subtree rooted at l,
or both. We show via a stochastic dominance argument that a biased random walk from l, whose transition
probabilities are tuned to be identical to cobra walk’s, will next advance to l + 1 in a time that is dominated
primarily by the size of the subtree at l. This is done by analyzing the return times in the non-advancement
scenarios listed above. Thus summing up over the entire walk, the hitting time is dominated by a linear
function of the size of the entire tree.

In Lemma 6 we bound the return time of a cobra walk to a root of the tree.

Lemma 6. Let T be a tree of size M . Pick a root, r, and let r have d children. Then a cobra walk on T
starting at r will have a return time to r of O(4M/d).

Proof. To show that the Lemma holds for a cobra walk, we will actually show that it holds for a simple
random walk with transition probabilities modified to resemble those of a cobra walk. For this simple random
walk, we start at r and in the first step pick one of the children of r, r′. Let (d′ + 1) be the degree of r′. Then
we define transition probabilities as follows: p is the probability of returning to r in the next step, and p is
the probability of continuing down the tree. They are given as:

p =

(
1−

(
d′

(d′ + 1)

)2
)
, q =

(
d′

(d′ + 1)

)2

,
p

q
=

(d′)2

(2d′ + 1)
(1)

Note that these are the exact same probabilities that a cobra walk at node r′ would have for sending (not
sending) at least one (any) pebbles back to the root. .

The rest of the proof follows by mathematical induction. Consider a tree T that has only two levels.
Starting from r, the return time, 2, is constant, the relationship holds. For the inductive case, assume that the
hypothesis holds. Then:

r(T ) ≤ 1 +
∑

r′∈N(r)

p(r′)hr′,r ≤ 1 +
1

d

∑
r′∈N(r)

hr′,r (2)

≤ 1 +
1

d

∑
r′∈N(r)

(
1 +

d′2

2d′ + 1
c
|T ′|
d′

)
≤ 2 +

c|T |
2d

(3)

Setting c = 4 gives us the result of the lemma for the biased random walk, and it is easy to see that by
stochastic dominance this holds also for the cobra walk.

Finally, we show a key lemma for the hitting time of a single step of a path along a tree.

Lemma 7. Fix a path in a tree T made up of nodes 1, . . . , l, l+ 1, . . . , t. Then, the expected time it takes for
a cobra walk starting at node l to get to l + 1 with at least one pebble is given by:

hl,(l+1) =
5

4
+

9

5

2∑
i=l

(
1

5

)l−i
|Ti| (4)

where Tl is the induced subtree formed by taking node l, its neighbors not on the path being traversed, and
all of their descendants.

Informally, we prove that the one-step hitting time is bounded by above by the worst case scenario that
either both pebbles go back along the path or down the subtree rooted at l and establish a simple recurrence
relation.
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Proof. Vertex l is viewed through the context of having one edge to the node l − 1, one edge to node l, and
d edges to some other nodes. Thus it can be viewed as the root of a tree, and Tl as the induced subgraph of l
and all nodes reached through its dl not-on-path children. We will need the following probabilities:

• Probability of a pebble going from l to l + 1 = p =

(
1−

(
(dl + 1)

(dl + 2)

)2
)

• Probability of a pebble not going from l to l + 1 = 1− p = q.

• Probability of a cobra walk sending both pebbles from l to l − 1 conditioned on it not sending any

pebbles from l to l + 1 = q
′
l =

(
1

(dl + 1)2

)
• Probability of a cobra walk sending at least one pebble to the subtree Tl conditioned on its not sending

any pebbles to l + 1 = q
′′
l =

(
(dl)

(dl + 1)

)2

+ 2

(
dl

(dl + 1)2

)
=
d2l + 2dl
(dl + 1)2

Note that, conditioned on a pebble not advancing to node l + 1, we actually have three disjoint events: (A)
Both pebbles go to l−1, (B) one pebble goes to l−1 and one pebble goes into subtree Tl, and (C) both pebbles
go into Tl. We define an alternate event B′, which is the event that one pebble goes down Tl and nothing else
happens (thus, it is not technically in the space of cobra walk actions). If we letR be the time until first return
of the cobra walk to l conditioned on no pebble going to l+ 1, we wish to show that E[R|B] ≤ E[R|B′] and
that E[R|C] ≤ E[R|B′]. What is the relationship between B and B′? Consider two random variables, X
and Y , and let X be the time until first return of a pebble that travels from l to l− 1, Y be the time until first
return of a pebble that travels into Tl. Then R|B is just another random variable, U = min(X,Y ). Since
U ≤ Y over the entire space, E[U ] ≤ E[Y ], and clearly R|B′ is equivalent to Y. Thus E[R|B] ≤ E[R|B′]
It is also easy to see that E[R|B′] ≥ E[R|C]. Thus by the law of total expectation we have:

E[R] = E[R|A] Pr(A) + E[R|B] Pr(B) + E[R|C] Pr(C)

≤ E[R|A] Pr(A) + (Pr(B) + Pr(C))E[R|B′]
= E[R|A] Pr(A) + E[R|B′](1− Pr(A))

Then the hitting time can be expressed as:

hl,l+1 ≤ p+ q(E[R] + hl,l+1)

⇒ (1− q)hl,l+1 ≤ p+ q(E[R])

⇒ hl,l+1 ≤ 1 +
q

p
(q
′
l(1 + hl−1,l) + q

′′
l r(Tl))

Note that q/p = (dl+1)2

(2dl+3) . Since r(Tl) ≤ 4|Tl|/dl by Lemma 6, we continue with:

“hl,l+1 ≤ 1 +
(dl + 1)2

(2dl + 3)

1

(dl + 1)2
(1 + hl−1,l) +

(dl + 1)2

(2dl + 3)

(d2l + 2dl)

(dl + 1)2
4|Tl|
dl

≤ 1 +
1

5
(1 + hl−1,l) +

12

5
|Tl|w.h.p.

If we expand the relation, we get:

hl,l+1 ≤
l∑

i=0

(
1

5

)i
+

12

5

(
|Tl|+

(
1

5

)
|Tl−1|+

(
1

5

)2

|Tl−2|+ · · ·+
(

1

5

)l−2
|T2|

)

hl,(l+1) ≤
5

4
+

12

5

2∑
i=l

(
1

5

)l−i
|Ti|
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We are finally ready to prove our main results for tree, Theorem 5, that the cobra walk cover time of an
arbitrary tree occurs in O(n lnn) steps.

Proof. By Matthew’s Theorem for cobra walks, C(G) ≤ (lnn + o(1))hmax. We just need to prove that
hmax occurs in linear time.

Let P be the path for which hu,v is maximized, and let the path consist of the sequence of nodes
1, 2, . . . , t. As in the proof of the single-step hitting time, we note that for all but the first and last nodes
on P , there is a subtree Tl of size |Tl| rooted at each nodes. Because h1,l ≤ h1,2 + h2,3 + . . . ht−1,t. Then,
we obtain the desired result from Lemma 7 as follows:

h1,t ≤
5

4
t+

12

5

t−1∑
j=2

[
|Tj |

∞∑
i=0

(
1

5

)i]
≤ 5

4
t+

12

5

5

4

t−1∑
j=2

|Tj | ≤ 4n. (5)

We note that for the line network, we can improve the bound we obtain for trees and show that the cover
time of a cobra walk is O(n) w.h.p.

3.2 Grids
Lemma 8. Let G be a finite 2-dimensional grid of size (

√
n ×
√
n). Then the cover-time of a cobra walk

with a branching factor 2 on G is O(
√
n log n)w.h.p.

Proof. The proof of this lemma makes use of Matthew’s bound for cobra walks. The longest path in the grid
w.r.t hitting time for a cobra walk is from the point x = (0, 0) to (y =

√
n,
√
n). We need to show that the

hitting time of this walk is O(n). To do this, we only need to keep track of the pebble that is closest to y
at each step of the walk, where by closest we mean the Manhattan distance. Let x′ be the location of the
closest pebble to y at time t. Let A be the event that at least one pebble from x′ moves closer to y. Then:
Pr [A] = 1 − Pr

[
Ā
]

= 1 − (1 − p)k , where p is the fraction of edges of x′ that lead to nodes closer to y
and depends on where in the grid x′ is. If x′ is in the interior of G, then p = 1/2, meaning Pr [A] > 1/2
for k ≥ 2. If x′ is on the bottom or left boundary of G, p = 2/3, and if on the top or right boundary,
p = 1/3. In either case, for k ≥ 2, Pr [A] > 1/2. Hence, we have a biased random walk on a line, which we
know has O(l) cover time. In this case, l = 2

√
n, and thus by applying Matthew’s bound we get our desired

O(
√
n log n) bound.

Theorem 9. Let G be a finite d-dimensional grid for some constant d. Then the cover time of a cobra walk
on G is O(n1/d log n) w.h.p, as long as branching factor k ≥ d.

Proof. The proof of this theorem is very similar to that of 8. For G the longest path is dn1/d, and the key
point is that the probability of a node from any node moving closer to y is even higher than in the 2-d grid,
since clearly the worst place to be again is on an ”edge” of the grid. When on this edge, the probability of not
moving towards y is (2d− (d))/(2d− (d− 1))k. Hence the probability of moving towards y will be greater
than 1/2 only when k ≥ d.

4 Analysis for Expanders
For expander graphs, we are able to prove a high probability cover time result of O(log2 n). We break the
proof up into two phases. In the first phase we show that a cobra walk starting from any node will reach
a constant fraction of the nodes in logarithmic time w.h.p. In the second phase, we create a process which
stochastically dominates the cobra walk and show that this new process, will cover the entire rest of the graph
again in polylogarithmic time w.h.p.

The main result of this section can be stated in the following two theorems, which when taken together
imply that w.h.p. ε-expander G will be covered in O(log2 n) time.
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Theorem 10. Let G be an ε-expander with ε, δ not depending on n (number of nodes in G), with δ < 16
30d2

,
and ε, a sufficiently small constant such that

1

ε2(1− δ) + δ
>
d(de−k + (k − 1))− k2

2

d(e−k + (k − 1))− k2

2

, (6)

then in time O(log n), w.h.p. a cobra walk on G with branching factor k, will attain an active set of size δn.

We note that the condition in the above theorem is satisfied if either ε is sufficiently small, or k is suf-
ficiently large. For instance when k = 2, the above condition holds for strong expanders, such as the
Ramanujan graphs, which have ε ≤ 2

√
d− 1/d, and random d-regular graphs, for d sufficiently large.

Theorem 11. Let G be as above, and let W be a cobra walk on G that at time T has reached an active set of
size δn. Then w.h.p in an additional O(log2 n) steps every node of G will have visited by W at least once.

To prove Theorem 10 we prove that active sets up to a constant fraction of V are growing at each step by
a factor greater than one.

Lemma 12. Let G be an ε-expander with ε, δ satisfying the conditions of Theorem 10. Then for any time
t ≥ 0, the cobra walk on G with active set St such that |St| ≤ δn, E[|St+1|] ≥ (1 + ν)|St| for some constant
ν > 0.

Proof. We will instead show that the portion of N(St) not selected by the cobra walk is sufficiently small,
E[|N(St)− St+1|] ≤ |N(St)| − (1 + ν)|St|, and the result of the lemma will follow immediately.

For each node u ∈ N(St), define Xu as an indicator random variable that takes value 1 if u /∈ St+1 and
0 otherwise. Then Pr [Xu = 1] = (1− 1/d)kdu , where du is the number of neighbors u has in St. Thus:

E[|N(St)− St+1|] =
∑

u∈N(St)

Xu =
∑

u∈N(St)

(1− 1

d
)kdu ≤

∑
u∈N(St)

e−
kdu
d (7)

Because
∑

u∈N(St)
du = d|St| and we are working with a convex function, we have that

∑
e−

kdu
d is maxi-

mized when all the values of du are equal to either 1 or d, with the exception of possibly one du to act as the
remainder. Let R1 be the number of nodes in N(St) where du = 1, and let R2 be the number of nodes where
du = d. We have the following system of equations:

R1 +R2 = |N(St)| (8)

R1 + dR2 = d|St| (9)

solving for R1 and R2, we get:

R1 =
d

d− 1
(|N(St)| − |St|) (10)

R2 =
1

d− 1
(d|St| − |N(St)|). (11)

Thus we now want to show

E[|N(St)− St+1|] ≤ R1e
− k
d +R2e

−k (12)

=
d

d− 1
(|N(St)| − |St|)e−

k
d +

1

d− 1
(d|St| − |N(St)|)e−k (13)

≤ |N(St)| − (1 + ν)|St| (14)

9



Rearranging, we want to show that

|N(St)|
(

1− d

d− 1
e−

k
d +

1

d− 1
e−k
)

+ |St|
(

d

d− 1
e−

k
d − d

d− 1
e−k − 1

)
≥ ν|St| (15)

If we let α = 1
ε2(1−δ)+δ , then |N(St)| ≥ α|St| and we can divide through by |St| in 15. Since the first

quantity in parenthesis is positive, and we don’t care what ν is as long as it’s a positive constant, we are down
to needing;

α

(
1− d

d− 1
e−

k
d +

1

d− 1
e−k
)

+

(
d

d− 1
e−

k
d − d

d− 1
e−k − 1

)
> 0 (16)

Again rearranging, we want

(α− 1)

1− d

d− 1
e
−
k

d

− d− α
d− 1

e−k > 0 (17)

Taking the second-order Taylor approximation e−
k
d ≤ 1− k

d + k2

2d2
, ( 17) will be satisfied if

(α− 1)

(
1− d

d− 1

(
1− k

d
+

k2

2d2

))
− d− α
d− 1

e−k > 0 (18)

which will be true for
1

ε2(1− δ) + δ
= α >

d(de−k + (k − 1))− k2

2

d(e−k + (k − 1))− k2

2

(19)

Next, we use a standard martingale argument to show that the expected number of nodes in St is concen-
trated around its expectation.

Lemma 13. For a cobra walk on a d-regular ε-expander that satisfies the conditions in Lemma 12, at any
time t

Pr [|St+1| − E[|St+1|] ≤ −τ |St|] ≤ e
−
τ2|St|

2k (20)

Proof. Arbitrarily index the the nodes of St, i = {1, . . . , |St| = m}. Let (Zji ) be a sequences of random
variables ranging over the indices i and also j = {1, . . . , k}, where Zji = v indicates the ith element of
St has chosen node v to place it’s jth pebble. Define A as the random variable that is the size of St+1.
Then Xj

i = E[A|Z1
1 , . . . , Z

k
1 , . . . , Z

1
i , . . . , Z

j
i ] is the Doob martingale for A, with Xk

m = |St+1|. Since
Xj
i −X

j−1
i ≤ 1 and X1

i −Xk
i−1 ≤ 1 for all i, j, Azuma’s inequality yields:

Pr [|St+1| − E[|St+1|] ≤ −τ |St|] ≤ e−
τ2m2

2km = e−
τ2m
2k (21)

Finally, using the bound of Lemma 13 we show that with high probability we will cover at least δn of the
nodes of G with a cobra walk in logarithmic time by showing that the active set for some t = O(log n) is of
size at least δn.

Lemma 14. For a cobra walk on d-regular, ε-expander G, there exists a time T such that T = O(log n) and
|ST | ≥ δn.
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Proof. Let {Yt}∞t=0 be a sequence of discrete random variables, where Yt is the size of the active set of a
cobra walk at time t. We next define a Markov process that stochastically dominates {Yt} of the cobra walk
as follows. Set τ = ν/2, where ν is the growth factor of the expected size of the active set (ν and τ are
as defined in Lemma 12 and 13). Then let {i} be a Markov chain over the state space {1, . . . , n} (i lower
bounds the size of the active set). State i has two transitions: 1) Transition to state (1+ν/2)iwith probability

pi = 1− e−
ν2i
8k and 2) Transition to state 1 with probability 1− pi (pi is determined by Lemma 13).

To get an upper bound on 1 − pi that does not depend on i, we define a second dominating Markov
process on the state space {C, . . . , C(1 + ν/2)i, . . . , n} for some suitably large constant C. We then have
the following transitions for each state in the chain (which will begin once a value of C is obtained). Setting
r = ν2/8k, at state (1 + ν/2)iC : 1) Transition to state (1 + ν/2)i+1C with probability p′i = 1− e−rC(1+ iν

2
)

2) Transition to state C with probability 1 − p′i. This Markov chain oscillates between failure (going to C)
and growing by a factor of 1 + ν/2. Note that to get success (i.e., reaching a state of at least δn), we need
Ω(log n) growing transitions.

The probability that in a walk on this state space that we “fail” and go back to C before hitting δn

is bounded by 1/2, since
∑∞

i=0 e
−rC(1+i ν

2
) ≤ e−rC

∑∞
i=0 e

irC ν
2 = e−rC

1−e−rC
ν
2
≤ 1

2 , provided that C is
sufficiently large as a function of r (which is itself only a function of the branching factor and the constant
ν).

Consider each block of steps that end in a failure (meaning we return to C). Then clearly w.h.p. after
b log n trials, for some constant b, we will have a trial that ends in success (i.e., reaching an active set of
size δn nodes). In these b log n trials, there are exactly that many returns to C. However, looking across all
trials that end in failure, there are also only a total of O(log n) steps that are successful (i.e., involve a growth
rather than shrinkage). To see why this is true, note that the probability of a failure after a string of growth
steps goes down supralinearly with each step, so that if we know we are in a failing trial it is very likely that
we fail after only a few steps. Thus, there cannot be too many successes before each failure. Indeed, the
probability that we fail at step i within a trial can be bounded:

Pr [Failure at step i | eventual failure] = Pr[Failure at step i]
Pr[Eventual failure] = e−rC(1+iν/2)∑∞

i=1(
∏l−1
j=1(1−e−rC(1+jν/2))e−rC(1+lν/2)

≥ 1∑∞
i=1 e

−irCν/2 ≥ 1− e−rCν/2,
and thus the probability of advancing is no more than e−rCν/2, also a quantity that does not depend on i.
This is a negative binomial random variable with distribution w(k, p), the number of coin flips needed to
obtain k successes with success probability p. Reversing the definition of “success” (i.e., now success means
returning to C) and “failure” (now failure means making a growing transition), we have a random variable
w(k, p), the number of coin flips needed for k failures with probability of failure p = 1− e−rCν/2. It is well
known that Pr [w(k, p) ≤ m] = Pr [B(m, p) ≥ k], where B(m, p) is the binomial random variable counting
the number of heads within m p-biased coin flips. Thus, Pr [w(k, p) > m] = Pr [B(m, p) < k]. Setting

k = a log n and m = b log n, we have, Pr [B(m, p) ≤ E[B(m, p)]− t] = Pr [B(m, p) < pm− t] ≤ e
−2t2

m .
We let k = pm− t, and solving for t we get t = (pb− a) log n. This gives us

Pr [B(m, p) < k)] ≤ 1

n
(pb−a)2

b

,

establishing there are at most O(log n) success within O(log n) trials ending in failure. Via stochastic domi-
nance this bound holds for our original cobra walk process.

Once the active set has reached size Ω(n), we need a different method to show that the cobra-walk
achieves full coverage in O(log2 n) time. We can not simply pick a random pebble and restart the cobra-
walk from this point O(log n) times because we know nothing about the distribution of the δn pebbles after
restart, and the restarting method would require the pebbles to be i.i.d. uniform across the nodes of G. As a
result, we are unable to establish a straightforward bound on hmax and invoke Matthew’s Theorem.
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Hence, we develop a different process, which we will call Walt, that is stochastically dominated by the
cobra walk. In Walt, no more branching or coalescing occurs, and we also modify the transition probabilities
of the pebbles on a node-by-node basis, depending on the number of pebbles at a node.

Definition 15. For any time t and any collection of S pebbles on V (there can be more than 1 pebble at a
node), define Walt(t+ 1) as follows. Let A ⊆ V be the set of all nodes with 1 pebble at time t. Let B ⊆ V
be the set of all nodes with exactly 2 pebbles, and let C be the set of all nodes with more than 2 pebbles.
Then, (a) for every v ∈ A, the pebble at v uniformly at random selects a node in N(v) and moves to it; (b)
for every v ∈ B, each pebble at v uniformly at random selects its own node in N(v) and moves to it; (c) for
every v ∈ C, arbitrarily order the pebbles at v, the first two pebbles then pick a neighbor to hop to uniformly
at random. The remaining pebbles then pick with probability 1/2 one of the two neighbors already selected
and move to that node.

If at time t a node during processWalt has two or more pebbles, at each time step it behaves identically to
a node running a cobra walk. On the other hand, if there is only one pebble at node running Walt it acts like
a simple random walk. Thus the number of active nodes at the next time step in Walt is a (possibly proper)
subset of the nodes with pebbles if the graph were running the cobra walk instead. Since this will be true at
every time step, Walt stochastically dominates the cobra walk w.r.t cover time τ of G, and it will be enough
to prove the following:

Theorem 16. Let G be a bounded-degree d-regular ε-expander graph, with ε sufficiently high to satisfy the
conditions in Lemma 12. Let there be δn pebbles distributed arbitrarily (with no distribution assumptions)

over V , with at most one pebble per node. Let δ <
16

30d2
. Let λ be the second-largest eigenvalue of the

adjacency matrix of G. From our ε-expander definition, λ = εd. For every ε, there is a constant ε′ that is the
node expansion constant of G. Furthermore, let constant γ = ε′

ε2(1−δ)+δ , and let s = 5 logn+6 log d+log 9

− log

(
1− 1

2

(
γ

64d10

)2) .

Starting from this configuration, the cover time of Walt on G is O(log2 n), with high probability.

Proof. Our proof relies on showing that each node in G has a constant probability of being visited by at least
one pebble during an epoch of Walt lasting Θ(log n) time. Once this has been established, all nodes of G
will be covered w.h.p. after O(log n) epochs lasting Θ(log n) steps each.

Define Ei to be the event that pebble i covers an arbitrary node v in s steps. We want to prove that the
probability that v is covered by at least one pebble, Pr [

⋃
iEi], is constant. Using a second-order inclusion-

exclusion approximation:

Pr

[⋃
i

Ei

]
≥
∑
i

Pr [Ei]−
∑
i 6=j

Pr [Ei ∩ Ej ] =
∑
i

Pr [Ei]−
∑
i 6=j

Pr [Ei] Pr [Ej |Ei] . (22)

As a marginal probability, Pr [Ei] can be viewed as the probability that the random walk of pebble i hits v
at time s. Thus, we only need to look at the elements of zAi, where A is the stochastic matrix of the simple
random walk on G and z is a vector with z(l) = 1 for the l, the position of pebble i at the beginning of the
epoch and 0 in all other positions. In [2] it is proved in Lemma 4.8 that each coordinate of As

′
z differs from

1/n by at most 1
2n for s′ = ln 2n

ln ε . Since s > s′, this hold for our case as well. Thus Pr [Ei = 1] ≥ 1
2n .

Next we establish an upper bound for Pr [Ej |Ei]. Due to the conditioning on the walk of pebble i, we
can’t use the transition matrixAi, but we would like to do something similar. The transition matrix governing
the walk of pebble j conditioned on a fixed walk of pebble i can be characterized at each step by transition
matrix Pl(i,t), where l(i, t) is the location of pebble i at time t, can be described as follows. For every row k

of Pl(i,t) s.t. k 6= l(i, t) we have an exactly copy of the kth row of A, the transition matrix of an independent
random walk on G. When k = l(i, t) this represents the walk of j when pebbles i and j are co-located
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at node k. To establish an upper bound, we assume the worst case, that j is ordered as the 3rd or higher
pebble at k. Let τ be the neighbor of node k chosen by pebble i. Then P [k, τ ] = 1/2 + 1/2d, and for all
other positions of row k where A is non-zero, the corresponding position in P = 1/2d. These represent the
transition probabilities according to Walt as described earlier.

From an initial probability distribution z chosen over V (G), the probability of pebble j being at node v
conditioned on the walk of pebble i is the vth component of z

∏s
t=1 Pl(i,t). In Lemma 17 we show that the

largest component of z
∏s
t=1 Pl(i,t) is no more than 5d2

2n . With this result, we then have:

Pr
[⋃

Ei

]
≥
∑
i

Pr [Ei]−
1

2

∑
i 6=j

Pr [Ei] Pr [Ej |Ei] ≥ δn
1

2n
− 1

2

(
δn

2

)
3

2n

5d2

2n
≥ δ

2
− 15

16
δ2d2,

which will be a constant for the sufficiently small δ (depending only on d) given in the statement of the
Theorem.

Lemma 17. Let G, γ, ε′, and s be as stated in Theorem 16. Let i and j be two pebbles walking according to
the rules of Walt on G. Fix the walk of i, and let {Pl(i,t)} be the sequence of perturbed transition matrices
for the walk of pebble j depending on i. Then starting i from an arbitrary node, after s steps, the probability
that j is at any node is at most 5d2/2n.

Proof. The proof of this lemma relies heavily on Theorem 3.2 in [32], which we review and state here. Let
P be an irreducible, ergodic Markov process for which reversibility and strong aperiodicity are not required.
Consider the weighted transition from state i to j, wij = πipij , where πi is the stationary distribution of i
and pij is the transition probability from i to j of P . For A ⊂ V , we define the merging conductance of set
A as

Φ∗P (A) =

∑
j1∈A

∑
j2∈V−A

∑
i
wj1iwj2i

πi∑
i∈A πi

(23)

The merging conductance of graph G is thus Φ∗P (G) = minA⊂S:
∑
i∈A πi≤

1
2

Φ∗P (A). Intuitively, the merging
conductance can be viewed as a measure of the flow coming into all nodes from both A and V −A for some
set A. The higher the merging conductance of a graph, the more well connected it is and evenly distributed
the flow is. If we define ‖~x(t)‖ =

∑ (pi(t)−πi)2
πi

to be a measure of the distance of a distribution ~p over V
from the stationary distribution of P , then [38] gives us the following theorem, which indicates that for a
graph with merging conductance bounded away from zero, convergence to the stationary distribution occurs
in logarithmic time.

Theorem 18 ([38, Theorem 3.2]). For any initial distribution ~x(0) over V , ‖~x(t)‖ ≤ (1− 1
2(Φ∗P )2)t‖~x(0)‖

We also need the following lemma for bounds on the maximum and minimum of the stationary distribu-
tion of the conditional walk of pebble j.

Lemma 19. For the walk of pebble j as described onWalt for a suitable d-regular ε-expander G, conditioned
on the walk of pebble i. the stationary distribution of the walk of j has bounds πmin ≥ 1

2nd2
and πmax ≤ 2d2

n .

Proof. We first demonstrate the relationship between πmax and πmin. Let u be the node of Pl(i,t) be l(i, t),
that is, the node whose transition probabilities are perturbed from the standard random walk. Let v be the
neighbor of u that receives a walk from v with probability 1

2 + 1
2d , and let u1, . . . , ud−1 be the remaining

neighbors of v, that receive a walk from uwith probability 1
2d . We claim that πv = πmax. To see this, assume

on the contrary that node i, not v or a neighbor of v, has πi = πmax. Because
∑

j∈N(i)wij =
∑

j∈N(i)wji,
πi =

∑
j∈N(i) πjpji. But since pji = 1

d , it follows that πmax = πi = 1
d

∑
j ∈ N(i)πj , that is πj is equal to

the mean of the πj’s. However, since the πj’s are all the same (due to their identical transition probabilities),
it follows that πj = πi = πmax for all j ∈ N(i). We can continue doing this until we reach one of the
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uk’s implying that πuk = πmax. This is clearly a contradiction, since πuk = 1
2dπu + d−1

d πmax ≤ πmax.
Thus πmax must either be πu or πv, and w.l.o.g. we assume that it is πv. A similar argument shows that
u1, . . . , ud−1 all have stationary distributions πmin.

To get explicit bounds for πmax and πmin, we note that πmin ≥ 1
2dπu and that πu = d−1

d πmin + 1
dπmax.

Thus we have:

πmin =
d

d− 1
πu −

1

d− 1
≥ 1

2d
πu (24)

1

d− 1
πmax ≤

(
d

d− 1
− 1

2d

)
πu (25)

πmax ≤
(
d− d− 1

2d

)
πu (26)

πmax ≤
(

2d2 − d+ 1

2d

)
πu ≤

2d2

2d
πu ≤ dπu ≤ 2d2πmin (27)

Thus we have πmin ≥ 1
2d2
πmax. Since π̄ = 1/n and πmin ≤ π̄ ≤ πmax, this gives πmin ≥ ( 1

n)( 1
2d2

) and
πmax ≤ (2d

2

n ).

Next we establish a lower bound for the number of terms in the sum in the numerator of Equation 23.
Let A be the set for which Φ∗P (G) is minimized. Furthermore, since G is an ε-expander, we also know that
its cobra walk expansion is a constant ε′ and depends only on ε. We would like to calculate the number of
nodes in G that have at least one neighbor in A and at least one neighbor in V − A. First, we lower-bound
the size of the set of nodes with at least one edge to A. This set is just N(A), the inclusive neighborhood of
A, which from Tanner’s theorem can be bounded from below by |A|

ε2(1−δ)+δ . Of the node in N(A), we also
need to bound the number that also have at least one edge to V − A. However, this is just the non-inclusive
neighborhood of N(A), Γ(N(A)), and we can use the node expansion of G to show that |Γ(N(A))| ≥

ε′|A|
ε2(1−δ)+δ . Thus we get:

Φ∗P (G) ≤ ε′|A|
ε2(1− δ) + δ

π2
min(1/2d)

2

πmax

|A|πmax
≤ ε′

ε2(1− δ) + δ

(
1

2d2

)2( 1

2d

)2 1

n2

( n

2d2

)2
≤ ε′

ε2(1− δ) + δ

1

64d10
.

Letting γ = ε′

ε2(1−δ)+δ , we note that the expression above is a constant as long as d, ε, δ, ε′ are constants,
which will be true in a d-regular ε-expander.

Starting from a distribution ~x(0) whose norm ‖~x(0)‖ will be maximized when the walk is started from

node s.t. πi = πmin, we have: ‖~x(0)‖ ≤ (1−πmin)2
πmin

+ (n− 1) (πmax)
2

πmin
≤ 2d2n+ (n− 1)

(
2d2

n

)2
(2d2n)

≤ 2d2n + 8d6 < 9d6n for d > 1. Finally, we want to show that ‖~x(s)‖ < 1
n4 . With this, it is clear to see

that the maximum difference |pi(t) − πi| < 1
n2 which implies that the maximum probability Pr [Ej |Ei] <

2d2

n + 1
n2 <

5d2

2n as required in Theorem 16. To do this we need to show that
(

1− 1
2

( γ
64d10

)2)s ≤ 1
9d9n5 ,

which will be true for the set value of s in the definition of the Theorem.
A final note: because Φ∗P (G) ≤ γ

64d10
for every matrix Pl(i,t), we can apply Theorem 18 in the exponen-

tiation even though each matrix is different.

cobra walk

5 Cliques
Finally, we consider the complete graph (with self loops added for ease of analysis). Previously, we have use
two strategies to study the cover time of a cobra walk. For trees and grids we were able to show a result for
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the hitting time on G and then apply Matthew’s Theorem for Cobra-walks. For expanders we relied on the
expansion to show that the active set grew to a certain size, and then relied on the merging conductance to
show that the full graph got covered. Here we consider a third method, in which we map a cobra walk on
G to a simple random walk on graph with a node set equal to all 2n − 1 non-empty subsets of V . Though
this is a very large space, we are able to show that for the complete graph there are so many edges leading
to nodes that correspond to larger active sets in the original graph G that with extremely high probability the
cobra walk will cover a constant fraction of the nodes in log n time. Once this happens, since the pebbles
are distributed i.i.d. uniformly across V , it is easy to show that full coverage again occurs in log n time.
Intuitively, one would expect full coverage of Kn in logarithmic time. We include this result because the
method of proving it may be applicable to a wider class of graphs than just the complete graph.

We state the main result for Kn:

Theorem 20. Let G = Kn, the complete graph on n node. Then a cobra walk starting from any node in Kn

will cover the entire graph w.h.p. in O(log n) time.

Consider the complete graph Kn. For simplicity, assume that every node in Kn also has a self loop.
Consider an active set St, and for now assume that |St| << n. In the next step of the cobra walk, we note
than any node can become a member of St+1, and that |St+1| can range from 1 to 2|St|. We are going to
show that with high probability, the active set will grow by at least a constant factor (1 + ε) in each round up
until the active set reaches a size δn for some δ ∈ (0, 1). Once in reaches this active set size, the rest of the
graph will be covered in O(log n) steps.

As indicated in the application of Matthew’s Theorem for cobra walks, it is possible to view a cobra walk
on G as a simple random walk on a related graph MG. The state space of MG are all the possible active
sets of V (G) in a cobra walk, which are just all of the subsets of V (G) with the exception of the empty set.
Hence MG has 2n − 1 states. An edge between u, v ∈MG exists for every possible way in which the active
in G corresponding to state space u in MG can give rise to the active set corresponding to v in MG with one
step of a cobra walk. For a node v ∈ MG, denote act(v) to be size of the corresponding active set in the
inverse mapping from nodes of MG to cobra walk configurations of G. Note that the graph formed by MG

and its edges is a multi-graph, as it is possible for one active-set configuration to give rise to another through
multiple combinations branching and collisions of pebbles in a nodes. In the past it has has been deemed
inadvisable to study such ”meta-processes”, due to the exponential size of MG . However, for the case of the
complete graph, we are able to show that the size of the active set is growing with extremely high probability
in every step, thus providing a simpler interpretation of our analysis.

Lemma 21. Let a random walk on MG be at v ∈ MG such that act(v) = s ≤ δn for δ ≤ 1
e2(1+c)

for

c ∈ (0, 1). Then with probability 1 − 1
e3
e−

1.6n
1.1e3 the walk’s position at time t + 1 will be at a node u with

act(u) ≥ (1 + c)s.

Proof. Vertex v ∈ MG has act(v) = s, meaning there are 2s pebbles on the corresponding graph G just
prior to the next step, each of which chooses a node of G uniformly at random, meaning there are n2s total
edges leading out from v ∈ MG, though we note that MG is a multigraph and hence many edges from v
will have common endpoints. All nodes of MG with act(u) = i for i ∈ [1, 2s] are neighbors of v. Pick a
particular node u with act(u) = k. The number of edges between v and u can be calculated as:

edges between v,u = k!

{
2s

k

}
(28)

where
{
2s
k

}
is the Stirling number of the second kind, counting the number of ways s items can be partitioned

into k non-empty, unlabeled bins. Thus, the total probability of a simple random walk on MG at v with
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act(v) = s walking to any node u with act(u) = k in the next step is:(
n

k

)
k!
{
2s
k

}
n2s

(29)

We can make use of the recursive identity k!
{
n
k

}
= kn −

∑k−1
i=1

k!
i!

{
n
i

}
, so that the probability of walking

from u to v in one step is bounded from above by
(
n
k

)
k2s

n2s . Since p << n/2, this expression is maximized at
p over the range [1, . . . , p] and we have that:

Pr [u→ v] ≤
(
n

p

)
p2s

n2s
≤ npep p

2s

n2s
= np−2sp2s−pep (30)

When s and p are small, the np−2s term dominates (so long as s is still a sufficiently large constant), so
the only case we need to examine is when s is of size δn for some constant δ < 1. Then we have:

np−2sp2s−pep ≤ nεδn−2δn(εδn)2δn−εδneεδn (31)

= (εδ)(2−ε)δneεδn (32)

≤ (
1

e
)(6−4ε)δn (33)

This comes about because for ε = 1 + c, if we set c = 0.1, then this holds for δ so that δ ≤ (1/e)3(1/1.1)
which gives us the final result that we do not grow our active set by more than a factor of (1 + c) with
probability ≤ (1 + c)δn(1/e)

1.6n
1.1e3 . Thus w.h.p. the random walk on MG will visit in one time step a node

with act(u) > (1 + c)s for the appropriate constant c = 1.1.

Next we want to prove that w.h.p. in O(log n) steps the random walk will move from a node u′ with
act(u′) = C to a node v′ with act(v′) = Θ(δn) for some large constant C and constant δ described as
above.

Lemma 22. Let W be a random walk on MG. Suppose that at time t, W (t) is a node v with act(v) = C
for a constant C. Then for c = 0.1 and ε = 1 + c = 1.1 w.h.p W (t + O(log n)) will be at a node with
act(v′) ≥ δn for δ = 1

1.1e3
.

Proof. As noted in Lemma 21, for a walk at a node with act(v) = s, the probability of not advancing to a
node in the next time step with act(v′) > εs is no more than:

εs
(εs
n

)(2−ε)s
eεs (34)

We want to show that for values of s between C and δn, this quantity is decreasing. The first derivative of
the expression w.r.t. s is:

f ′(n, s, ε) = −εeεs
(εs
n

)(2−ε)s [
(ε− 2)s ln

(εs
n

)
− 2s− 1

]
(35)

This will be negative when the quantity in brackets is positive:

(ε− 2)s ln
(εs
n

)
− 2s− 1 > 0

(ε− 2)s [ln(ε) + ln(s)− ln(n)] > 2s+ 1

(2− ε) [ln(n)− ln(ε)− ln(s)] > 2 + 1/s
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Clearly this will hold when s is small, and since the quantity in brackets is a concave function and is growing
between 1 and δ we only need to show that it also holds for the other end of the range, when s = δn:

(2− ε)
[
ln(n)− ln(ε)−

(
ln(

n

εe3

)]
> 2 +

1
n
εe3

(2− ε) [ln(n)− ln(ε)− ln(n) + ln(ε) + 3] > 2 +
εe3

n

which will hold for ε = 1.1. Now we need to show that the expression in equation 34 is ≤ n−3 for s = C.
But it is just:

1.1C

(
1.1C

n

)0.9C

e1.1C (36)

which is O(n−0.9C), which will be less than n−3 for even small C > 5.
We are finally ready to prove the statement in the lemma. Consider a failure to be the event that the value

of act() does not grow by a factor of (1 + c) with a step. Since this probability is decreasing with increasing
s, if we take C as our starting value, it is bounded from above by 1

n3 . Hence the probability of success at any
step is at least 1− 1

n3 . Thus, w.h.p we will have a log n successes in a row, allowing our active set to grow to
size δn in logarithmic time.

6 Conclusion
We studied a generalization of the random walk, namely the cobra walk, and analyzed its cover time for
trees, grids, and expander graphs. The cobra walk is a natural random process, with potential applications
to epidemics and gossip-based information spreading. We plan to explore further the connections between
cobra walks and the SIS model, and pursue their practical implications. From a theoretical standpoint, there
are several interesting open problems regarding cobra walks that remain to be solved. First is to obtain a tight
bound for the cover time of cobra walks on expanders. Our upper bound is O(log2 n), while the diameter
Ω(log n) is a basic lower bound. Another pressing open problem is to determine the worst-case bound on the
cover time of cobra walks on general graphs. It will also be interesting to establish and compare the message
complexity of cobra walk with the standard random walk and other gossip-based rumor spreading processes.
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