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We present λ̂ , a typed λ-calculus for lenient symbolic execution, where some language constructs do not

recognize symbolic values. Its type system, however, ensures safe behavior of all symbolic values in a program.

Our calculus extends a base occurrence typing system with symbolic types and mutable state, making it a

suitable model for both functional and imperative symbolically executed languages. Naively allowing mutation

in this mixed setting introduces soundness issues, however, so we further add concreteness polymorphism,

which restores soundness without rejecting too many valid programs. To show that our calculus is a useful

model for a real language, we implemented Typed Rosette, a typed extension of the solver-aided Rosette

language. We evaluate Typed Rosette by porting a large code base, demonstrating that our type system

accommodates a wide variety of symbolically executed programs.
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1 DEBUGGING LENIENT SYMBOLIC EXECUTION

Programmers are increasingly using symbolic execution [Boyer et al. 1975; King 1975], in conjunc-
tion with satisfiability solvers, to help find bugs [Cadar et al. 2008; Farzan et al. 2013; Godefroid
et al. 2012], verify program properties [Dennis et al. 2006; Jaffar et al. 2012; Near and Jackson 2012],
and synthesize code from specifications [Solar-Lezama et al. 2005; Torlak and Bodik 2014]. One
challenge when designing such tools is deciding which language constructs should handle symbolic
values. Lifting all language constructs is costly to implement and may produce complex solver
encodings for some language features. Conversely, restricting symbolic execution to a language
subset limits expressive power and the number of possible applications. Some testing frameworks
allow a form of mixed symbolic execution where symbolic values are concretized before interacting
with unlifted language constructs, but this does not consider all program paths and thus may not
be suitable for all applications of symbolic execution.
Ideally, we would like lenient symbolic execution, where a small language subset is lifted for

symbolic execution but those forms may freely interact with a larger unlifted language [Torlak and
Bodik 2013]. This approach considers all paths, is easier to implement, simplifies solver encodings,
yet still allows programmers to use expressive language features. Debugging such mixed programs,
however, can be tricky. Consider the following pseudocode example:
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if (unlifted-int? x) then (add1 x) else (error "cannot add non-integer")

The author of this code might reasonably conclude that it will not error when x is an integer.
Executing the code with x as a symbolic integer, however, is problematic if unlifted-int? does
not recognize symbolic values, i.e., it returns true only when given a concrete integer and false
otherwise. In this scenario, the program will unexpectedly reach the error case. Worse, when
symbolic execution is paired with a solver, a programmer may only detect a problem (if at all) after
examining the solver’s output, and even then will not have much information to debug with.
Thus, despite the benefits, most symbolic execution engines have shunned the mixing of lifted

and unlifted language constructs. In contrast, we propose embracing lenient symbolic execution but

supplementing it with a type system. Such a system would enjoy the benefits of lenient symbolic
execution, yet programmers would not be burdened with manually ensuring safe interaction of
symbolic values. Further, any safety violations would be automatically detected and reported before
execution. Finally, such problems are easier to fix since they would be reported in the context of
their occurrence, rather than after constraint solving. Our paper makes two main contributions:

(1) λ̂ , a typed λ-calculus that ensures safe lenient symbolic execution, and
(2) Typed Rosette, a solver-aided typed programming language based on our calculus.

λ̂ includes symbolic values, higher-order functions, and mutation, and thus may represent the core
of both functional and imperative symbolically executed languages. Its type system, in addition
to ensuring safe interaction of symbolic values, utilizes occurrence typing and true union types:
the path-sensitivity of the former fits well with the path-oriented nature of symbolic execution,
and the latter naturally accommodates the symbolic union values that arise when computing with
symbolic values. We further extend the system with concreteness polymorphism, which utilizes
intersection types to add context sensitivity and more precisely tracks the flow of symbolic values,
increasing the usefulness of the type system.
To show that our type system is practical to use, we created Typed Rosette, a typed extension

of Rosette [Torlak and Bodik 2014], which utilizes symbolic execution to compile programs to
solver constraints. Programmers have used Rosette for a variety of verification and synthesis
applications [Bornholt and Torlak 2017; Bornholt et al. 2016; Pernsteiner et al. 2016; Phothilimthana
et al. 2014; Weitz et al. 2016]. Rosette is an ideal target for our type system since:

• it equips only a subset of its host language, Racket, to handle symbolic values;
• it allows potentially unsafe interaction with the rest of Racket [Flatt and PLT 2010] but
discourages programmers from doing so; and
• despite the warnings, users routinely stray from safe core in order to benefit from the extra
unsafe features, relying on vigilant programming and detailed knowledge of the language to
manually ensure only safe uses of symbolic values.

Typed Rosette aims to help with the last task.

2 ROSETTE PRIMER AND MOTIVATING EXAMPLES

This section introduces untyped Rosette via examples and motivates the need for a type system.

2.1 Restricted (Safe) Rosette

Rosette programmers explicitly define base symbolic values with define-symbolic*:

#lang rosette/safe ; no lenient symbolic execution
(define-symbolic* x y z integer?)

(and (< x y) (< y z)) ; => symbolic bool (&& (< x y) (< y z))

(if (< x y) 1 (+ z 2)) ; => ⟨[(< x y): 1][¬(< x y): z + 2]⟩
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Computing with these values may produce other symbolic values, e.g., the third line above evaluates
to a symbolic boolean value constructed from the symbolic integers x, y, and z, and the fourth line,
due to its symbolic boolean test, explores both branches and merges the results into a guarded
symbolic union value.1 In safe Rosette, invoked with the #lang rosette/safe directive on the
first line, all language forms are lifted to consume and produce symbolic values when appropriate.
Execution of a program also yields assertions that are passed to a solver, which programmers

interact with via Rosette’s solver API. For instance, a solve query produces an assignment of values
to symbolic variables that satisfies the assertions collected during symbolic execution, if one exists:

(solve (assert (= x 3))) ; => model: x = 3

In this example, the solver determines a value of 3 for the symbolic value x. Dually, verify tries to
find a counterexample to the assertions, e.g.:

#lang rosette/safe

(define (sorted? v) ; ascending order
(define-symbolic* i j integer?)

(define max (sub1 (vector-length v))) ;max index
(implies (and (<= 0 i max) (<= 0 j max) (< i j)) ; if valid pair of indices

(<= (vector-ref v i) (vector-ref v j)))) ; check if pair is sorted
(verify (assert (sorted? (vector 3 5 4)))) ;✗: i = 1, j = 2

This sorted? predicate specifies a sortedness condition for vectors. Specifically, a vector is sorted
if every pair of elements, represented with symbolic integer indices i and j, is sorted. In this case,
(vector 3 5 4) is not sorted and the solver finds a counterexample when i = 1 and j = 2.

Symbolic values are first-class values that may be passed around or stored in data structures, e.g.:

#lang rosette/safe

(define-symbolic* x y z integer?)

(verify #:assume (assert (and (< x y) (< y z)))

#:guarantee (assert (sorted? (vector x y z)))) ;✓ (no counterexamples)

This usage of symbolic values enables verifying properties of (concrete) data structures. The vector
above contains three symbolic integers x, y, and z. Then, assuming x < y and y < z, verifying
sortedness with the sorted? predicate succeeds. Of course, assertions are more typically generated
by the program rather than explicitly stated, e.g., here is a basic insertion sort algorithm for lists:

#lang rosette/safe

(define (inssort lst) ; insertion sort for lists
(if (null? lst)

lst

(insert (first lst) (inssort (rest lst)))))

(define (insert x lst) ; add x at pos i such that for all j < i, lst[j] < x
(if (null? lst)

(list x)

(if (< x (first lst))

(cons x lst)

(cons (first lst) (insert x (rest lst))))))

(define-symbolic* x y z integer?)

(verify (assert (sorted? (lst->vec (inssort (list x y z)))))) ;✓

Querying the solver here confirms that the algorithm satisfies sorted? for any three-element list.

1Rosette further distinguishes between łsolvablež and general symbolic union values but this paper ignores the distinction.
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2.2 Full (Unsafe) Rosette

Section 2.1’s examples use safe Rosette, where all language forms are lifted to recognize symbolic
values. The safe language is limited to a small subset of Racket, however, so programmers frequently
use the full Rosette language instead, which includes the remaining features from Racket, unlifted.
Using the full language has two main benefits. The first is that programmers enjoy the con-

venience of a practical, łbatteries-includedž language. For example, the safe insertion sort code
manually deconstructs lists; in the full language, a programmer can utilize pattern matching instead:

#lang rosette ; full Rosette includes unlifted features, i.e., allows lenient symbolic execution
(define/match (inssort lst)

[('()) lst]

[((cons x xs)) (insert x (inssort xs))])

(define/match (insert x lst)

[(_ '()) (list x)]

[(_ (cons y ys)) (if (< x y) (cons x lst) (cons y (insert x ys)))))

(define-symbolic* x y z integer?)

(verify (assert (sorted? (lst->vec (inssort (list x y z)))))) ;✓

Even though the matching constructs internally call unlifted list accessors and predicates, their
use is acceptable here since symbolic values never reach the unlifted positions. Thus programmers
benefit from a more concise implementation of inssort.

2.3 Full Rosette Pitfalls

A second benefit of using the full language is that its extra features enable more applications of
symbolic execution. For example, we can change our predicate to verify łsortednessž of hash tables,
which are unavailable in the safe language:

#lang rosette

(define (sorted-hash? h)

(define-symbolic* i j integer?)

(define max (sub1 (hash-count h)))

(implies (and (<= 0 i max) (<= 0 j max) (< i j)) ; if valid pair of indices
(<= (hash-ref h i) (hash-ref h j)))) ; check if pair is sorted

The benefits of the full Rosette language, however, come with a tradeoff, as the documentation
warns: łRosette cannot, in general, guarantee the safety of programs that use unlifted constructs.
As a result, the programmer is responsible for manually ensuring correctnessž, where łcorrectnessž
means that symbolic values should not reach positions that cannot handle them. Unfortunately,
reasoning about such symbolic value flow can be tedious and subtle. Worse, the programmer often
has little information with which to debug their incorrect programs, e.g., calling verify with the
hash predicate returns a nonsensical counterexample:

(verify (assert (sorted-hash? (lst->hash (inssort (list x y z)))))) ;✗: i=0, j=1

The solver output seems to say that the values at indices i and j are never sorted. This is especially
confusing since replacing (list x y z) with a concrete list such as (list 3 2 1) produces a
sorted list, refuting the solver result. Thus, the programmer is faced with the undesirable choice of
tediously tracing the flow of symbolic values by hand in order to check the correctness of their
programs, or giving up altogether and going back to the restricted language.
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2.4 Introducing Typed Rosette

Typed Rosette reports a type error when symbolic values reach unlifted positions. In section 2.3’s
example, it turns out that unlifted hash-ref is the problem:

[ln6,col16]: hash-ref: type mismatch: expected Int, given Înt

expression: i

in: (hash-ref h i)

Once we have located the problem, we can focus on fixing it. In general, a programmer can safely use
unlifted functions to traverse and process data structures, so long as any symbolic results do not get
used internally within those functions. Section 2.3’s example does not satisfy this requirement since
it uses hash-ref with a symbolic key to essentially łiteratež over the table. Instead, a programmer
can use a comprehension form to safely create the desired constraints:

#lang typed/rosette

(define (sorted-hash? [h : (HashTable Nat Înt)]) -> EBool

(let ([size (hash-count h)])

; hash h is "sorted" if, for all pairs of concrete keys i and j, i < j implies h[i] <= h[j]
(for*/fold ([result #t]) ([i (in-range size)] [j (in-range size)])

(and (implies (< i j) (<= (hash-ref h i) (hash-ref h j)))

result))))

(verify (assert (sorted-hash? (lst->hash (inssort (list x y z)))))) ;✓

Here, for*/fold iterates over all pairs i and j, accumulating constraints in result. Even though
for*/fold is unlifted and unavailable in restricted Rosette, it is used safely here and thus saves the
programmer the effort of manually considering all pairs. In addition, we have used the full language
to verify a property involving hash tables, which was impossible in the restricted language.2

In short, with Typed Rosette programmers may enjoy the benefits of the full Rosette language,
yet at the same time avoid the difficult task of tracking and debugging symbolic value flow.

3 A SYMBOLIC TYPED λ-CALCULUS

This section presents λ̂ , a typed λ-calculus whose types distinguish symbolic and concrete values.

λ̂ builds on Tobin-Hochstadt and Felleisen [2010]’s occurrence typing system (explained in § 3.1),
whose path-sensitivity fits well with the path-based nature of symbolic execution. Further, occur-
rence typing easily accommodates true union types, which are suitable for the union values created
during symbolic execution. We first extend this base calculus with symbolic values and types
(§ 3.2). Then, to improve the precision, we introduce the notion of concreteness polymorphism (§ 3.3).
Occurrence typing again comes in handy here, allowing us to dispatch based on the concreteness
of a particular value. We further extend the functional core with mutation (§ 3.4), enabling our
calculus to model both functional and imperative symbolic execution. Adding mutation naively,
however, introduces unsoundness depending on the concreteness of the path so, finally, we extend
concreteness polymorphism with additional path-sensitivity and context-sensitivity (§ 3.5) that
fixes the possible unsoundness yet preserves enough precision so that mutation remains useful.

3.1 Occurrence Typing, in a Nutshell

Occurrence typing uses the notion of type refinement [Freeman and Pfenning 1991] to add more
path-sensitivity than traditional type systems. Specifically, conditionals in an occurrence typing
system may refine the types of variables in its branches based on the result of its test:3

2Section 6.3’s example also leverages full Rosette and this same traversal pattern to synthesize incremental algorithms.
3For consistency with the rest of the paper, we continue to use Typed Rosette’s syntax for most examples.
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e ∈ Exp ::= i | s | true | false | x | op | λx :τ . e | e e | if e e e, i ∈ Z, s ∈ Strinдs (terms)

op ∈ Op ::= bool? | not | int? | add1 | str? | strlen (primitive ops)

τ ∈ Ty ::= Int | String | True | False | τf n | τ ∪ τ | Any (types)

τf n ∈ TyFn ::= x :τ
ψ |ψ ;o
−−−−→τ (function types)

ψ ∈ Prop ::= x :τ | ¬x :τ | ψ ⊃ ψ | ψ ∨ψ | ψ ∧ψ | ⊤ | ⊥ (propositions)

Γ ∈ Env ::= ψ . . . , o ∈ Obj ::= x | · (environments and target objects)

Abbreviations: Bool = True ∪ False, Bot = ∪

Fig. 1. Syntax of base occurrence typing system, based on Tobin-Hochstadt and Felleisen [2010].

(define (f [x : (U Int String)]) -> Int

(if (int? x)

(add1 x)

(strlen x)))

The x input in the above function definition may initially be either a string or integer. Its type,
however, is refined to Int in the łthenž branch and String in the łelsež branch, and thus both the
addition and string length computations type check and the function returns an Int.
The conditional test expression dictates the type refinements in the branches. More precisely,

type checking judgements have shape Γ ⊢ e : τ ; ψ+ | ψ− where, if e is used as a conditional
test, thenψ+ andψ− are logical propositions that describe how to refine types in the łthenž and
łelsež branches, respectively. In the example, type checking (int? x) computesψ+ = x :Int and
ψ− = ¬x :Int. When these constraints are combined with with x’s original type (U Int String),
the type checker may conclude x :Int in the łthenž branch and x :String in the łelsež branch.
Formally, figure 1 presents the syntax for a basic occurrence typing system; it more or less

resembles the calculus of Tobin-Hochstadt and Felleisen [2010]. The language includes three types
of literal values: integers, strings, and booleans. Integers and strings have base types Int and String,
respectively. To keep our type judgements uniform, if conditionals use łnon-falsež semantics, i.e.,
its test expression may have any type and all non-false values are considered equivalent to true.4

Consequently the type system includes two separate Boolean base types, True and False; we use
an abbreviation Bool for the union of True and Falsewhen needed. The rest of the expressions are
variables, primitive operations, lambdas, and function application; the rest of the types are function
types, unions, and Any. Unions are a multi-arity type constructor, e.g., a union of no arguments
is equivalent to the empty type, but we present it syntactically as a binary constructor when it’s
more convenient. Finally, Any includes all the other types.

λ̂ ’s function type differs from the standard arrow in three ways: it (1) binds a parameter that
is in scope for the rest of the type, (2) specifies two refinement propositionsψ , and (3) specifies a
łtarget objectž o. The section’s earlier example introduced how type checking a conditional’s test
additionally computes propositions which then refine a variable’s type in the branches. The origin

of these refinements are predicate functions such as int?, which has type x :Any
x :Int |¬x :Int
−−−−−−−−−−→Bool.

In other words applying int? reveals additional information about its argument: it either is an
integer or is not an integer. A base type environment lookup function δτ , defined in figure 2 for
a few examples, assigns types to other primitive operations in a similar manner. The type of the
add1 and strlen functions specify ⊤ and ⊥ propositions because their inputs, integers and strings,

4The alternative requires separating boolean expression judgements, which include refinements, and non-boolean ones.
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δτ int? = x :Any
x :Int |¬x :Int
−−−−−−−−−−→Bool δτ : Op → TyFn

δτ str? = x :Any
x :String |¬x :String
−−−−−−−−−−−−−−−→Bool

δτ not = x :Any
x :False |¬x :False
−−−−−−−−−−−−−→Bool

δτ add1 = x :Int
⊤|⊥
−−−→Int

δτ strlen = x :String
⊤|⊥
−−−→Int

Fig. 2. Types for primitive ops in base occurrence typing system.

respectively, are always considered łtruež when used in a conditional test, and the result of these
primitive functions do not reveal additional information about the types of their inputs.
The final component of the function type is a target object o. Target objects, specified as the

final component of a typing judgement Γ ⊢ e : τ ; ψ | ψ ; o, add flow-sensitivity to the type
system in order to track the variable that łwould bež modified by theψ refinements. In the previous
example, the result of (int? x) straightforwardly determines whether x is an integer. The target
of refinement may be less straightforward, however, if int? is applied to a non-variable expression.
For example if the conditional were changed to (if (int? (id x)) .... ) where id is the identify
function, the type system should still know that x is the target of refinement, even though it
passes through a function call.5 To address these cases, function types also specify a target object.

For example id would have type x : Any
¬x :False |x :False; x
−−−−−−−−−−−−−−−→ Any, where the object component x

specifies that the function input becomes the target object after the function is applied. Together,
the propositions and target objects make occurrence typing fully compositional. In other words, a
conditional will properly refine the types in its branches with any arbitrary expression as its test.

Figure 3 presents the type rules for figure 1’s base occurrence typing language.6 When integers,
strings, and other non-false values are used as a conditional test, the proposition environment is
unchanged in łthenž branch, denoted with proposition ⊤, and may be used to prove any conclusion
in the łelsež branch, denoted with ⊥. Dually, the rule for false values flips these propositions.
Thus far we have only informally described propositions and how conditionals use them to

refine types in their branches. Formally, a proposition environment Γ, which generalizes the type
environment found in conventional type systems, propagates these propositions. The propositions
are used to define the proof system in figure 4, and the T-Var rule in figure 3 uses this proof
system to determine the type of a variable. The T-Var rule also states that if a variable is used as
a conditional test, the only thing we can conclude in the łthenž branch is that the variable is not
false. Dually, the variable must be false in the łelsež branch. Finally, a variable reference sets the
current refinement target object to be that variable.
The proof system used to determine a variable’s type mostly consists of the standard rules of

propositional logic; figure 4 shows a few of the rules. The additional L-Restrict and L-Remove rules
combine various propositions to refine a more general type into a more precise one. The restrict and
remove metafunctions, defined in figure 6, roughly correspond to set intersection and set difference
operations, respectively. Revisiting the example from the beginning of the section, if the proposition

5The łtarget objectž component is particularly important when dealing with data structures, as originally presented

by Tobin-Hochstadt and Felleisen [2010]. We omit data structures to simplify presentation of our type system, since they

are orthogonal to our goal of symbolic types, but they should work in the same manner described in the original calculus.
6We may omit showing the object component in function types, e.g., in figure 2, and type rules when they have the · object.
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T-Int

Γ ⊢ i : Int; ⊤ | ⊥
T-True

Γ ⊢ true : True; ⊤ | ⊥
T-False

Γ ⊢ false : False; ⊥ | ⊤

T-String

Γ ⊢ s : String; ⊤ | ⊥
T-Prim

Γ ⊢ op : δτ (op); ⊤ | ⊥

T-Var

Γ ⊢ψ x :τ

Γ ⊢ x : τ ; ¬x :False | x :False; x

T-If

Γ ⊢ e1 : τ1; ψ
+

1 | ψ
−
1

Γ,ψ+1 ⊢ e2 : τ ; ψ+2 | ψ
−
2 ; o

Γ,ψ−1 ⊢ e3 : τ ; ψ+3 | ψ
−
3 ; o

Γ ⊢ if e1 e2 e3 : τ ; ψ+2 ∨ψ
+

3 | ψ
−
2 ∨ψ

−
3 ; o

T-Lam

Γ,x :τ ⊢ e : τ ′; ψ+ | ψ−; o

Γ ⊢ λx :τ . e : x :τ
ψ + |ψ −;o
−−−−−−→τ ′; ⊤ | ⊥

T-App

Γ ⊢ e1 : x :τ1
ψ + |ψ −;o
−−−−−−→τ2; ψ

+

1 | ψ
−
1 Γ ⊢ e2 : τ1; ψ

+

2 | ψ
−
2 ; o2

Γ ⊢ e1 e2 : τ2[x := o2]; ψ
+[x := o2] | ψ

−[x := o2]; o[x := o2]

T-Subsume

Γ ⊢ e : τ ; ψ+ | ψ−; o Γ,ψ+ ⊢ψ ψ
+ ′ Γ,ψ− ⊢ψ ψ

−′ τ <: τ ′ o <: o′

Γ ⊢ e : τ ′; ψ+ ′ | ψ−′; o′

Fig. 3. Type rules for base occurrence typing system.

L-Atom

ψ ∈ Γ

Γ ⊢ψ ψ

L-True

Γ ⊢ψ ⊤

L-False

Γ ⊢ψ ⊥

Γ ⊢ψ ψ

L-Sub

Γ ⊢ψ x :τ1 τ1 <: τ2

Γ ⊢ψ x :τ2

L-NotSub

Γ ⊢ψ ¬x :τ2 τ1 <: τ2

Γ ⊢ψ ¬x :τ1

L-OrI

Γ ⊢ψ ψ1 or Γ ⊢ψ ψ2

Γ ⊢ψ ψ1 ∨ψ2

L-OrE

Γ,ψ1 ⊢ψ ψ Γ,ψ2 ⊢ψ ψ

Γ,ψ1 ∨ψ2 ⊢ψ ψ

L-Restrict

Γ ⊢ψ x :τ1 Γ ⊢ψ x :τ2

Γ ⊢ψ x : (restrictτ1 τ2)

L-Remove

Γ ⊢ψ x :τ1 Γ ⊢ψ ¬x :τ2

Γ ⊢ψ x : (removeτ1 τ2)

Fig. 4. A few proof rules for computing a variable’s type in base occurrence typing system.

Sub-∪-L

τ1 <: τ τ2 <: τ

τ1 ∪ τ2 <: τ

Sub-∪-R

τ <: τ1 or τ <: τ2

τ <: τ1 ∪ τ2

Sub-arr

τ3 <: τ1 τ2 <: τ4 ψ+1 ⊢ ψ
+

2 ψ−1 ⊢ ψ
−
2

x :τ1
ψ +1 |ψ

−
1 ;o1

−−−−−−−→τ2 <: x :τ3
ψ +2 |ψ

−
2 ;o2

−−−−−−−→τ4

Fig. 5. A few subtyping rules for base occurrence typing system.

environment contains x :Int ∪ String and x :Int, like in the łthenž branchž, then the L-Restrict
rule allows the conclusion x :Int. If the proposition environment contains x :Int ∪ String and
¬x :Int, like in the łelsež branchž, then the L-Remove rule allows the conclusion x :String.
Returning to figure 3, the T-If rule shows how the positive and negative propositions from

the test expression are propagated to the branches of a conditional, as previously described. The
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restrict : Ty Ty → Ty

restrictτ1 τ2 = Bot, if τ1 ̸<: τ2,τ2 ̸<: τ1

restrict (τ1 ∪ τ2) τ = (restrictτ1 τ ) ∪ (restrictτ2 τ )

restrictτ1 τ2 = τ1, if τ1 <: τ2

restrictτ1 τ2 = τ2, otherwise

remove : Ty Ty → Ty

removeτ1 τ2 = Bot, if τ1 <: τ2

remove (τ1 ∪ τ2) τ = (removeτ1 τ ) ∪ (removeτ2 τ )

removeτ1 τ2 = τ1, otherwise

Fig. 6. Metafunctions for base occurrence typing system.

e ∈ Exp ::= . . . | x̂τ (terms)

τ ∈ Ty ::= . . . | τ̂ (types)

concrete? : Ty → Bool

concrete? τ̂ = false

concrete?τ1 ∪ τ2 = concrete?τ1 and concrete?τ2

concrete?τ = true, otherwise

Fig. 7. (left) λ̂ , lambda-calculus with symbolic values, extends core occurrence typing calculus from figure 1;

(right) Metafunction to determine whether a type represents a concrete value.

propositions for the conditional expression itself then, are disjunctions of the propositions from
each branch. The T-Lam rule shows how the latent propositions and target object from a lambda’s
body are transferred to its function type. Dually, T-App specifies that applying a function uses the
propositions and object from the function type as the propositions and object of the application
expression, except that the object from the argument replaces the function parameter.

Finally, our base occurrence typing system uses a subtyping relationÐa few rules are shown in
figure 5Ð which is used in figure 3’s T-Subsume rule. Notably, the Sub-∪-R shows how unions
may be introduced, to complement the union-elimination nature of the if form. The remaining
unshown rules are more or less standard.

3.2 Adding Symbolic Values

We introduce λ̂ by extending the occurrence typing calculus in figure 1 with symbolic values

and symbolic types. Specifically, the syntax for λ̂ in figure 7 (left) extends figure 1 with symbolic
literal values x̂τ . Programmers specify the kind of symbolic value they wish to introduce into the

program with a type annotation. At the type level, λ̂ distinguishes symbolic values from concrete

ones with a ·̂ constructor and thus a x̂τ value has type τ̂ . λ̂ allows only integer and boolean base
symbolic values, as enforced by the T-SymInt and T-SymBool rules in figure 8. Consequently,

strings are always concrete and string functions in λ̂ represent the łunlifted constructsž in a
language supporting lenient symbolic execution.
The if form may also create symbolic values. Consider the expression if x̂Bool 1 2. Since x̂Bool

represents both true and false, symbolic execution must explore both branches and thus the
expression evaluates to a symbolic value that is either 1 or 2. Figure 8’s T-If-Sym rule accounts for
this creation of symbolic values. Specifically, when the test expression is symbolic and possibly

False, then the if expression has a symbolic type using ·̂ . Observe that the łFalse <: τ1ž premise
expresses the łpossibly falsež, which includes expressions that are not completely boolean, like
if x̂Bool x̂Bool x̂Int. Such a conditional test should still create a symbolic value.

Dually, if a conditional test expression is a non-false symbolic value or a concrete value, symbolic
execution need only explore one branch and thus T-If-Conc does not apply the ·̂ constructor to
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T-SymInt

Γ ⊢ x̂Int : Înt; ⊤ | ⊥
T-SymBool

Γ ⊢ x̂Bool : EBool; ⊤ | ⊤

T-If-Sym

Γ ⊢ e1 : τ1; ψ
+

1 | ψ
−
1

symbolic?τ1 and False <: τ1
Γ,ψ+1 ⊢ e2 : τ ; ψ+2 | ψ

−
2 ; o

Γ,ψ−1 ⊢ e3 : τ ; ψ+3 | ψ
−
3 ; o

Γ ⊢ if e1 e2 e3 : τ̂ ; ψ+2 ∨ψ
+

3 | ψ
−
2 ∨ψ

−
3 ; o

T-If-Conc

Γ ⊢ e1 : τ1; ψ
+

1 | ψ
−
1

concrete?τ1 or (symbolic?τ1 and False ̸<: τ1)
Γ,ψ+1 ⊢ e2 : τ ; ψ+2 | ψ

−
2 ; o

Γ,ψ−1 ⊢ e3 : τ ; ψ+3 | ψ
−
3 ; o

Γ ⊢ if e1 e2 e3 : τ ; ψ+2 ∨ψ
+

3 | ψ
−
2 ∨ψ

−
3 ; o

Sub-ConcAny

concrete?τ

τ <: Any

Sub-SymAny

τ <: Âny

Sub-Sym

τ <: τ̂

Fig. 8. Some type and subtyping rules for λ̂ , a λ-calculus with symbolic values

τ ∈ Ty ::= . . . | τf n ∩ τf n op ∈ Op ::= . . . | conc? (types and prim ops)

T-Lam-ConcArg

Γ,x :τ ⊢ e : τ ′; ψ+ | ψ−; o

Γ ⊢ λx :τ . e : x :τ
ψ + |ψ −;o
−−−−−−→τ ′; ⊤ | ⊥

T-Lam-SymArg

Γ,x : τ̂ ⊢ e : τ ′; ψ+ | ψ−; o

Γ ⊢ λx :τ . e : x : τ̂
ψ + |ψ −;o
−−−−−−→τ ′; ⊤ | ⊥

T-Inter-I

Γ ⊢ e : τf n1 Γ ⊢ e : τf n2

Γ ⊢ e : τf n1 ∩ τf n2

Sub-∩-L

τf n1 <: τf n or τf n2 <: τf n

τf n1 ∩ τf n2 <: τf n

Sub-∩-R

τf n <: τf n1 τf n <: τf n2

τf n <: τf n1 ∩ τf n2

Fig. 9. λ̂ with concreteness polymorphism, part 1.

the type of the if expression. T-If-Sym and T-If-Conc, which replace T-If from figure 3, use a
concrete? metafunction on types, defined in figure 7 (right), which returns true if its argument type
represents concrete values. We also use the abbreviation symbolic?τ to mean łnot concrete?τ ž.
The ·̂ type actually denotes possibly symbolic values. That is, concrete and symbolic types are

not disjoint but rather form a hierarchy. Thus, a concrete value may have a ·̂ type, which may
occur when symbolic execution utilizes dynamic information unavailable during type checking.
For example, if both branches of a symbolic conditional evaluate to the same concrete value, the
result of evaluation should be that concrete value. The type system, however, must conservatively
label the expression as possibly symbolic. The Sub-Sym subtype rule in figure 8 specifies this
relation. Specifically a type τ is considered a subtype of a possibly symbolic version of that type τ̂ .

In addition, λ̂ requires two separate subtype rules to handle the Any type: the Any type represents

only concrete values while Âny includes symbolic values.

3.3 Concreteness Polymorphism of Arguments

Adding symbolic values and unlifted constructs that do not handle symbolic values enables λ̂ to
model lenient symbolic execution. Adding symbolic types allows the type system to ensure the safe
behavior of symbolic values by preventing them from reaching unlifted constructs, which should
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δτ : Op → Ty

δτ int? = x :Any
x :Int |¬x :Int
−−−−−−−−−−→Bool ∩ x : Âny

x :Înt |¬x :Înt
−−−−−−−−−−→EBool

δτ str? = x :Any
x :String |¬x :String
−−−−−−−−−−−−−−−→Bool

δτ not = x :Any
x :False |¬x :False
−−−−−−−−−−−−−→Bool ∩ x : Âny

x :FFalse |¬x :FFalse
−−−−−−−−−−−−−→EBool

δτ add1 = x :Int
⊤|⊥
−−−→Int ∩ x : Înt

⊤|⊥
−−−→ Înt

δτ strlen = x :String
⊤|⊥
−−−→Int

δτ conc? = x :Any
⊤|⊥
−−−→True ∩ x : Âny

x :Any |¬x :Any
−−−−−−−−−−→EBool

Fig. 10. Types for primitive ops in λ̂ .

be assigned concrete types. To fully benefit from lenient symbolic execution, however, unlifted
constructs should be allowed to interact with concrete values as much as possible. To achieve this,
the type system must preserve concreteness at the type level as much as possible.
Naively type checking symbolic values, however, quickly causes the entire program to become

symbolic. This limits the usefulness of lenient symbolic execution because it rejects too many safe

programs. As an example, what type should λ̂ assign to add1? It should accommodate symbolic

values and thus one might naively assign type Înt→ Înt. With this type, however, the result of
applying add1 to a concrete value would have a symbolic type and thus could not be used with

an unlifted arithmetic function even though it is perfectly safe. To improve the precision of λ̂ ’s
type system, i.e., to preserve concreteness as much as possible, we use intersection function types,
shown in figure 9. We call this kind of finitary polymorphism concreteness polymorphism.
Concreteness polymorphism enables more precise types for primitive operations as shown in

figure 10. In contrast with figure 2, figure 10 assigns types that allows boolean and integer primitive
functions to handle symbolic values. These lifted operations with intersection types may be applied
at any of their constituent function types, as specified by the Sub-∩-L rule in figure 9 (in conjunction
with T-Subsume and T-App). As a result the type checker safely allows the result of add1 to be
passed to an unlifted arithmetic operation if the original argument was concrete. Primitive string

functions remain unlifted in λ̂ and thus do not accept symbolic values. Thus applying either

str? or strlen to a symbolic value results in a type error. Finally, λ̂ adds a conc? primitive
which, in conjunction with if and occurrence typing, serves as the elimination rule for values
with possibly-symbolic types. In other words, it allows programmers to write their own functions
whose behavior may depend on the concreteness of its inputs.

Lambdas support concreteness polymorphism as well. Specifically, lambda bodies are type
checked twice: once with a concrete input and once with a symbolic input, as specified by T-Lam-

ConcArg and T-Lam-SymArg, respectively, in figure 9 (these rules replace T-Lam in figure 3).7

The T-Inter-I rule allows assigning a lambda an intersection type consisting of these two types.
(Note that a separate T-Inter-I rule is necessary since Sub-∩-R is insufficient for introducing the
intersection type in this case.)

7Of course, to avoid exponential explosion of function type sizes, a practical language would allow programmers to more

precisely choose which combinations of parameter concreteness should be included in the type.
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e ∈ Exp ::= . . . | () | set!x e | e ; e τ ∈ Ty ::= . . . | Unit (terms and types)

Fig. 11. λ̂ symbolic lambda-calculus, with mutation

3.4 Adding Mutation

To allow λ̂ to serve as a model for imperative symbolically executed languages as well, we next
add mutation, specifically set! and sequencing expressions, and a Unit type, as shown in figure 11.
A naive combination of symbolic paths and mutation, however, is unsound. For example, a standard
type rule for set! might look like:

Mut-Wrong

x :τ ∈ Γ Γ ⊢ e : τ

Γ ⊢ set!x e : Unit

This may not be safe, as seen in the following example:

(define-symbolic* b boolean?)

(define x 0) ; x is a concrete value with concrete type Int
(if b (set! x 10) (set! x 11)

x ; => ⟨[b: 10][¬b: 11]⟩ ; x is a symbolic value, but still has concrete type Int

The example mutates x under a symbolic path, changing it from a concrete to a symbolic value.
The type remains concrete, however, and thus the operation is unsound. Observe that x becomes
bound to a symbolic value, even though it is only ever assigned concrete values. One way to restore
safety is to force all mutable variables to have symbolic types but this conflicts with our goal of
preserving concreteness as much as possible for lenient symbolic execution.

Instead, our type system tracks the concreteness of the path and set! rule looks something like:

Mut-OK

x :τ ∈ Γ Γ ⊢ e : τ symbolic?τ OR path is concrete

Γ ⊢ set!x e : Unit

The rule allows mutation if the value has symbolic type; if the value is concrete, mutation is allowed
only if the path is also concrete. This extra path sensitivity during type checking, however, requires
additional context sensitivity in function calls. For example, the following set! in the λ body may
be safe or unsafe depending on its call site:

(define x 0) ; x is a concrete value with concrete type Int
(define (f [y : Int]) (set! x y))

(f 1)

x ; SAFE: x still concrete with concrete type
(define-symbolic* b : Bool)

(if b (f 2) (f 3)))

x ; => ⟨[b: 2][¬b: 3]⟩ (UNSAFE: x is a symbolic val but has concrete type)

The type system should ideally allow defining f since it may be used safely, but disallow calls to
f in unsafe contexts. In other words, the type system should reject the expressions (f 2) and
(f 3) above. To achieve this, we extend our notion of concreteness polymorphism to include the
concreteness of the path.
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τf n ::= π ;x :τ
ψ |ψ
−−−→τ (function types)

π ∈ Path ::= • | ◦ (path condition)

Sub-Path

• <: ◦

Fig. 12. (left) λ̂ concreteness polymorphic function types; (right) subtype relation for paths

T-Lam-ConcArgPath•

Γ,x :τ ⊢• e : τ ′; ψ+ | ψ−

Γ ⊢• λx :τ . e : •;x :τ
ψ +|ψ −

→τ ′

T-Lam-ConcArg-SymPath•

Γ,x :τ ⊢◦ e : τ ′; ψ+ | ψ−

Γ ⊢• λx :τ . e : ◦;x :τ
ψ +|ψ −

→τ ′

T-Lam-SymArg-ConcPath•

Γ,x : τ̂ ⊢• e : τ ′; ψ+ | ψ−

Γ ⊢• λx :τ . e : •;x : τ̂
ψ +|ψ −

→τ ′

T-Lam-SymArgPath•

Γ,x : τ̂ ⊢◦ e : τ ′; ψ+ | ψ−

Γ ⊢• λx :τ . e : ◦;x : τ̂
ψ +|ψ −

→τ ′

T-Lam-ConcArgPath◦

Γ,x :τ ⊢• e : τ ′; ψ+ | ψ−

Γ ⊢◦ λx :τ . e : •;x :τ
ψ +|ψ −

→τ ′

T-Lam-ConcArg-SymPath◦

Γ,x :τ ⊢◦ e : τ ′; ψ+ | ψ−

Γ ⊢◦ λx :τ . e : ◦;x :τ
ψ +|ψ −

→τ ′

T-Lam-SymArg-ConcPath◦

Γ,x : τ̂ ⊢• e : τ ′; ψ+ | ψ−

Γ ⊢◦ λx :τ . e : •;x : τ̂
ψ +|ψ −

→τ ′

T-Lam-SymArgPath◦

Γ,x : τ̂ ⊢◦ e : τ ′; ψ+ | ψ−

Γ ⊢◦ λx :τ . e : ◦;x : τ̂
ψ +|ψ −

→τ ′

T-Appπ

Γ ⊢π e1 : π ;x :τ1
ψ + |ψ −

−−−−−→τ2 Γ ⊢π e2 : τ1

Γ ⊢π e1 e2 : τ2; ψ
+ | ψ−

T-If-Concπ

Γ ⊢π e1 : τ1; ψ
+

1 | ψ
−
1

concrete?τ1 or (symbolic?τ1 and False ̸<: τ1)
Γ,ψ+1 ⊢

π e2 : τ ; ψ+2 | ψ
−
2

Γ,ψ−1 ⊢
π e3 : τ ; ψ+3 | ψ

−
3

Γ ⊢π if e1 e2 e3 : τ ; ψ+2 ∨ψ
+

3 | ψ
−
2 ∨ψ

−
3

T-If-Sym•

Γ ⊢• e1 : τ̂1; ψ
+

1 | ψ
−
1

symbolic?τ1 and False <: τ1
Γ,ψ+1 ⊢

◦ e2 : τ ; ψ+2 | ψ
−
2

Γ,ψ−1 ⊢
◦ e3 : τ ; ψ+3 | ψ

−
3

Γ ⊢• if e1 e2 e3 : τ̂ ; ψ+2 ∨ψ
+

3 | ψ
−
2 ∨ψ

−
3

T-If-Sym◦

Γ ⊢◦ e1 : τ̂1; ψ
+

1 | ψ
−
1

symbolic?τ1 and False <: τ1
Γ,ψ+1 ⊢

◦ e2 : τ ; ψ+2 | ψ
−
2

Γ,ψ−1 ⊢
◦ e3 : τ ; ψ+3 | ψ

−
3

Γ ⊢◦ if e1 e2 e3 : τ̂ ; ψ+2 ∨ψ
+

3 | ψ
−
2 ∨ψ

−
3

Fig. 13. Type rules for λ̂ that consider path concreteness (⊢•: concrete path, ⊢◦: symbolic path, ⊢π : either).

3.5 Concreteness Polymorphism of Paths

Figure 12 shows an extended function type that includes a path concreteness marker where •means
concrete path and ◦ means symbolic path. More precisely, a function with type marked with • may
only be applied in the context of a concrete path whereas a function with type marked with ◦ may

be applied in any context. Consequently, we split λ̂ ’s type rules into two sets of judgements, with
one set using a ⊢• relation for type checking under a concrete path, and one set using a ⊢◦ relation
for type checking under a symbolic path. Most of the ⊢• concrete path rules and ⊢◦ symbolic path
rules are identical to their counterparts from figures 3, 8, and 9 except for the lambda, function
application, and conditional rules. Figure 13 shows new versions these rules.8

8To simplify the presentation, figure 13 omits the o component of its judgements rules since its behavior remains unchanged.
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T-Set!•

x :τ ∈ Γ Γ ⊢• e : τ

Γ ⊢• set!x e : Unit; ⊤ | ⊥

T-Set!◦

x : τ̂ ∈ Γ Γ ⊢◦ e : τ̂

Γ ⊢◦ set!x e : Unit; ⊤ | ⊥

T-Seqπ

Γ ⊢π e1 : τ1 Γ ⊢π e2 : τ2; ψ
+

2 | ψ
−
2

Γ ⊢π e1 ; e2 : τ2; ψ
+

2 | ψ
−
2

Fig. 14. λ̂ type rules for mutation, considering path concreteness.

Whereas the T-Lam-ConcArg and T-Lam-SymArg rules in figure 9 assign lambdas two possible
arrow types, one for a symbolic input and one for a concrete one, the T-Lam-ConcArgPath•,
T-Lam-ConcArg-SymPath•, T-Lam-SymArg-ConcPath•, and T-Lam-SymArgPath• rules in fig-
ure 13 assign lambdas four possible arrow types, where the concreteness of the path is now
considered in addition to the concreteness of the input. Specifically, a lambda body is type checked
in four different contexts, one corresponding to each kind of input and path combination. Sim-
ilarly, the T-Lam-ConcArgPath◦, T-Lam-ConcArg-SymPath◦, T-Lam-SymArg-ConcPath◦, and
T-Lam-SymArgPath◦ rules assign types to lambdas defined under a symbolic path. Subsequently,
the T-App rules enforce that functions are only applied in appropriate contexts. In figure 13, T-Appπ

represents two rules where π may be replaced with either • or ◦, with the former requiring •-marked
functions in • paths, and the latter requiring ◦-marked functions in ◦ paths.

The last rules in figure 13 are the conditional rules. The rules mostly propagate the path concrete-
ness in which the conditional expression appears to the conditional branches, except for T-If-Sym•,
which switches from ⊢• to ⊢◦ when type checking the branches to properly handle the symbolic path.

With the rules in figure 13, we may define sound mutation rules, shown in figure 14. T-Set!•

specifies that any mutation is acceptable in a concrete path while T-Set!◦ allows mutation of only
variables with symbolic type. Observe that these rules do not use type judgements in the premise
to determine the acceptable type for the new value e , since subtyping would allow lifting the type
to be symbolic. Instead, the proposition environment must directly include a proposition that x
may have the specified type. Finally, T-Seqπ specifies that a sequence expression has the type and
propositions of its last expression, in both concrete and symbolic paths.

4 METATHEORY

This section describes some desirable properties of λ̂ . The key theorem is a soundness result
demonstrating that symbolic values cannot cause evaluation to get stuck by flowing to positions
that cannot handle them.

4.1 Dynamic Semantics

v ∈ Val ::= i | s | true | false | () | op | λx :τ . e | v̂ (values)

v̂ ∈ SVal ::= x̂Bool | x̂Int | ôp v̂ | ⟨[v̂: v ] . . .⟩ (symbolic values)

Fig. 15. λ̂ values

Figure 15 extends the previous grammars with the notion of values, both symbolic and concrete,
which are the result of symbolic execution. Specifically, a value v is either a concrete integer,
string, boolean, void value, lambda, primitive function, or a symbolic value v̂ . The symbolic values
are the base symbolic booleans and integers; symbolic expressions, which result from evaluating
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M ∈ Mach ::=
〈

e, ρ, σ , κ
〉

V ∈ VMach ::=
〈

v, ρ, σ , ⟨⟩
〉

(machine states, final states)

ρ ∈ VEnv ::= x 7→ ℓ, . . . ℓ ∈ Loc σ ∈ Sto ::= ℓ 7→ c, . . . c ∈ Clo ::=
〈

v ,ρ
〉

(envs, stores)

κ ∈ Frames ::= ⟨⟩ |
〈

îf1: v̂, ρv̂ , e, ρ, σ , κ
〉◦
|
〈

îf2: v̂, ρv̂ , v, ρ, σ , κ
〉◦
| (stack frames)

〈

if: e, e, ρ, κ
〉π
|
〈

arg: e, ρ, κ
〉π
|
〈

fn: v, ρ, κ
〉π
| ⟨set!: ℓ, κ⟩π |

〈

seq: e, ρ, κ
〉π

Fig. 16. Grammar for CESK machine semantics for λ̂ .

primitive operations applied to symbolic values; or guarded symbolic union values, which result
from evaluating symbolic conditionals.
Figure 17 shows how programs evaluate to values. Specifically, using the syntax in figure 16, it

defines a CESK-style [Felleisen et al. 2009], register-machine semantics9 for λ̂ . A machine state
is a 4-tuple consisting of a (C)ontrol (or (C)urrent) expression e , a value (E)nvironment ρ whose
domain includes free variables in e , a (S)tore σ , and a stac(K) κ. Briefly, value environments map
variables to store locations, stores map locations to closures c , closures are a value-environment
pair, and stack frames represent the context of evaluation.
The machine syntax is mostly standard, except for the stack frames which are decorated with

a path concreteness marker, analogous to the type rules in figure 13. The marker determines the
concreteness of the path for the subexpressions in the stack frame. These markers do not affect
evaluation of programs, however, i.e., no left-hand sides in figure 17 use this path concreteness
information. Instead, they are included only to help with the soundness proof. For this reason,
figure 17 omits the path markers; instead, we assume a new stack frame implicitly inherits the same

marker as its preceding frame, except for îf frames, which always have a symbolic path marker.
The rules in figure 17 are also mostly straightforward: evaluation of subexpressions proceeds in

call-by-value order, using the stack to save its context. For example app-fn begins evaluation of an
application expression by setting the control expression to be the function and saves the argument
expression and a copy of the environment in a new arg stack frame.
Figure 17’s rules deviate from traditional CESK rules where evaluation mixes both concrete

and symbolic values. For example, evaluation of conditionals may produce symbolic values, as

illustrated by the Îf, Îf-Then, and Îf-Else rules. Specifically, when the test expression is a symbolic
boolean v̂ , both branches are evaluated and the resulting values, guarded by v̂ , make up the branches
of the resulting symbolic union value. Evaluation of each branch should occur independently of the

other branch, i.e., they should evaluate with different σ stores. Thus the îf1 and îf2 stack frames
save a store σ to accompany the łelsež and łthenž branches, respectively.
After both branches are evaluated, the îf-else rule uses the µv̂ merging function, defined in

figure 18, to create a guarded symbolic union value. The function creates the symbolic value from
the test value and branch results, taking special care to merge their environments to avoid name
conflicts. In addition, îf-else merges the stores from each branch using the µσ function. The
function creates guarded symbolic union values for any locations that point to different values.
One other key rule is app-op; it specifies how primitive operations are evaluated using a δ

metafunction, whose definition is presented in figure 19. The δ function evaluates application of
primitive operations to concrete values in the expected manner. In addition, it dictates which and

9Our semantics is more or less equivalent to that of Torlak and Bodik [2014] with three key differences: (1) our merging

function µv̂ is simpler since it is not our main focus; (2) we exclude the solver API and do not include an explicit path

register; for our purposes, it is sufficient for individual symbolic values to track their own guard conditions; and (3) we

include an explicit value environment, which helps define machine state type judgements in order to show soundness.
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〈

x , ρ, σ , κ
〉

7→
〈

v, ρv , σ , κ
〉

(var)
where σ [ρ[x]] =

〈

v,ρv
〉

〈

e1 e2, ρ, σ , κ
〉

7→
〈

e1, ρ, σ ,
〈

arg: e2, ρ, κ
〉〉

(app-fn)

〈

v, ρv , σ ,
〈

arg: e, ρ, κ
〉〉

7→
〈

e, ρ, σ ,
〈

fn: v, ρv , κ
〉〉

(app-arg)

〈

v, ρ, σ ,
〈

fn: op, ρop , κ
〉〉

7→
〈

v ′, ρ, σ , κ
〉

(app-op)

where δ op v = v ′

〈

v, ρv , σ ,
〈

fn: λx :τ . e, ρ, κ
〉〉

7→
〈

e, ρ[x 7→ ℓ], σ [ℓ 7→
〈

v,ρv
〉

], κ
〉

(app-β)
where ℓ < dom(σ )

〈

if e1 e2 e3, ρ, σ , κ
〉

7→
〈

e1, ρ, σ ,
〈

if: e2, e3, ρ, κ
〉〉

(if)

〈

false, ρv , σ ,
〈

if: ethen , eelse , ρ, κ
〉〉

7→
〈

eelse , ρ, σ , κ
〉

(if-false)

〈

v, ρv , σ ,
〈

if: ethen , eelse , ρ, κ
〉〉

7→
〈

ethen , ρ, σ , κ
〉

(if-true1)
where v , false, v , v̂

〈

v̂, ρv , σ ,
〈

if: ethen , eelse , ρ, κ
〉〉

7→
〈

ethen , ρ, σ , κ
〉

(if-true2)
where bool?v̂ = false

〈

v̂, ρ, σ ,
〈

if: e1, e2, ρ1, κ
〉〉

7→
〈

e1, ρ1, σ ,
〈

îf1: v̂, ρ, e2, ρ1, σ , κ
〉〉

(îf)

〈

v, ρ, σ ,
〈

îf1: v̂, ρv̂ , e2, ρ2, σ2, κ
〉〉

7→
〈

e2, ρ2, σ2,
〈

îf2: v̂, ρv̂ , v, ρ, σ , κ
〉〉

(îf-then)

〈

v2, ρ2, σ2,
〈

îf2: v̂, ρ, v1, ρ1, σ1, κ
〉〉

7→
〈

v̂3, ρ3, µσ (
〈

v̂ ,ρ
〉

,σ1,σ2), κ
〉

(îf-else)
〈

v̂3,ρ3
〉

= µv̂ (
〈

v̂ ,ρ
〉

,
〈

v1,ρ1
〉

,
〈

v2,ρ2
〉

)

〈

set!x e, ρ, σ , κ
〉

7→
〈

e, ρ, σ ,
〈

set!: ρ[x], κ
〉〉

(set!)

〈

v, ρ, σ , ⟨set!: ℓ, κ⟩
〉

7→
〈

(), ρ, σ [ℓ 7→
〈

v,ρ
〉

], κ
〉

(set-it!)

〈

e1 ; e2, ρ, σ , κ
〉

7→
〈

e1, ρ, σ ,
〈

seq: e2, ρ, κ
〉〉

(seq1)

〈

v, ρv , σ ,
〈

seq: e, ρ, κ
〉〉

7→
〈

e, ρ, σ , κ
〉

(seq2)

Fig. 17. λ̂ CESK machine semantics

how primitive operations should handle symbolic values. Some operations, e.g., strlen and str?,
do not support symbolic values and evaluation gets stuck if these operations are applied to symbolic
values. In other cases, such as applying bool? to x̂Bool,a symbolic input may turn into a concrete
value result. More likely, however, applying a primitive operation to a symbolic value results in
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θ : Clo,VEnv,VEnv → Clo

θ (
〈

v ,ρ
〉

,ρ1,ρ2) =
〈

v[x := y] . . . ,
{

y 7→ ρ[x] | x ∈ dom(ρ),y < dom(ρ1,ρ2)
}〉

µv̂ : Clo,Clo,Clo → Clo

µv̂ (
〈

v̂ ,ρ
〉

,
〈

v1,ρ1
〉

,
〈

v2,ρ2
〉

) =
〈

⟨[v̂3: v4][n̂ot v̂3: v5]⟩,ρ3 ∪ ρ4 ∪ ρ5
〉

where
〈

v̂3,ρ3
〉

= θ (
〈

v̂ ,ρ
〉

,ρ1,ρ2)
〈

v4,ρ4
〉

= θ (
〈

v1,ρ1
〉

,ρ,ρ2)
〈

v5,ρ5
〉

= θ (
〈

v2,ρ2
〉

,ρ,ρ1)

µσ : Clo,Sto,Sto → Sto

µσ (
〈

v̂ ,ρ
〉

,σ1,σ2) = {ℓ 7→ σ1[ℓ] | ℓ ∈ dom(σ1), ℓ < dom(σ2)} ∪

{ℓ 7→ σ2[ℓ] | ℓ ∈ dom(σ2), ℓ < dom(σ1)} ∪
{

ℓ 7→ σ1[ℓ] | ℓ ∈ dom(ρ1), ℓ ∈ dom(ρ2),σ1[ℓ] = σ2[ℓ]
}

∪
{

ℓ 7→ µv̂ (
〈

v̂ ,ρ
〉

,σ1[ℓ],σ2[ℓ]) | ℓ ∈ dom(ρ1), ℓ ∈ dom(ρ2),σ1[ℓ] , σ2[ℓ]
}

Fig. 18. Merge function for environments and stores.

δ conc? v̂ = false

δ bool? true = true

δ bool? false = true

δ bool?v = false

where v , true, v , false,v , v̂

δ bool? x̂Bool = true

δ bool? x̂τ = false, where τ , Bool

δ bool? (n̂ot v̂ ) = true

δ bool? (ôp v̂ ) = false, where op , not

δ bool? ⟨[v̂: v ] . . .⟩ = ⟨[v̂: δ bool?v ] . . .⟩

δ not false = true

δ notv = false, v , v̂,v , false

δ not x̂Bool = n̂ot x̂Bool

δ not x̂τ = true, where τ , Bool

δ not ⟨[v̂: v ] . . .⟩ = ⟨[v̂: δ notv ] . . .⟩

δ conc?v = true, where v , v̂

δ str? s = true

δ str?v = false, where v , s,v , v̂

δ strlen s = # chars in s

δ int? i = true

δ int?v = false,v , i,v , v̂

δ int? x̂Int = true

δ int? x̂τ = false, where τ , Int

δ int? (Eadd1 v̂ ) = true

δ int? (ôp v̂ ) = false, where op , add1

δ int? ⟨[v̂: v ] . . .⟩ = ⟨[v̂: δ int?v ] . . .⟩

δ add1 i = i + 1

δ add1 x̂Int =Eadd1 x̂Int

δ add1 ⟨[v̂: v ] . . .⟩ = ⟨[v̂: δ add1v ′] . . .⟩

where v ′ ∈ v . . . ,int?v ′

Fig. 19. Evaluation of λ̂ primitive operations.
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T-Op-SymVal
Γ ⊢π op v̂ : τ ; ψ+ | ψ−; o

Γ ⊢π ôp v̂ : τ ; ψ+ | ψ−; o

T-Union-SymVal

Γ ⊢π v̂1 : τ1; ψ
+

1 | ψ
−
1 ; o1 Γ,ψ+1 ⊢

◦ v1 : τ ; ψ+3 | ψ
−
3 ; o

Γ ⊢π v̂2 : τ2; ψ
+

2 | ψ
−
2 ; o2 Γ,ψ+2 ⊢

◦ v2 : τ ; ψ+4 | ψ
−
4 ; o

Γ ⊢π ⟨[v̂1: v1][v̂2: v2]⟩ : τ ; ψ+3 ∨ψ
−
3 | ψ

+

4 ∨ψ
−
4 ; o

TM-CESK

E (ρ,σ ) ⊢π e : τ2; ψ
+

2 | ψ
−
2 ; o2 τ2; ψ

+

2 | ψ
−
2 ; o2;σ ⊢κ κ

π : τ ; ψ+ | ψ−; o

⊢M
〈

e, ρ, σ , κπ
〉

: τ ; ψ+ | ψ−; o

Fig. 20. Type judgements for machine states and symbolic values.

E : VEnv,Sto → Env

E (ρ,σ ) =
{

x : τ | x ∈ dom(ρ)
}

where
〈

v,ρ2
〉

= σ [ρ[x]] and E (ρ2,σ ) ⊢ v : τ

Fig. 21. Metafunction converting value and environment and store to proposition environment.

another symbolic value. For example, applying add1 to x̂Int results in the symbolic value Eadd1 x̂Int.
Finally, applying a primitive operation to a guarded union value traverses the tree, recursively
applying the primitive operation. The most interesting case is applying add1 to such a guarded
union value. In this case, the tree is additionally pruned of non-integer branches.

4.2 Soundness

To evaluate a program e using the semantics in figure 17, an inject function first compiles the
program to initial machine configuration ⟨e, ·, ·, ⟨⟩⟩ with an empty environment, store, and stack.
Using this function, theorem 4.1 states the main theoretical result, which is that evaluating a
well-typed program cannot get stuck.

Theorem 4.1 (Soundness). If ⊢ e : τ ; ψ+ | ψ−; o,M = inject (e ), and evaluatingM terminates,

thenM 7→∗ V , and ⊢M V : τ ; ψ+ ′ | ψ−′; o′for someψ+ ′,ψ−′, and o′.

We prove theorem 4.1 using a standard progress and preservation approach [Wright and Felleisen
1994]. To do so, we first need to define typing judgements for symbolic values and machine states,
both shown in figure 20. The T-Op-SymVal uses the rule for application from figure 13 and the
T-Union-SymVal mostly mirrors the type rule for if.

The ⊢M relation for machine states is, essentially, a łbottom-upž version of the traditional łtop-
downž type judgements for expressions from the previous sections, e.g., figure 13. Specifically, ⊢M
first uses those expression type judgements to type check the control expression. It then feeds the
output of that judgement to a ⊢κ judgement, defined in figures 22 and 23, for type checking the
stack. Intuitively, this input type information fills the łholež that is implicit in each stack frame.

The ⊢M and ⊢κ relations both rely on a E metafunction, defined in figure 21, that łuncompilesž a
runtime value environment and store into a proposition environment for type checking. This E
metafunction computes types for elements of the value environment using the type judgements
from figure 13. This function does not have access to path concreteness information, however, but
as lemma 4.2 states, it does not matter which variant of the type judgement is used.
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TK-Empty

τ; ψ+ | ψ−; o ; σ ⊢κ ⟨⟩ : τ ; ψ
+ | ψ−; o

TK-If-Concπ

concrete?τin or (symbolic?τin and False ̸<: τin )
E (ρ,σ ),ψ+in ⊢

π e1 : τ ; ψ+1 | ψ
−
1 ; o

E (ρ,σ ),ψ−in ⊢
π e2 : τ ; ψ+2 | ψ

−
2 ; o

τ ; ψ+1 ∨ψ
+

2 | ψ
−
1 ∨ψ

−
2 o; σ ⊢κ κ : τ ′; ψ+ | ψ−; o′

τin ; ψ
+

in | ψ
−
in ; oin ; σ ⊢κ

〈

if: e1, e2, ρ, κ
〉π : τ ′; ψ+ | ψ−; o′

TK-If-Symπ

symbolic?τin and False <: τin
E (ρ,σ ),ψ+in ⊢

◦ e1 : τ ; ψ+1 | ψ
−
1 ;o

E (ρ,σ ),ψ−in ⊢
◦ e2 : τ ; ψ+2 | ψ

−
2 ;o

τ̂ ; ψ+1 ∨ψ
+

2 | ψ
−
1 ∨ψ

−
2 o; σ ⊢κ κ : τ ′; ψ+ | ψ−; o′

τ̂in ;ψ
+

in | ψ
−
in ;oin ;σ ⊢κ

〈

if: e1, e2, ρ, κ
〉π : τ ′; ψ+ | ψ−; o′

TK-SymIf1◦

E (ρ2,σ2) ⊢
◦ e2 : τ1; ψ

+

2 | ψ
−
2 ;o1

τ̂1;ψ
+

1 ∨ψ
+

2 | ψ
−
1 ∨ψ

−
2 ;o1; µσ (

〈

v̂ ,ρ
〉

,σ1,σ2) ⊢κ κ : τ ′; ψ+ | ψ−; o′

τ1; ψ
+

1 | ψ
−
1 ; o1; σ1 ⊢κ

〈

îf1: v̂, ρ, e2, ρ2, σ2, κ
〉◦

: τ ′; ψ+ | ψ−; o′

TK-SymIf2◦

E (ρ1,σ1) ⊢
◦ e1 : τ2; ψ

+

1 | ψ
−
1 ;o2

τ̂2;ψ
+

2 ∨ψ
+

1 | ψ
−
2 ∨ψ

−
1 ;o2; µσ (

〈

v̂ ,ρ
〉

,σ1,σ2) ⊢κ κ : τ ′; ψ+ | ψ−; o′

τ2; ψ
+

2 | ψ
−
2 ; o2; σ2 ⊢κ

〈

îf2: v̂, ρ, e1, ρ1, σ1, κ
〉◦

: τ ′; ψ+ | ψ−; o′

TK-App1π

E (ρ,σ ) ⊢π e : τ1; ψ
+

e | ψ
−
e ; oe

τ2[x := oe ];ψ
+[x := oe ] | ψ

−[x := oe ];o[x := oe ];σ ⊢κ κ : τ3; ψ
+

3 | ψ
−
3 ; o3

π ;x :τ1
ψ + |ψ −;o
−−−−−−→τ2;ψ

+

in | ψ
−
in ;oin ;σ ⊢κ

〈

arg: e, ρ, κ
〉π : τ3; ψ

+

3 | ψ
−
3 ; o3

TK-App2π

E (ρ,σ ) ⊢π v : π ;x :τ1
ψ + |ψ −;o
−−−−−−→τ2; ψ

+

v | ψ
−
v ; ov

τ2[x := oin];ψ
+[x := oin] | ψ

−[x := oin];o[x := oin];σ ⊢κ κ : τ3; ψ
+

3 | ψ
−
3 ; o3

τ1;ψ
+

in | ψ
−
in ;oin ;σ ⊢κ

〈

fn: v, ρ, κ
〉π : τ3; ψ

+

3 | ψ
−
3 ; o3

TK-Seqπ

E (ρ,σ ) ⊢π e : τe ; ψ
+

e | ψ
−
e ; oe τe ; ψ

+

e | ψ
−
e ; oe ;σ ⊢κ κ : τ ; ψ+ | ψ−; o

τin ; ψ
+

in | ψ
−
in ; oin ; σ ⊢κ

〈

seq: e, ρ, κ
〉π : τ ; ψ+ | ψ−; o

Fig. 22. Type judgements for stack frames, part 1.
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TK-Set!•

concrete?τin
E (ρ,σ ) ⊢• v : τin ; ψ

+

v | ψ
−
v ; ov where σ [ℓ] =

〈

v ,ρ
〉

Unit;⊤;⊥; ·;σ ⊢κ κ : τ ; ψ+ | ψ−; o

τin ; ψ
+

in | ψ
−
in ; oin ; σ ⊢κ ⟨set!: ℓ, κ⟩

• : τ ; ψ+ | ψ−; o

TK-Set!-Sym•

E (ρ,σ ) ⊢• v̂ : τ̂in ; ψ
+

v | ψ
−
v ; ov where σ [ℓ] =

〈

v̂ ,ρ
〉

Unit;⊤;⊥; ·;σ ⊢κ κ : τ ; ψ+ | ψ−; o

τ̂in ;ψ
+

in | ψ
−
in ;oin ;σ ⊢κ ⟨set!: ℓ, κ⟩

• : τ ; ψ+ | ψ−; o

TK-Set!◦

E (ρ,σ ) ⊢◦ v : τin ; ψ
+

v | ψ
−
v ;ov where σ [ℓ] =

〈

v̂ ,ρ
〉

Unit;⊤;⊥; ·;σ ⊢κ κ : τ ; ψ+ | ψ−; o

τin ;ψ
+

in | ψ
−
in ;oin ;σ ⊢κ ⟨set!: ℓ, κ⟩

◦ : τ ; ψ+ | ψ−; o

Fig. 23. Type judgements for stack frames, part 2: set! frames.

Lemma 4.2 (Types for Values). For all v , Γ ⊢• v : τ ; ψ+ | ψ−; o iff Γ ⊢◦ v : τ ; ψ+ | ψ−; o.

The ⊢κ rules in figure 22 are mostly straightforward, mirroring their counterparts in figure 13.
Specifically, the rules for if use a symbolic ⊢◦ if the conditional test is symbolic, and the application
rules require a function type with path concreteness that matches the marker on the stack frame.
The interesting ⊢κ rules are for set! frames, in figure 23. When in a concrete path, TK-Set!• and
TK-Set!-Sym• require the concreteness of τin to match the concreteness of the value already at
location ℓ. When the path is symbolic, TK-Set!◦ specifies that type checking only succeeds if the
value at location ℓ is symbolic.

With these definitions, we can state our key lemmas 4.3 and 4.4

Lemma 4.3 (Progress). If ⊢M M : τ ; ψ+ | ψ−; o then eitherM ∈ VMach or ∃M ′ s.t.M 7→ M ′.

Lemma 4.4 (Preservation). If ⊢M M : τ ; ψ+ | ψ−; o andM 7→ M ′, then ⊢M M ′ : τ ; ψ+ ′ | ψ−′; o′.

Intuitively, lemma 4.3 states that well-typed terms either are values or may make an evaluation step.
The proof consists of a case analysis of the various possible combinations of control expressions
and topmost stack frames. In particular, observe that in figure 17, when the control string is a value
and the stack is non-empty, evaluation only gets stuck when applying a non-function or applying
a primitive to the wrong type of value or value concreteness, all of which are type errors.

Lemma 4.4 states that machine transitions preserve well-typedness. The proof again proceeds by
a case analysis of each machine transition rule. Interestingly, determining the type of a machine
state was more involved than showing type preservation across each step of evaluation. Computing
the former required bringing together four aforementioned components: (1) the value environment
ρ, from which the type environment is computed, (2) the ⊢κ judgements in figures 22 and 23 that
invert the top-down type checking implied by conventional type judgements, thus matching the
inverted nature of a stack-based machine state, (3) the concreteness tags on stack frames, which help
determine proper type concreteness, and (4) the store merging function µσ . In particular, figure 22’s
TK-SymIf1◦ and TK-SymIf2◦ utilize all four components. These rules rely on the concreteness
marker on the stack frame to properly convert the type of the conditional into symbolic types,
as seen in the second premise of each of these rules (τ1 and τ2, respectively). In addition, these
rules rely on the µσ merging function to combine the two copies of the store σ1 and σ2. In cases
where the two store copies have conflicting values for the same binding, e.g., in terms like (if x̂Bool

(set! y 1) (set! y 2)), the merging function properly creates a symbolic value, in this case for y.
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Correspondingly, the right-hand side of figure 17’s îf-else evaluation step uses the same merging
function and thus preservation holds for conditional expressions.
Together, the two lemmas prove theorem 4.1 and thus we may conclude that symbolic values

cannot cause evaluation to get stuck.

5 TYPED ROSETTE

To show that λ̂ can model a real programming language, we implemented Typed Rosette, which
adds our type system to the untyped Rosette language [Torlak and Bodik 2014].

5.1 Implementation Organization

Fig. 24. Typed Rosette Organization

Figure 24 depicts the overall architecture of Rosette
and Typed Rosette, which are implemented with Racket.
Racket’s distinguishing features are its modern macro
system [Flatt 2002, 2016]Ða descendant of its Lisp
and Scheme predecessorsÐand DSL-building capabili-
ties [Tobin-Hochstadt et al. 2011]. Together these fea-
tures enable programmers to extend and reuse parts of
the Racket’s implementation in order to create embedded
DSLs quickly and easily, e.g., adding symbolic computa-
tion capabilities and a solver interface to create Rosette. Even better, Rosette programmers may
continue to utilize Racket’s DSL-building features to easily build their own solver-aided DSLs.
Rosette consists of two sublanguages: a small, safe subset where all language constructs are

equipped to handle symbolic values, and a larger language that includes the rest of Racket. The
documentation warns programmers to stay within the safe subset but as with all languages,
programmers are eventually enticed by the extra features and expressiveness of the łunsafež parts.
Much of Typed Rosette’s design focuses on helping the latter group.

5.2 Implementation

Typed Rosette is implemented as an extension of Rosette, also using Racket’s macro system. Creating
Typed Rosette required implementing a type system, as well as an elaboration pass that translates
the typed language to untyped Rosette. Since the elaboration pass occasionally requires type
information to direct the elaboration output, e.g., when translating symbolic values like x̂Int to its
untyped representation, we did not implement separate passes. Instead, we used the łtype systems
as macrosž technique of Chang et al. [2017], which allows implementing interleaved type checking
and elaboration passes as a series of user-level macro definitions. With this approach is it trivial to
implement elaborations that depend on type checking information. It also allowed us to use the
existing Rosette implementation without modification. Overall Typed Rosette’s implementation
added roughly 2500 lines of code to the existing 10,000 lines of Rosette’s implementation.

Figure 25 presents the essence of a few type checking macros from Typed Rosette’s implementa-
tion. They use the define-typerule form from Chang et al.’s meta-DSL for creating typed DSLs.
The if rule on the left consists of two clauses, one each for concrete and symbolic test expressions,
respectively, just like the rules from figure 8. The bodies of these if clauses also resemble their
mathematical counterparts because it uses a bidirectional [Pierce and Turner 1998]-style syntax
that interleaves type checking and elaboration. Specifically, a judgement ⊢ e ≫ e (⇒ k v ) . . .

should be read łe elaborates to e and produces values v . . . associated with keys k . . ..ž For example,
the first premise in the first if clause elaborates the test expression e1 to e1, and in the process
computes its type τ , keyed with symbol :, as well as propositionsψ+ andψ−. The next line guards
the clause with a check of whether the test expression’s type is symbolic. If the check fails, type
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(define-typerule if

[(if e1 e2 e3) ≫ ; concrete case

[⊢ e1 ≫ e1 (⇒ : τ) (⇒ ψ+ ψ+) (⇒ ψ− ψ−)]

#:unless (and (symbolic? τ) (typecheck? τ False))

[⊢ (with-prop e2 ψ+) ≫ e2 ⇒ τ1]

[⊢ (with-prop e3 ψ−) ≫ e3 ⇒ τ2]

-----------------------------------------

[⊢ (rosette:if e1 e2 e3) ⇒ (⊔ τ1 τ2)]]

[(if e1 e2 e3) ≫ ; symbolic case

[⊢ e1 ≫ e1 (⇒ : τ) (⇒ ψ+ ψ+) (⇒ ψ− ψ−)]

[⊢ (with-prop e2 ψ+) ≫ e2 ⇒ τ1 #:mode sym-path]

[⊢ (with-prop e3 ψ−) ≫ e3 ⇒ τ2 #:mode sym-path]

-----------------------------------------

[⊢ (rosette:if e1 e2 e3) ⇒ G(⊔ τ1 τ2)]])

(define-typerule set!

[(set! x e) ≫ #:when (sym-path?)

[⊢ x ≫ x ⇒ τ]

#:fail-unless (symbolic? τ)

"sym path requires sym type"

[⊢ e ≫ e ⇐ τ]

------------------------------

[⊢ (rosette:set! x e) ⇒ Unit])

[(set! x e) ≫ #:when (conc-path?)

[⊢ x ≫ x ⇒ τ]

[⊢ e ≫ e ⇐ τ]

------------------------------

[⊢ (rosette:set! x e) ⇒ Unit])

Fig. 25. A few typechecking macros from Typed Rosette’s implementation

checking falls through to the second clause. The next two premises type check the branches using
the relevant propositions, and also toggle a flag to indicate a symbolic path. Finally, the output
expression and its associated type lie below the conclusion line. Specifically, Typed Rosette’s if
elaborates to untyped Rosette’s if. The output type is a join of the types of the two branches,
computed with ⊔, and the second clause further turns its output type into a symbolic type. The
second clause also sets a sym-path łmodež, which is essentially a flag that holds while typechecking
the branches.
The set! rule (figure 25, right) also consists of two clauses, distinguished with sym-path? and

conc-path? predicates, which utilize the łmodež flag set by if. Thus the rule requires that in a
symbolic path, the target of mutation must have symbolic type.

5.3 Concreteness Polymorphism in Practice

Typed Rosette extends λ̂ with additional features found in practical languages such as optional

arguments and variable-arity polymorphism [Strickland et al. 2009]. Unlike λ̂ , where lambdas
are always assigned types with all combinations of concrete/symbolic arguments, Typed Rosette
programmers can control which combinations are included in a function’s type using signature
declarations. For example, the concreteness of this function’s output matches its first input:

#lang typed/rosette

(: add : (case-> (-> Int Int Int)

(-> Înt Int Înt)))

(define (add x y) (+ x y))

The case-> constructor resembles the intersection type constructor from λ̂ , except each con-
stituent function type is considered in the listed order when the function is applied. The signature
additionally specifies that the second input must always be concrete and does not affect the output
type. Here is another example, where the second argument is now optional:

(: add/opt : (case-> (->* [Int] [Int] Int)

(->* [Înt] [Int] Înt)))

(define (add/opt x [y 0]) (+ x y))

The ->* function type constructor requires three arguments: a list of types for required arguments, a
list of types for optional arguments, and an output type. In both these cases, functions are implicitly

assigned types considering both a symbolic and concrete path, as in λ̂ .
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5.4 Handling Imprecision: Design Discussion

Concreteness polymorphism helps to increase precision but in some cases, Typed Rosette still
rejects valid programs. Specifically, figure 18’s µv̂ merging function highlights where the type

system and evaluation may diverge. While λ̂ ’s merging function always creates a symbolic value,
an actual language can more aggressively preserve concrete values. For example, the value ⟨[x̂Bool:
1][¬x̂Bool: 1]⟩ could be replaced with just 1. One of Rosette’s key innovations is a novel merging
algorithm that reduces the number of symbolic values during evaluation. For example, Typed
Rosette rejects the following valid Rosette program, which uses the add defined above:

(define-symbolic* b : Bool)

(add 1 (if b 2 2)) ; => TYERR: expected Int given Înt

The function does not type check because add’s type requires a concrete second argument but the
type system cannot prove this. To satisfy the type checker, we must use occurrence typing:

(let ([x (if b 2 2)])

(if (conc? x)

(add 1 x) ; => 3

(error "expected concrete val")))

Another source of imprecision comes from Rosette’s pruning of infeasible paths. For example:
#lang rosette

(define-symbolic* b boolean?)

(+ 1 (if b 2 "bad")) ; => 3

#lang typed/rosette

(define-symbolic* b boolean?)

(+ 1 (assert-type (if b 2 "bad") : Int))

; => 3, with assertion b = true
The left program succeeds in Rosette but Typed Rosette rejects the program because the second
argument’s union type is incompatible with addition. Even though the left program is valid, we
ultimately chose to reject such programs because they do not occur too frequently in practice.
Further, supporting such programs would impose a large cost on the type system implementation,
since it would require duplicating large parts of Rosette’s runtime path pruning and merging during
type checking. Programmers who truly wish to utilize this behavior may either use occurrence
typing, or may add an assert-type annotation (seen on the right), which restricts the type of a
value but generates an additional assertion for the solver must satisfy.

5.5 Unsupported Features

Although unsafe Rosette exposes all of Racket’s features to programmers, Typed Rosette’s support
of Racket is usable but far from complete. For example, Typed Rosette does not support particularly
dynamic features such as eval. When encountering such features, programmers can separate the
untyped code with a typed łshimž layer that typically looks something like:

; this file named typed-lib; typed code needing untyped-lib now imports typed-lib instead
(require untyped-lib) ; contains untyped function f

(provide (typed-out [f : ty])) ; assign type ty to f

6 EVALUATION

To determine whether Typed Rosette is useful, we ported a large code base from untyped Rosette,
summarized in table 1. We sought to confirm that Typed Rosette (1) sufficiently accommodates
Rosette idioms and (2) helps with debugging lenient symbolic execution. Our test suite consists of
two parts. The first part (table 1, row 1) consists of small examples mainly drawn from Rosette’s
documentation. The second part (in the other table rows) involves real Rosette applications.
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Table 1. Summary of programs ported to Typed Rosette

Name Description Untyped LoC +Typed LoC Typed Tests Casts

tests coverage tests, corner cases 1884 15
fsm debugging automata 162 +86 54
bv synth loop-free bitvector progs 434 +101 438
ifc verify non-interference 962 +137 517

synthcl synth/verify opencl progs 2632 +615 1609
ocelot relational logic library 1757 +396 439 8
inc synth incremental algs 5445 +634 1134 12

The first part amounted to approximately 2000 lines of łcoverage tests.ž While most used only
safe Rosette, a few demonstrated errors from naive use of unsafe constructs. Typed Rosette was
able to catch all these latter cases. The last column of table 1 shows that we needed 15 casts to
successfully type check the small test cases. Since the documentation includes many corner cases,
however, with most involving Rosette’s infeasible path pruning as described in section 5.4, it’s not
too surprising that we needed to help the type checker in these cases.
The second part of our evaluation sought to determine whether Typed Rosette is useful in

practice. Specifically, we ported a series of solver-aided DSLs (SDSLs) and example programs from
Rosette to Typed Rosette. Table 1 summarizes these efforts: the third column lists the size of the
untyped code base; the fourth column shows how many lines were needed to add types; the fifth
column shows how many lines of tests we ported to the typed version; and the last column shows
how many casts we needed, if any. While porting functions was mostly straightforward, some
projects defined their own language extensions, which required more effort since it involves adding
new type rules to our type system. For the latter case, we often had to reimplement parts those
features using the define-typerule described in section 5.2. This partly explains why some line
counts in the fourth column may be higher than others. Also, we counted function type signatures
with normal typed code in column four, but other needed annotations were counted in column six,
e.g., see section 6.3. The rest of this section highlights a few cases in more detail.

6.1 Synthesizing Loop-Free Bitvector Programs

This SDSL helps programmers synthesize bitvector programs as described in Gulwani et al. [2011].
Some language positions do not allow symbolic values and types help identify any violations:

#lang typed/bv

(bv 1 4) ; constructs length 4 bitvector with value 1
(define-symbolic* x : Int)

(bv x 4) ; => TYERR: expected Int, got x with type Înt

Since the language is small and fairly mature, however, we found no errors due to misused symbolic
values. Further, this language illustrates how Rosette programmers often manage interaction of
symbolic values and unlifted constructsÐby creating additional syntactic abstractions, e.g.:

(define-fragment (mk-trailing-0s-mask/synth x)

#:library (bvlib [(bv 1 4) bvsub bvand bvnot 1])

#:implements mk-trailing-0s-mask)

This code tries to synthesize a mk-trailing-0s-mask/synth function from a list of łcomponentsž
and a reference function. Specifically, define-fragment encodes the given components as symbolic
values representing holes in a static single-assignment program, and then attempts to compute a
satisfying assignment for those holes. The abstraction prevents programmers from interacting with
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the generated symbolic values, thus reducing the chance of errors. Such forms, however, cannot
enforce whether they receive symbolic values or not, and thus our types enhance such abstractions.

6.2 A Library for Relational Logic Specifications

Despite the use of syntactic abstraction to minimize unsafe interactions, symbolic values can still
reach unlifted positions. This section reports on an example we encountered while porting the
Ocelot library,10 which extends Rosette with the ability to write, verify, and synthesize Alloy-
like [Jackson 2002] relational specifications. Consider this example from the Ocelot documentation:

#lang rosette

(define Un (universe '(a b c d))) ; declare universe of atoms
(define cats (declare-relation 1 "cats")) ; declare a "cats" relation
(define iCats (instantiate-bounds ; create an interpretation for "cats"

(bounds Un (list (make-upper-bound cats '((a) (b) (c) (d)))))))

(define F (&& (some cats) (some (- univ cats)))) ;find an interesting model for "cats"
(define resultCats (solve (assert (interpret* F iCats))))

; Lift the model back to atoms in Un
(interpretation->relations (evaluate iCats resultCats)) ; => cats: b

The details are unimportant but at a high-level the code: defines a relation cats; compiles the
relation to symbolic values via instantiate-bounds; uses solve to find a concrete satisfying
assignment to the symbolic values; uses evaluate to replace the symbolic values with the concrete
ones; and finally uses interpretation->relations to lift the result back to the universe of łcatsž.

The final call to interpretation->relations utilizes unlifted code and thus expects concrete
inputs. Calling the function with a symbolic interpretation, however, does not produce an error:

(interpretation->relations iCats) ; => cats: a,b,c,d (WRON’)

Instead, it silently returns the wrong answer because the symbolic values are mistakenly interpreted
as łtruež values, in a manner similar to the first example from section 1 of the paper. With our
typed version, the erroneous code produces a type error:

#lang typed/rosette

(interpretation->relations iCats) ; => TYERR: expected concrete value

Other parts of Ocelot exposed a gap in our type system involving Racket structs, a kind of
named record. A struct definition may łinheritž properties from a base struct and thus requires
record subtyping. Our occurrence typing, however, currently does not support refining types with
this kind of subtyping and thus we needed casts in a few places to fully type check this library.

6.3 Synthesizing Incremental Algorithms

Incremental algorithms speed up programs by avoiding full recomputation when successive inputs
are related. We ported an SDSL for synthesizing incremental algorithms [Shah and Bodik 2017]11

from Rosette to Typed Rosette. The language utilizes unsafe Rosette, in particular hash tables, but
uses dynamic checks to prevent symbolic values from reaching unlifted constructs.

Dynamic checks can be unreliable, however, since they are sometimes pruned and thus unreported
by Rosette. Further, we discovered (and the lead author acknowledged) that some checks were
erroneous or incomplete, meaning that symbolic values could still reach unlifted positions. By
porting the code to Typed Rosette, we were able to more completely and reliably specify where

10https://jamesbornholt.github.io/ocelot/
11Thanks to Rohin Shah for providing us access to the code repository.
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symbolic values are not allowed. In addition, we could remove approximately two dozen of the
manually-inserted checks (approximately 100 lines).

Porting this library required some effort, however, since it utilizes features, like eval, unavailable
in Typed Rosette. To accommodate these features, we had to leave some code untyped, and instead
used a typed łshimž layer as described in section 5.5. In addition, we had to further help the type
checker in two ways. The first annotates values with symbolic types for mutation purposes, e.g.:

#lang typed/rosette

(define v (make-vector 7 (ann #f : EBool)))

(define-symbolic* b : Bool)

(if b (vector-set! v 0 #t) (vector-set! v 1 #t))

This code creates a 7-element vector initialized with concrete false values and would thus be
assigned a concrete type. We wanted to mutate the vector in a symbolic path, however, so we
needed to annotate the initialization value with a symbolic type.

The second class of annotations we needed involved hash tables. Specifically, the result of a hash
lookup has a union type because the lookup may return false if the lookup fails. Thus to use the
result of the lookup, we need an extra occurrence typing check to eliminate the false case:

#lang typed/rosette

(define h (hash 'a 0 'b 1))

(let ([x (hash-ref h 'a #f)]) ; x has type (U Int False) due to fail case
(if (false? x) (error "failed!") (+ x 1))) ; x has type Int

6.4 Vector Programming (A Problematic Example)

SynthCL is a Rosette-hosted SDSL that helps programmers verify and synthesize OpenCL programs.
It represents a less ideal, yet interesting test case for Typed Rosette. Specifically, the language has a
C-like type system that is largely incompatible with Typed Rosette’s types. While we were able
to port the language to Typed Rosette, we had to reimplement large parts of its the existing type
system. In the future, we hope to explore the extensibility of Typed Rosette, and whether it can
more smoothly accommodate typed languages such as this one.

7 RELATED WORK

Handling Unlifted Constructs Most symbolic execution engines prevent invalid interaction of
symbolic values with unlifted constructs by either equipping an entire language to handle symbolic
values or limiting programmers to a safe subset. For example, Symbolic Pathfinder [Pǎsǎreanu
et al. 2008] symbolically executes Java programs with a replacement JVM supporting symbolic
values. This approach is the more difficult, however, and may produce complex solver encodings.
Alternatively, the Leon [Blanc et al. 2013] and Kaplan [Köksal et al. 2012] languages restrict
programmers to a subset of Scala called PureScala. Similarly, Rubicon [Near and Jackson 2012]
symbolically executes only a subset of Ruby but does not support interacting with other parts of the
language. This approach limits the expressiveness of the language and thus possible applications of
the tool.
The above approaches of ensuring safe behavior of symbolic values may still be insufficient

if the program interacts with components, like libraries, outside the control of the symbolic
execution engine. Concolic testing frameworks in particular have devised various heuristics to
handle this situation. The EXE [Cadar et al. 2006] framework, a tool for testing C programs,
handles uninstrumented parts of the program by logging calls into uninstrumented functions,
instrumenting the code, rerunning the program, and then repeating the process until there are
no more uninstrumented function calls. It’s not clear, however, if this algorithm accommodates
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dynamically-linked libraries. Other tools, like CUTE [Sen et al. 2005] and KLEE [Cadar et al.
2008] concretize symbolic values when they flow to library code. This approach does not consider
all program paths and thus may not work for some applications of symbolic execution such
as verification. The DART [Godefroid et al. 2005] tool concretizes symbolic values but trades
incompleteness for possible non-termination. Specifically, when encountering uninstrumented
code, execution falls back to the concrete result and the tool sets an łincompletenessž flag to true.
Testing continues until all branches are covered; otherwise the tool runs forever.
SMTen resembles Rosette in that it allows specifying search problems with a high-level functional
language, Haskell, which is then compiled to solver encodings. Programmers do not explicitly
compute with symbolic values, however, making SMTen less general than Rosette. Thus, although
it is a typed language, SMTen does not utilize symbolic types in the manner of Typed Rosette.
Information Flow Our path markersÐconcrete or symbolicÐresemble the "pc" label [Denning
1982] used by information flow type systems [Myers 1999; Pottier and Simonet 2003] to track
implicit flows [Denning and Denning 1977]. The two systems differ, however, because label checking
and type checking are roughly independent in information flow analyses. In other words, labels
are arbitrary tags added on top of values and any value may have any label, e.g., "high" or "low",
depending on its program context. Thus, the łpcž may be computed from only the program flow
and labels on values, but does not need type information. In contrast, our "labels" are intrinsic to
values, e.g., a symbolic value introduced with define-symbolic may never have a concrete type.
Thus type and label checking are more intertwined in our type system; for example in conditional
branches, the path is marked symbolic only if the test expression is symbolic and has boolean
type. Finally, our concreteness polymorphism allows label-based overloading; this feature appears
unavailable even in more practical information flow-checking languages like JFlow [Myers 1999].

8 CONCLUSION AND FUTURE WORK

We advocate for łlenient symbolic executionž, which equips only a small language subset to
handle symbolic values, yet exposes a full range of features to programmers. Such a language is
easier to implement and produces simpler solver encodings, yet does not limit programmers to
an impractically restrictive language. To help write correct programs in such a mixed system, a
type system reports when symbolic values unexpectedly reach unlifted positions. Specifically, we

developed λ̂ , a typed λ-calculus whose types distinguish symbolic from concrete values, and we
created Typed Rosette, a typed version of the solver-aided Rosette language, which supports lenient
symbolic execution. Our evaluation of Typed Rosette via a comprehensive test suite demonstrates
that our calculus is precise and useful enough to model a practical language. In the future, we hope
to explore whether the type information available in Typed Rosette can be of further use when
implementing specific solver-aided tasks, for example type-directed program synthesis.
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