
CS 4973/6983 Smart Contracts and Analysis – Fall 2025

Lecture Notes

UNDER CONSTRUCTION

Stavros Tripakis
https://www.ccs.neu.edu/~stavros/

September 8, 2025

Abstract

This course covers topics in program analysis, focusing on smart contracts. We explore the world of
blockchains, smart contracts, and decentralized finance (DeFi), focusing on Solidity programs running on
Ethereum, and using tools such as Remix and Foundry. We also explore formal modeling and verification
techniques (model checking, inductive invariants, and more) using tools such as TLA+, Spin, Z3, Certora,
Dafny, and Lean. We also touch upon related topics such as cryptography and zero knowledge proofs,
and decentralized/digital democracy.

This course is a seminar and requires active participation from students. The course is open to
advanced undergraduates and graduate students. Students are expected to read and write code, papers,
online material, etc. They are also expected to present such material and lead classroom discussions.

No prerequisites.

Contents

1 Introduction 3
1.1 Cryptocurrencies: money without banks . 3
1.2 Blockchains: decentralized trust . 3
1.3 Smart Contracts: Decentralized Finance (and more) . 3
1.4 Security problems and attacks . 5
1.5 Mitigations – Audits, War Rooms, and Formal Methods . 5
1.6 Cryptography and Zero-Knowledge . 7
1.7 Beyond DeFi: Digital Democracy? . 7
1.8 A public visit to https://etherscan.io/ . 7
1.9 Industry . 8

2 What we will be doing in this class 8
2.1 Tools you will need . 9
2.2 Readings . 9
2.3 Assignments . 9
2.4 Resources . 9

2.4.1 On the use of AI in this class . 10
2.4.2 On plagiarism . 10

2.5 Summary . 11

1

https://www.ccs.neu.edu/~stavros/
https://www.ccs.neu.edu/~stavros/

3 Smart Contracts 11
3.1 Solidity . 11

3.1.1 Permanent storage on the blockchain . 12
3.1.2 Reactivity – state machines . 12
3.1.3 Atomicity – transactions – require statements . 13
3.1.4 Gas, ether, wei . 13
3.1.5 Special types . 14
3.1.6 Events – logs . 14
3.1.7 Interaction with the Ethereum blockchain . 14
3.1.8 Read the Solidity docs . 16

3.2 Running Solidity programs . 16
3.2.1 Foundry [3] . 16
3.2.2 REMIX . 18

3.3 Solidity contract interaction with Ethereum . 18
3.3.1 Contract account, address, and balance . 18
3.3.2 Receiving ETH . 18
3.3.3 Sending ETH . 19

3.4 Bugs and attacks . 19
3.4.1 The DAO attack . 19
3.4.2 The Parity Wallet attacks . 19

4 Formal methods and verification 19
4.1 The science of software . 19
4.2 Formal specification and verification = formal proofs . 20
4.3 Formal modeling of programs: transition systems and state machines 21

4.3.1 Transition systems . 21
4.3.2 State machines . 21

4.4 Formal verification . 22
4.5 Readings and other resources on formal verification . 22

5 Blockchains 22
5.1 Blockchains: the user perspective . 23
5.2 Blockchains: the science under the hood . 23
5.3 Readings and other resources on blockchains . 23

6 Decentralized Finance – DeFi 24
6.1 What is money? . 24
6.2 Money and trust . 24
6.3 The double-spending problem . 25
6.4 The future of cryptocurrencies and DeFi? . 25

7 Cryptography and Zero-Knowledge 26

8 Decentralized/Digital Democracy etc 26

9 Acknowledgments 26

2

1 Introduction

1.1 Cryptocurrencies: money without banks

In 2008, so-called Satoshi Nakamoto published the white paper Bitcoin: A Peer-to-Peer Electronic Cash
System. The paper, which is available online – https://bitcoin.org/bitcoin.pdf – can be considered
to be the birth of cryptocurrencies. Satoshi Nakamoto is a pseudonym. To this date, the identity of the
author(s) of the Bitcoin white paper is still unknown. To make our lives easier, we will refer to Satoshi
Nakamoto as to a real person. Even though the real identity of Nakamoto is unknown, the motivation
behind Bitcoin is clear. The first sentence in Nakamoto’s paper reads:

“A purely peer-to-peer version of electronic cash would allow online payments to be sent directly
from one party to another without going through a financial institution.”

In other words, the motivation is to create a purely peer-to-peer payment system without the need of a
financial institution. In short, to create money without banks.

1.2 Blockchains: decentralized trust

The Bitcoin white paper can be considered to be not only the birth of cryptocurrencies, but also the birth of
blockchains.1 A blockchain is a distributed protocol that solves the problem of distributed consensus. What
it really solves is the problem of trust. Think about it: if you want to create money without a bank, you
need to solve the problem of trust. If you create your own “coin” and try to use it for payments, you need
to convince people to accept it. You tell them that your coin has value, but why should they trust you?
Why do people trust that the dollar has value? Because dollars are issued by banks, which are supposed to
be trustworth authorities. But how can we create trustworthy money without a bank? Quoting again from
the Bitcoin white paper:

“What is needed is an electronic payment system based on cryptographic proof instead of trust,
allowing any two willing parties to transact directly with each other without the need for a trusted
third party.”

The notion of trust is somewhat abstract. A more concrete notion is that of agreement. We all agree
that pigs cannot fly. We all agree that the sky is blue. We all agree that the dollar has value.

In computer science, the notion of agreement has been formalized by the notion of consensus. Consensus
is one of the most fundamental problems in computer science, and in particular in distributed systems. The
consensus problem is to have a set of distributed nodes agree on something. The nodes (also called agents
or processes) can simply be a set of computers, e.g., the computers in a data center, or all the computers
connected to the internet.

The consensus problem arises in distributed systems all the time. For example, say you are a bank and
you have a database that holds all your customers’ accounts. The database holds entries that say things like
Mary’s account has balance $1,234, Stavros’ account has balance $1,000,000 (I wish!), etc. For reasons of
fault tolerance, the database is decentralized, meaning it’s not stored in one computer, but in many (so that
if one computer breaks the data is not lost). But now that the database is distributed over many machines,
the problem of consensus arises: all the machines must agree on all the balances at all times! Is that possible,
and how? Amazingly, it turns out that blockchains make this possible: we will see how in §5.

1.3 Smart Contracts: Decentralized Finance (and more)

In 2014, Vitalik Buterin pushed the ideas of Bitcoin one step further in his white paper Ethereum: A Next-
Generation Smart Contract and Decentralized Application Platform. The Ethereum paper, which is available

1Even though the word blockchain does not appear in Nakamoto’s white paper, what is described is indeed a chain of blocks,
i.e., a blockchain.

3

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

online – https://ethereum.org/en/whitepaper/ – can be considered to be the birth of smart contracts.2

The idea behind smart contracts is to use the blockchain as a platform on top of which many applications can
be built (just like IP is the platform on top of which all sorts of internet applications are built). What kind of
applications would one want in addition to Bitcoin? Many. For example: Bitcoin is just one cryptocurrency;
can we let people create their own cryptocurrencies? Another example is a smart property ledger: can we use
the blockchain to record who owns what property? Yet another example is a decentralized market: can we
use the blockchain to create something like a stock exchange, but without a centralized trusted authority?

Bitcoin has some capabilities for creating such applications (e.g., see https://en.bitcoin.it/wiki/

Contract). However, these capabilities are limited: one can say that smart contracts are not first-class
citizens in Bitcoin. The Ethereum blockchain, with its programming language Solidity, aim to fill this gap.
To quote from Buterin’s 2014 paper:

“Commonly cited applications include using on-blockchain digital assets to represent custom
currencies and financial instruments (”colored coins”), the ownership of an underlying physical
device (”smart property”), non-fungible assets such as domain names (”Namecoin”) as well as
more advanced applications such as decentralized exchange, financial derivatives, peer-to-peer
gambling and on-blockchain identity and reputation systems. Another important area of inquiry
is ”smart contracts” - systems which automatically move digital assets according to arbitrary
pre-specified rules. For example, one might have a treasury contract of the form ”A can with-
draw up to X currency units per day, B can withdraw up to Y per day, A and B together can
withdraw anything, and A can shut off B’s ability to withdraw”. The logical extension of this
is decentralized autonomous organizations (DAOs) - long-term smart contracts that contain the
assets and encode the bylaws of an entire organization. What Ethereum intends to provide is a
blockchain with a built-in fully fledged Turing-complete programming language that can be used
to create ”contracts” that can be used to encode arbitrary state transition functions, allowing
users to create any of the systems described above, as well as many others that we have not yet
imagined, simply by writing up the logic in a few lines of code.”

According to https://etherscan.io/charts there are over 80 million smart contracts deployed on
Ethereum at the time of writing. Etherscan also maintains an Ethereum Daily Deployed Contracts Chart
– https://etherscan.io/chart/deployed-contracts – which shows thousands (and sometimes hundreds
of thousands) of contracts being deployed every day. It is worth noting that not all deployed contracts are
“useful”. Some may no longer be “live”, meaning they are no longer being “called” (we will learn what that
means). The analysis in [42] found that 70% of the contracts deployed in a certain year were never called. ♠
Also, the live contracts may not necessarily be all different from each other. The page https://bitkan.com/
learn/how-many-smart-contracts-on-ethereum-how-do-ethereum-smart-contracts-work-8989 states
that “of the 15 million or so live contracts, about 70 percent are copies of one of the 15 templates.” These
statistics still leave a large number of active and interesting contracts.3

Ethereum daily transactions number in the millions – https://etherscan.io/chart/tx. There are over
a million and a half tokens 4 with market capitalizations in the billions of dollars – https://etherscan.

io/tokens. Note that Bitcoin and Ethereum are not the only blockchains out there (there are many more). ♠
Also note that Ethereum is not the only blockchain on which one can write and deploy smart contracts.

Smart contracts collectively enable and implement what is called Decentralized Finance or DeFi. Accord-
ing to https://www.grandviewresearch.com/industry-analysis/decentralized-finance-market-report
“the global DeFi market size was estimated at USD 20.48 billion in 2024 and is projected to reach USD
231.19 billion by 2030.” All the numbers are to be taken with a grain of salt. They are not given here ♠

2The Ethereum paper also credits Nick Szabo for describing some of the concepts behind smart contracts earlier.
3The ♠ at the margin indicates an invitation for students to add/refine/correct the corresponding content. I will be adding

such invitations throughout the document. Students should also feel free to indicate places where the text should be refined or
corrected, or where more info should be added.

4A token here refers to an ERC20 token. We will learn what that is later in this course. For now, you can think of a token
as corresponding to a digital currency. For example, some tokens listed in https://etherscan.io/tokens are USDT, BNB,
USDC, WBTC, WETH, and so on.

4

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://etherscan.io/charts
https://etherscan.io/charts
https://etherscan.io/chart/deployed-contracts
https://etherscan.io/chart/deployed-contracts
https://bitkan.com/learn/how-many-smart-contracts-on-ethereum-how-do-ethereum-smart-contracts-work-8989
https://bitkan.com/learn/how-many-smart-contracts-on-ethereum-how-do-ethereum-smart-contracts-work-8989
https://bitkan.com/learn/how-many-smart-contracts-on-ethereum-how-do-ethereum-smart-contracts-work-8989
https://bitkan.com/learn/how-many-smart-contracts-on-ethereum-how-do-ethereum-smart-contracts-work-8989
https://etherscan.io/chart/tx
https://etherscan.io/chart/tx
https://etherscan.io/tokens
https://etherscan.io/tokens
https://etherscan.io/tokens
https://etherscan.io/tokens
https://www.grandviewresearch.com/industry-analysis/decentralized-finance-market-report
https://www.grandviewresearch.com/industry-analysis/decentralized-finance-market-report
https://etherscan.io/tokens
https://etherscan.io/tokens

to impress you. Although DeFi is an important financial activity, it represents a very small percentage of
global, traditional financial activity. It is unclear at this point whether this will ever change. Will DeFi
become the norm in the future, or will it remain somewhat niche, marginalized? I don’t know. The main
reason to study smart contracts is not because there’s a lot of money involved. The main reasons to student
smart contracts, and by extension the main reasons for this course, are intellectual. Blockchains and smart
contracts are a very interesting domain of computer science and beyond, and offer many opportunities to
expand your horizons in terms of education.

I also want to emphasize at this point that this course should by no means be taken as offering financial
advice of any sort. I am not a financial advisor. I am a university professor and my goal is to educate my
students, and myself in the process. The goal is education, not profit.

DeFi applications are not the only applications of smart contracts, e.g., see https://soliditylang.

org/use-cases/. This class focuses on DeFi, but we will also discuss some other applications, c.f. §1.7
and §8.

1.4 Security problems and attacks

Smart contracts are software. Like any other software, smart contracts have bugs and security vulnera-
bilities. Because smart contracts handle money, these bugs and vulnerabilities can result in losing money
and sometimes very large amounts of money. Indeed, smart contracts are routinely scrutinized by security
experts using code audits and other methods, some of which we will cover in this course. Despite these
efforts, smart contracts are often attacked. Some of the most notorious attacks are listed below: ♠

� The DAO attack which occurred on June 17, 2016, and allowed the attacker to steal around $50 million
worth of the virtual currency ETH (ether), or one third of the contract’s total assets at the time. We
discuss this attack in detail in §3.4.1.

� The First Parity Wallet Hack which occurred on July 19, 2017, and allowed the attacker to steal,
according to some sources, over 150,000 ETH (≈30M USD at the time) [43, 20, 58].

� The Second Parity Wallet Hack which occurred on November 6, 2017, and allowed the attacker to
“destroy”, according to some sources, another 513,774.16 ETH, then valued at over $150 million [43,
20, 58]. We discuss both Parity Wallet attacks in detail in §3.4.2.

You might think that these attacks are historic: they happened a long time ago, “people learned their
lessons” so to speak, and the problem has gone away. But this is not true. Attacks keep happening all the
time, and keep security experts busy. For example, here are some blogs detailing recent attacks at the time
of writing:

� The CPIMP attack which happened in July 2025 [50].

� The $11M Cork Protocol Hack which happened on the 28th of May 2025 [16].

� The Cetus AMM $200M Hack which happened on May 22, 2025 [14].

� The Bedrock vulnerability which was discovered on 26 September 2024 [15].

1.5 Mitigations – Audits, War Rooms, and Formal Methods

So, there are many smart contracts out there, holding a lot of money, and they are vulnerable and subject
to continuous attacks. How do we mitigate this situation? This is not simple, because there are many things
that need to be done:

� There must be ways to detect attacks and alert the stakeholders that an attack is happening (or has
happened already).

5

https://soliditylang.org/use-cases/
https://soliditylang.org/use-cases/
https://soliditylang.org/use-cases/
https://soliditylang.org/use-cases/

� Once an attack is detected, there must be ways to defend against the attack as quickly as possible
(ideally, stop the attack).

� Similarly, there must be ways to detect vulnerabilities to already deployed contracts (independently
of whether these vulnerabilities have already been exploited into attacks) and defend against such
vulnerabilities as quickly as possible, to avoid them materializing into attacks.

� There must be ways to discover vulnerabilities prior to deploying a contract.

There are more formal and less formal ways to go about addressing the issues above. Among the
less formal are code audits, which involve carefully reading the source code of the smart contract prior to
deployment, with the intent of discovering bugs and vulnerabilities. However, code audits may very well go
beyond just looking at the code (“eye-balling”) and involve more formal techniques, such as running different
kind of tools (e.g., static analysis or verification) on the code, or deploying and executing/testing the code
itself on sandboxes. In the end, the company tasked with performing the audit (which is typically different
from the company that developed the code in the first place) issues an audit report. Several such reports are
available online, e.g. [40, 48].

Of course, the need to look at the code carefully may arise even after the smart contract is deployed.
For instance, in the event of an attack, or when a vulnerability is discovered, security experts often assemble
so-called war rooms which try to find solutions and take actions to prevent attacks or stop them while they
are happening, as well as to alert stakeholders, e.g., see [50, 15].

This course focuses more on the formal side of techniques. You will gain an understanding and appre-
ciation of the term formal throughout the course. For now, let’s just say that formal techniques strive to
be rigorous, mathematically grounded, and hence to provide stronger guarantees (more discussion in §4.1).
There are many many formal techniques out there, enough to fill many many university courses (see §4.1 for
some courses that I teach on formal techniques). In this course, we will focus on so-called formal methods
and in particular formal verification. We will discuss these extensively throughout the course.

The goal of formal verification is to prove that a piece of software works correctly under all circumstances.
For example, if we are talking about a simple piece of software, e.g., a single method, we may want to
guarantee that the method outputs the correct result for any input. We typically cannot do this simply by
testing, because with testing we only run the program on a finite number of inputs, typically much smaller
than the set of all possible inputs. In fact, the set of inputs can a-priori be infinite. Is it possible in that
case to guarantee correctness without running an infinite number of tests? As it turns out, it is, and that’s
what formal verification is all about!

In a nutshell, formal verification is about building mathematical models of software, and proving (mathe-
matically) that these models have certain (mathematically defined) properties (correctness). There are many
ways to do that (e.g., see [56]). In this course, we will use primarily the TLA+ framework developed by
Turing Award winner Leslie Lamport [28, 29]. Not only is TLA+ well-designed for pedagogical purposes, it
is also well-suited for concurrent software, the application domain of our interest in this class. TLA+ has
also been successfully used in the industry for real-world applications [37]. (In addition to Amazon, TLA+
has been extensively used at Microsoft, where Leslie Lamport worked for many years. I also happen to know
that TLA+ is routinely used at MongoDB: my former student William Schultz has worked at MongoDB
for many years designing distributed protocols and verifying them with TLA+. Some of these efforts are
described in academic papers [46, 44, 47, 45].)

Another well-known framework for modeling and verifying concurrent software is Spin [23, 24]. I haven’t
decided yet whether we will use Spin in this class, but you are welcome to try it out.

Note that formal verification is not the only formal technique. For example, static analysis represents
an entire class of program analysis techniques, including some which have been successfully applied to the
analysis of smart contracts, e.g. [52, 54]. In this course we will mostly focus on formal verification techniques,
although we may also touch upon static analysis. We return to the topic of formal methods in §4.

6

1.6 Cryptography and Zero-Knowledge

As we shall see in §5.2, cryptography is essential for the correct functioning of the protocols that implement
blockchains. Moreover, as we shall see in §??, so-called Layer 2 (L2) blockchains have evolved to address
scalability of Layer 1 (L1) blockchains such as Ethereum. In a nutshell, L2 chains perform some of the
computations that would otherwise have to be performed by L1 chains, thereby alleviating the computational
burden of the latter. (L1 chains also offload some of their data onto L2s.) This brings however issues of
trust: why should L1 trust L2? how can L2 convince L1 that it has performed the computations correctly?
and so on. The fascinating science of zero-knowledge (ZK) is key in answering some of these questions. We
will touch upon cryptography and ZK in §7.

1.7 Beyond DeFi: Digital Democracy?

Blockchains solve fundamental problems of distributed agreements and consensus without the need of trusting
a centralized authority. It is therefore natural to wonder whether blockchains can be used in domains
where trust is paramount, other that DeFi. (See, for instance, the discussion on Decentralized Autonomous
Organizations in [11].) Many of our current political processes rely on centralized authorities that are
supposed to be trustworthy. But what if we don’t trust these authorities? Could we perhaps use blockchains
to improve our political processes? We discuss these questions in §8.

1.8 A public visit to https://etherscan.io/

One of the great things about blockchains and smart contracts is that a lot of things are publicly available
to anyone with internet access. For blockchains, publicity is a must. After all, this is the whole idea of
decentralized trust: that the ledger is publicly available for everyone to see. The fortunate thing is that the
source code for many smart contracts is also publicly available.5 This is great news for software researchers
and in particular those interested in smart contract analysis, because these researchers are given access to
real-world smart contract code.6

Let us illustrate this by browsing through a very useful site: https://etherscan.io/ . Follow the links
below and try to understand them (you are encouraged to use the resources listed in §2.4):

� https://etherscan.io/blocks : browse through some blocks. You see that some of them are ”final-
ized” whereas others are ”unfinalized” (among the latter, some are ”safe”). Let’s pick a block to zoom
in:

� https://etherscan.io/block/23125063 : click on ”88 transactions” to see the block transactions.

� https://etherscan.io/txs?block=23125063 : click on the first transaction.

� https://etherscan.io/tx/0x3e052afc368bc02063b1dc087bf0d8564adfba7074dc569e0a9982806b4bc82a

: click on the ”To:” address to access the destination contract, and look at its source code.

� https://etherscan.io/address/0x93ca3db0df3e78e798004bbe14e1ade222b14dfa

We will be discussing the above (and many more!) in class. By the end of the semester, you should be
able to understand what the above mean.

5Ethereum does not require this. It only requires the byte code, but not necessarily the source code. Still, the source code
for many Ethereum/Solidity smart contracts is publicly available.

6Just like sites like github provide a wealth of data that can be used for software engineering and programming language
research.

7

https://etherscan.io/
https://etherscan.io/
https://etherscan.io/blocks
https://etherscan.io/blocks
https://etherscan.io/block/23125063
https://etherscan.io/block/23125063
https://etherscan.io/txs?block=23125063
https://etherscan.io/txs?block=23125063
https://etherscan.io/tx/0x3e052afc368bc02063b1dc087bf0d8564adfba7074dc569e0a9982806b4bc82a
https://etherscan.io/tx/0x3e052afc368bc02063b1dc087bf0d8564adfba7074dc569e0a9982806b4bc82a
https://etherscan.io/address/0x93ca3db0df3e78e798004bbe14e1ade222b14dfa
https://etherscan.io/address/0x93ca3db0df3e78e798004bbe14e1ade222b14dfa

1.9 Industry

You may be wondering whether you could get a job doing things related to the topics of this course. Just
I cannot offer financial advice, I cannot offer employment advice either. But I can say that there is a rich
ecosystem of institutions and companies active in the field of blockchains and smart contracts, with a focus
on security and formal analysis. Ethereum itself is run by the Ethereum Foundation, which among other
things provides grants and other kinds of support – https://esp.ethereum.foundation/. For example,
the 2025 Academic Grants Round invited proposals “across a wide range of disciplines, including Economics
& Game Theory, Theoretical and Applied Cryptography, Consensus and Protocol Design, Networking &
P2P, Client Engineering, Security, Formal Verification, and the Humanities” – https://esp.ethereum.

foundation/academic-grants .
There are several companies that perform audits, such as Trail of Bits [40] and OpenZeppelin [48].

Several companies internally use various tools (e.g., decompilers, static analyzers, or formal verifiers) while
performing such audits. One of these companies is Dedaub [50], the founder of which is Prof. Smaragdakis
with whom I had the pleasure to work recently – c.f. §9. In 2022, Dedaub was awarded a bug bounty of $1
million for discovering a major vulnerability in Multichain/AnySwap [51].

Other companies started by academics and specializing in formal analysis techniques include: ♠

� Certora, founded by Prof. Mooly Sagiv [41] – c.f. §??.

� Veridise, founded by Prof. Isil Dillig – https://veridise.com/.

� Runtime Verification and Pi Squared, two companies founded by Prof. Grigore Rosu – https://

runtimeverification.com/ and https://pi2.network/.

� Common Prefix employs several academic researchers and engineers – https://www.commonprefix.

com/.

2 What we will be doing in this class

This course is given for the first time and there’s room to influence its design. What we will be doing in this
class will partly depend on your interests. We will discuss in class and I’m open to your suggestions. The
plan below is tentative.

My current goals for this course are the following:

� We will learn to read various types of programs and codes and understand their meaning. By the end
of the course, you should be able to (non-exhaustive list):

– Read and understand Solidity programs.

– Read and understand TLA+ specifications.

– Browse through websites such as https://etherscan.io/ and understand what you’re seeing
there (blocks, transactions, gas, etc).

– Be able to search effectively for information regarding blockchains and smart contracts.

� We will learn how to write smart contracts in Solidity. By the end of the course, you should also be
able to execute and test Solidity programs using Foundry or REMIX.

� We will learn how to write protocol specifications in TLA+ and/or Spin.

� We will learn the basics of formal verification. By the end of the course, you should be able to perform
basic verification tasks using TLA+ and/or Spin model-checkers.

� Research: there are many “hot” research topics in this area and there are several opportunities to
do research. Ideally, you would be writing a paper to be submitted to a conference, or at least good
enough for arXiv.org.

8

https://esp.ethereum.foundation/
https://esp.ethereum.foundation/
https://esp.ethereum.foundation/academic-grants
https://esp.ethereum.foundation/academic-grants
https://esp.ethereum.foundation/academic-grants
https://esp.ethereum.foundation/academic-grants
https://veridise.com/
https://veridise.com/
https://runtimeverification.com/
https://runtimeverification.com/
https://runtimeverification.com/
https://runtimeverification.com/
https://pi2.network/
https://pi2.network/
https://www.commonprefix.com/
https://www.commonprefix.com/
https://www.commonprefix.com/
https://www.commonprefix.com/
https://etherscan.io/
https://etherscan.io/

I’m expecting a high degree of in-class participation from students. We will be reading papers and other
material every week, and also have other assignments. We will be choosing leaders for each paper/assignment.
We will all read the paper/do the assignment, but the leaders will lead the discussion. Every one is expected
to participate in the discussion.

2.1 Tools you will need

Partial list, under construction:

� Foundry [3].

� REMIX [4].

� TLA+ [28].

The sooner you access/install these tools and start playing with them, the better. You only need one of
Foundry or REMIX, you don’t need both.

2.2 Readings

Read the following:

1. Weeks 1-2: Bitcoin [36]; Ethereum [11]; Formal methods at Amazon [37].

2. Weeks 2-3: Solidity documentation [5].

3. Weeks 3-?: ???, TLA+ [29].

2.3 Assignments

In all cases below where you are asked to write a contract or modify an existing contract,
you are also expected to test your contract in Foundry or REMIX to ensure that it works
correctly.

Do the following:

1. Can you find on Etherscan the transactions of the DAO attack and of the two Parity hacks?

2. Modify the SimpleStorage smart contract of §3.1.1 to ensure that only the creator (Deployer) of the
contract can call its set function.

3. We learned that transactions are atomic. But what if execution of a transaction never terminates?
Can you write non-terminating programs in Solidity?

4. Write two contracts and have them send ETH to each other using the functions described in §3.3.

5. Explain the meaning of each of the following Solidity constructs: require, public, address, msg.sender,
mapping(address => uint), view, payable, receive, msg.value, send, transfer, fallback, block.timestamp,
tx.origin, address(this).balance, msg.data, block, ... TBC

2.4 Resources

This course covers many topics and there is an overwhelming amount of offline and online documentation
and other resources relevant to all these topics. I will be listing relevant documentation at the end of each
section covering each of these topics. These lists will necessarily be non-exhaustive, and students are invited
to contribute! If you found something useful please feel free to suggest it. ♠

Let us list here some websites which we will be using frequently:

9

� Etherscan [2].

� The Solidity documentation website [5].

� The Ethereum website [1] and especially https://ethereum.org/en/developers/docs/ .

� Lamport’s TLA+ website [28].

Many companies maintain extensive websites with documentation and blogs that are often quite useful,
e.g.:

� OpenZeppelin documentation site: https://docs.openzeppelin.com/. OpenZeppelin also provides
source for many contracts, including standards like ERC20: see https://docs.openzeppelin.com/

contracts/.

� Dedaub blog: https://dedaub.com/blog/ . Dedaub also maintains a website offering various tools
including a contract library, decompiler, static analysis, etc: https://app.dedaub.com/.

� Certora blog: https://www.certora.com/blog .

2.4.1 On the use of AI in this class

It’s OK to use AI tools like ChatGPT in this class, provided that. Provided that what? It depends on the
use that you make. The ultimate rule is that I will consider you responsible for whatever you provide, and
you have to assume that responsibility. For example, questions will arise in class, that we cannot answer
on the spot, say, and someone will be assigned to find the answer to such a question and present it in the
class next time. That person can use AI to find the answer. But they cannot just present us the answer
and say AI told me that. Why not? Because AI is not trustworthy. It is not a reliable scientific source.
Maybe AI gave the right answer. It is your responsibility to verify this and back-up the answer with reliable
references. Reliable sources are primarily scientific papers. These are peer-reviewed by other scientists so
they have a high-degree of trustworthiness. I will accept other sources as well, provided we all agree that
they are trustworthy. For example, you may cite a youtube video if it’s a video of a talk by a scientist
(who has a web page or papers online, etc). You may also cite online accepted documentation, for example,
https://docs.soliditylang.org/en/latest/index.html. You may also quote Wikipedia pages as long
as the passages you quote have themselves trustworthy references.

I advise against using AI to write text for you, e.g., write a report or even a paragraph. The reason is
that I consider learning to write as fundamental as learning to think. In fact, I believe that the two are
inextricably linked. If you cannot structure your thoughts about whatever topic and write these thoughts
down, then you have no coherent thoughts at all. You may have some vague ideas, but they are messy,
sloppy, or incoherent, and therefore cannot be considered serious thoughts. Still, I will not forbid the use
of AI for writing text, because it can be useful in formulating things in a language you do not master, etc.
Ultimately, however, the rule above applies: you assume responsibility on whatever you write, independently
of whether you used AI or not. You will sign your writings with your name, and I consider them to be yours.

Having said that, signing with your name verbatim AI-generated text is not allowed: I consider that
plagiarism (see below). When you copy-paste test from ChatGPT and you use it verbatim, you plagiarize
ChatGPT. You might think that that’s OK because ChatGPT is not human and so who cares? But the
point is that by signing your name on such a text you claim credit for something which is not yours. If you
want to use ChatGPT text verbatim, you can quote it. But then the above rules apply: I don’t trust what
ChatGPT generates, unless I can trace it back to (non-AI) reliable sources. If you can do that, you should
instead quote these sources directly.

2.4.2 On plagiarism

Note that assuming responsibility about your writings does not exempt you from adhering to some basic rules
of academic conduct. On of those rules is that plagiarism is forbidden. Plagiarism roughly means copying

10

https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/
https://docs.openzeppelin.com/
https://docs.openzeppelin.com/
https://docs.openzeppelin.com/contracts/
https://docs.openzeppelin.com/contracts/
https://docs.openzeppelin.com/contracts/
https://docs.openzeppelin.com/contracts/
https://dedaub.com/blog/
https://dedaub.com/blog/
https://app.dedaub.com/
https://app.dedaub.com/
https://www.certora.com/blog
https://www.certora.com/blog
https://docs.soliditylang.org/en/latest/index.html
https://docs.soliditylang.org/en/latest/index.html

SecurityCryptography

Formal
Verification

TLA+

Smart
Contracts
Solidity Cryptography

Distributed
Systems

Zero-
Knowledge

Democracy

Security

Finance
DeFi

Blockchains
Ethereum

Figure 1: Core and peripheral topics in this course.

others without crediting them (referencing them or citing them properly). Please familiarize yourself with
the rules from the relevant university resources on academic conduct.

2.5 Summary

You can look at this course as an introduction to several topics (Figure 1). First, to the world of DeFi,
blockchains, and smart contracts. Second, to the world of formal analysis, formal methods and verification.
Both these worlds are fascinating enough on their own. Their intersection is even more fascinating. There are
other fascinating topics as well, such as zero-knowledge proofs, which we will also touch upon. Then there is
the world of finance and money which we will also get a glimpse at, from the DeFi point of view. Any finally
there is the world of political systems and democracy, which is also related to blockchains, zero-knowledge,
decentralized decision-making and decentralized trust. I hope you will enjoy this course.

3 Smart Contracts

The are several blockchains out there offering ways to program smart contracts. In this course, we focus on
Ethereum and Solidity. Ethereum is a blockchain. Solidity is a programming language. You can think of
Solidity programs as running on top of Ethereum. Specifically, Solidity programs are compiled into bytecode
which runs on the Ethereum Virtual Machine (EVM). We will explain what all these mean in the sequel.
For now, retain that for us a smart contract will be a Solidity program that runs on Ethereum.

Extensive documentation on Solidity is available at [5]. You should be trying the Solidity programs
below (and others that you find online) on your own, using Foundry [3] or REMIX [4] – see§ 3.2.

3.1 Solidity

Solidity is both like and unlike other programming languages you might be used to. It is like other imperative
programming languages: it has assignment statements, if-then-else statements, while loops, function calls,
and so on. It is also object-oriented: it has inheritance, access modifiers, function modifiers, etc. But Solidity
is also unlike traditional programming languages, in several ways:

11

// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.4.16 <0.9.0;

contract SimpleStorage {

uint storedData;

function set(uint x) public {

storedData = x;

}

function get() public view returns (uint) {

return storedData;

}

}

Figure 2: A Solidity contract – taken from [5].

3.1.1 Permanent storage on the blockchain

A contract in Solidity is a collection of code (its functions) and data (its state). This is like in other object-
oriented programming languages. But unlike in typical languages where the data of an object disappears
once the program terminates, or when the computer is switched-off, say, in Solidity, some data (storage data)
is stored permanently on the Ethereum blockchain.

For example, look at the SimpleStorage contract shown in Figure 2. The line uint storedData;

declares a state variable called storedData of type uint (unsigned integer of 256 bits). The contents of this
variable reside on the contract’s storage which itself resides at a specific address on the blockchain.7 The
set function can change the value of the variable, but the history (i.e., the past values) is maintained.

Not all variables of a contract are stored on the blockchain. For example, local variables of functions
persist during execution of the function but disappear when the function terminates. The Solidity documen-
tation [5] has an in-depth discussion of the different types of memory in Solidity.

3.1.2 Reactivity – state machines

Typical programs in traditional programming languages have a main function that is the first thing called
when the program starts. Solidity contracts don’t have a main function. Solidity contracts are reactive
systems [33, 34]. They can be seen as state machines. A state machine is something that has a state and
a set of transitions that update the state (see §4.3). The state of a contract corresponds to state variables
like storedData. The transitions correspond to functions like set and get. The latter can be seen as a
transition that leaves the state unchanged. This is just a special case of a general transition that changes
the state.

In a state machine, transitions can also have inputs and outputs. The inputs are provided by the en-
vironment (the initiator, or “caller” of the transition) and might influence the state update. These inputs
correspond to the input arguments of the contract’s functions. For example, function set takes input x of
type uint and updates the state to x. The outputs of a transition are returned to the environment. They
correspond to the return values of the contract’s functions. For example, function get returns the current
value of storedData.

The above discussion raises some valid questions: who is the “environment”? who or what exactly calls
the functions of the contract? and how is a contract created initially? Playing with Foundry and REMIX

7Throughout this section, we use blockchain terms like address, block, account, transaction, etc. We will explain these
concepts more in detail when we discuss blockchains – c.f. §5. For now, the reader is referred to the subsection Introduction to
Smart Contracts – Blockchain Basics of [5].

12

offers answers to most of these questions: see §3.2. For now, we can say that contracts can be created and
called either from within other contracts running on the blockchain (these correspond to contract accounts)
or externally (these correspond to externally-owned accounts).

3.1.3 Atomicity – transactions – require statements

Function calls in Solidity are atomic: either they execute to the end, or, if some runtime error occurs they
revert, meaning they abort without changing the state of the contract. The best way to illustrate this is with
an example. At the same time, we will also introduce the require statement.

Consider the SimpleStorage contract that we saw above. Modify its set function as follows:

function set(uint x) public {

require(x < 100);

storedData = x;

}

The require statement takes a condition (in this case, x < 100). At runtime, the condition is checked: if
the condition is satisfied, execution proceeds normally. If the condition is violated, the call reverts. Play
with this modified contract to ensure you understand this. What happens if you put the require statement
after the assignment storedData = x; ?

The words atomicity and atomic come from atom, which comes from Greek and means non-divisible. So
an atomic set of instructions cannot be divided: either all instructions execute, or none. In addition, an
atomic set of instructions cannot be interrupted: the EVM cannot pause execution of a Solidity function in
order to execute something else, and then resume the execution of that function.8

Atomicity is very important, especially in financial and database applications, and allows us to speak
of transactions. A Solidity function call is a transaction, which either updates the state completely, as
the programmer intended, or not at all. Just like in a transaction, say, with a bank’s ATM, this avoids
inconsistencies due to various types of runtime errors and exceptions. For example, imagine that you are
attempting to withdraw money from your bank account using an ATM. You asked for $100, the program
running in the ATM updated your account balance by deducting the $100 from it, and attempts to give
you the cash. However, at that point, the machine breaks down, and no cash is given. The entire operation
should abort and your account balance should revert to its original value. This is the concept of an atomic
transaction, and this is also how Solidity function calls work. For that reason, the terminology often used is
an account sends a transaction [5, 19].

3.1.4 Gas, ether, wei

In most programming languages, computation is considered to be “free”: it takes time, and memory, and it
also consumes electricity. But if we ignore the one-time cost of buying our laptop and our electricity bills,
we can say that running, say a C program, is free. In Solidity/Ethereum, execution costs: it “burns” gas
and gas has a price. (Storage on the blockchain also costs gas.) The price of gas fluctuates according to
laws of supply and demand (just like the price of real gasoline for cars). Gas prices can be found at the
Etherscan website [2] – see also https://etherscan.io/gastracker . For example, when I’m writing this,
the average gas price reported on Etherscan is 1.077 gwei (per unit of gas). gwei stands for giga wei, that is,
109 wei. wei is a subdivision of ether. Ether (ETH) is the native (digital) currency of Ethereum. One wei is
the smallest subdivision of ETH (like cents to a dollar). One ETH is equivalent to 1018 wei, and hence also
equivalent to one billion gwei, i.e., 109 gwei. In summary:

1 ether = 1 ETH = 1 billion gwei = 109 gwei = 109 · 109 wei = 1018 wei.
1 wei = 10−18 ETH.

1 gwei = 109 wei = 109 · 10−18 ETH = 10−9 ETH.

8This is contrary to what happens, for instance, in many operating systems which routinely switch between executing
multiple threads or processes on a single-processor machine.

13

https://etherscan.io/gastracker
https://etherscan.io/gastracker

As I’m writing this, one ETH is worth about 4,700 USD [2]. So, assuming a gas price of 1.077 gwei, a
unit of gas costs 1.077 · 10−9 · 4700 ≈ .000005 USD, i.e., 5 · 10−4 cents. Assuming that a transaction burns
10,000 gas, such a transaction would cost, at current ETH and gas prices, 1.077 · 10−9 · 4700 · 10000 ≈ 0.05
USD, i.e., 5 cents. This is a small amount, but note that the Ethereum blockchain processes over a million
transactions each day [2]. Of course, these transactions are from many different contracts.

Gas measures the cost of computation on the Ethereum blockchain. It’s like putting a price on every
clock cycle that your computer executes. How does this mechanism work exactly, and why would we want
to have it? Quoting from subsection Introduction to Smart Contracts – The Ethereum Virtual Machine –
Gas of [5]:

“Upon creation, each transaction is charged with a certain amount of gas that has to be paid
for by the originator of the transaction (tx.origin). While the EVM executes the transaction,
the gas is gradually depleted according to specific rules. If the gas is used up at any point (i.e.
it would be negative), an out-of-gas exception is triggered, which ends execution and reverts all
modifications made to the state in the current call frame.”

Note that if the transaction reverts, the gas is not returned to the transaction originator. The latter will
pay the gas whether the transaction completes successfully or not. In both case, the gas is “burnt”. This
is reasonable, since the EVM performed computation in both cases, and computation costs. Quoting again
from the subsection above:

“This mechanism incentivizes economical use of EVM execution time and also compensates EVM
executors (i.e. miners / stakers) for their work. Since each block has a maximum amount of gas,
it also limits the amount of work needed to validate a block.”

3.1.5 Special types

Solidity has some types not found in traditional programming languages. For instance, the address type
that represents an Ethereum address, and as such does not allow arithmetic operations. Solidity also has
mapping types, e.g., mapping(address => mapping(address => uint256)). As stated in [5]: “Mappings
can be seen as hash tables which are virtually initialized such that every possible key exists from the start
and is mapped to a value whose byte-representation is all zeros. However, it is neither possible to obtain a
list of all keys of a mapping, nor a list of all values.”

https://docs.soliditylang.org/en/latest/types.html has a comprehensive discussion of Solidity
types.

3.1.6 Events – logs

A Solidity program can define events and emit them. For example, look at contract Coin shown in Figure 3.
Coin defines an event called Sent. This event is emitted whenever a send transaction takes place, i.e.,
whenever the send function is called successfully (without reverting). Each time an event is emitted, a
corresponding log entry is created and stored on the blockchain. Thus, events are a mechanism to keep logs.
Events don’t modify the state of the emitting contract (or any other contract) and cannot be cannot be
“received” by a contract. Events only create log entries on the blockchain. Such logs are useful to external,
off-chain applications (e.g., blockchain explorers like Etherscan). These off-chain apps monitor events and
gather information about the internal state of contracts which would otherwise be too hard or impossible to
obtain.

3.1.7 Interaction with the Ethereum blockchain

Smart contracts written in Solidity are tighly integrated with the Ethereum blockchain. Ethereum concepts
such as addresses, accounts, transactions, and balances, are first-class citizens in the Solidity language. These
concepts are somewhat more advanced, hence we discuss them later, in §3.3. For now, make sure you read
the Solidity docs as recommended below:

14

https://docs.soliditylang.org/en/latest/types.html
https://docs.soliditylang.org/en/latest/types.html

contract Coin {

// The keyword "public" makes variables

// accessible from other contracts

address public minter;

mapping(address => uint) public balances;

// Events allow clients to react to specific

// contract changes you declare

event Sent(address from, address to, uint amount);

// Constructor code is only run when the contract

// is created

constructor() {

minter = msg.sender;

}

// Sends an amount of newly created coins to an address

// Can only be called by the contract creator

function mint(address receiver, uint amount) public {

require(msg.sender == minter);

balances[receiver] += amount;

}

// Errors allow you to provide information about

// why an operation failed. They are returned

// to the caller of the function.

error InsufficientBalance(uint requested, uint available);

// Sends an amount of existing coins

// from any caller to an address

function send(address receiver, uint amount) public {

require(amount <= balances[msg.sender], InsufficientBalance(amount, balances[msg.sender]));

balances[msg.sender] -= amount;

balances[receiver] += amount;

emit Sent(msg.sender, receiver, amount);

}

}

Figure 3: Solidity contract Coin – taken from [5].

15

3.1.8 Read the Solidity docs

Read the rest of the Solidity docs [5], especially the Introduction to Smart Contracts section and the
Blockchain Basics section. You should be able to understand, for instance, the concepts introduced in
the Subcurrency Example. Eventually you should also read the Solidity by Example section and understand
the more advanced examples given there. You don’t need to worry about the Installing the Solidity Compiler
section for now, since we will be using Foundry or REMIX to run our Solidity programs.

At the same time as reading these you should be trying things out with Foundry or REMIX
– see §3.2. This holds for these lecture notes as well: you should not necessarily follow the order of the
sections, subsections, etc, in the table of contents. A document is necessarily structured linear order. But
learning is not linear. You should be jumping back and forth and revisiting things until you internalize
them. In addition to jumping back and forth between the Solidity subsection §3.1 and the Foundry/REMIX
subsection §3.2, you should be jumping back and forth to other places in these lecture notes, for instance,
to §3.3 as well as the Blockchain section §5, which explain concepts such as addresses, accounts, and so on.

3.2 Running Solidity programs

In this course, we take a hands-on, experimental approach to learning. It will therefore be paramount to be
able to execute smart contracts written in Solidity. For this, we will be using two platforms: Foundry [3]
and REMIX [4]. You don’t have to use both. One is enough. But you have to use at least one. Which one
is a matter of taste. Foundry is command-line. REMIX runs on your web browser. I use mostly Foundry.

3.2.1 Foundry [3]

I have a Windows laptop, and I’m running Foundry from Windows Subsystem for Linux (WSL) – I failed to
run it from Cygwin. The instructions below should also be more/less applicable on Linux or Mac computers.

Foundry contains a number of programs (anvil, forge, cast) each doing different things. Typical usage
flow:

1. Open two separate Linux/WSL terminals.

2. On one of the terminals, issue anvil : this starts a local Ethereum node on your machine. You should
see a list of Available Accounts along with their corresponding Private Keys. Each account is identified
by its address, e.g., I see on my machine that account (0) has
address 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
and private key 0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80 . I
also see that this account has 10000 ETH to start with. This is nice because we will need (fake)
ETH to run and test our Solidity programs.

You can now pretty much forget about this terminal which is running anvil . All the remaining
instructions will be launched from the second terminal.

3. On the second terminal we will create and interact with our smart contract. You should first create
a Foundry “project” and initialize it. You should probably have some directory called foundry or
something somewhere in your machine. Go into that directory and issue: forge init course2025fall

(or choose a name other than course2025fall for your forge project). This creates a subdirectory
called course2025fall (or whatever name you chose for your project) and initializes it with a bunch
of files. We won’t worry about these files right now.

You only have to do this forge init once per project. You can create separate projects for each smart
contract, or just one for this class, or whatever other configuration pleases you.

4. Compile your project: you will do that every time you make changes to a source code file in your project.
Go into the directory of your project and issue: forge build : you should see compilation happening
and a Compiler run successful! message in the end. This just compiled the default Counter.sol file

16

that’s contained in the initialized project. Populate the src/ subdirectory of the project with your
own .sol files (copy them there) and re-compile: run forge build again. If the compilation finishes
successfully, you’re good to go!

For example, you can save the SimpleStorage smart contract given earlier into a file called SimpleStorage.sol
in the src/ subdir of your project, and re-compile your project.

5. Next, we will deploy our (compiled) smart contract(s) on the blockchain. Issue:
forge create SimpleStorage --broadcast --private-key 0x... On the terminal where you is-
sued the forge create command, you should see something like

Compiling...

No files changed, compilation skipped

Deployer: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8

Deployed to: 0x8464135c8F25Da09e49BC8782676a84730C318bC

Transaction hash: 0xe1c1bb2b4da71a85839cd648e8e1a183c49e2a875485ca95291d18113c719a59

And on the terminal where anvil is running, you should also see some interesting stuff happening:

...

Contract created: 0x8464135c8F25Da09e49BC8782676a84730C318bC

Gas used: 89093

...

Block Number: 1

Block Hash: 0x7bc10a2704586dad7a7b381b72367f7a9dae9819f8648e6477ec7d27d2a0a9dd

Block Time: "Mon, 18 Aug 2025 08:42:08 +0000"

...

There’s a number of things to note:

� The Deployer is the account that created the SimpleStorage contract. The Deployer account
is different from the contract account (see below). The result of forge create tells us what
the address of the Deployer account is: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8. This
should be one of the addresses listed by anvil and should correspond to the private key you used
in the forge create command. In my case, it is account (1).

� The created contract also has an address: 0x8464135c8F25Da09e49BC8782676a84730C318bC,
reported under Deployed to by the forge create command, and also under Contract created
by anvil.

6. We can visualize the storage area of the contract we just created (deployed) using cast storage <ADDRESS>

where we pass the address of our contract. Another possible command we could use is forge inspect.
E.g., I used forge inspect src/00-SimpleStorage.sol:SimpleStorage storageLayout.

So far, we have compiled our contract, we have deployed it, and we have looked at the initial value of
state variable storedData as stored in the contract’s storage (that value should be 0). Now we can interact
with it, i.e., call its methods.

7. Let’s call get first. Issue:
cast call 0x8464135c8F25Da09e49BC8782676a84730C318bC "get()" --private-key 0x...

where the private key can be any one of the keys of anvil. Note that 0x8464135c8F25Da09e49BC8782676a84730C318bC
is the address of our contract. You should see the return value
0x00

which is the initial value of storedData.

17

8. Let’s now call set. Issue:
cast send 0x8464135c8F25Da09e49BC8782676a84730C318bC "set(uint)" 1234 --private-key 0x...

where again the private key can be any one of the keys of anvil (not necessarily the same one you
used earlier – why?). Again, note that we are passing the address of our contract. We are also passing
1234 as the argument to the "set(uint)" method that we are calling.

You will notice that we used cast call in the case of get but cast send in the case of set. Why?
We could have used cast send for both: cast send creates a transaction which is stored in a block of
the blockchain. That’s why you see things happening in the anvil window when you call cast send.
When you modify the state of a contract, you need to create a transaction. But when you just want to
view the state of a contract, you don’t have to create a transaction (and by the way, transactions cost
gas). Since get only reads but does not modify the contract’s state variable, we don’t need to create
a transaction, so we can use cast call instead of cast send.

9. Now call get again: you should see the return value
0x0004d2

which is 1234 in hexadecimal. If you don’t believe me, you can call cast to verify:
cast --to-base 0x0004d2 dec

10. You can also observe the new value of storedData using cast storage as above.

3.2.2 REMIX

See https://remix.ethereum.org/ .

3.3 Solidity contract interaction with Ethereum

Solidity programs are tightly integrated with the Ethereum blockchain and can use several of Ethereum’s
concepts are first-class citizens. We discuss the most important of these in this subsection.

3.3.1 Contract account, address, and balance

When you create (deploy) a Solidity contract, you create an Ethereum contract account. In fact, the code
of the contract is part of its account.9 A contract account has an address. For example, when you deploy
a contract in Foundry using forge create you see the address of your newly created contract next to
Deployed to: – see item 5 of §3.2.1.

Every Ethereum account can hold ether (ETH). The amount of ETH that an account holds at any given
point in time is the account’s balance. You can access the balance of your contract account from within your
Solidity program with address(this).balance. In general, you can access the balance of an account at
address A with A.balance (A must be of type address).

From Foundry, you can see the balance of an account with cast balance.

3.3.2 Receiving ETH

Ethereum accounts can receive ETH (and hence increase their balance). Contract accounts can receive ETH
is several different ways, some of which are (see [5]):

� Via any payable functions of the contract, including a payable constructor function (if it exists).

� Via the contract’s receive function (which must always be payable if it exists).

� Via the contract’s fallback function, if the latter exists and is payable, and provided the contract
does not have a receive function. (If the contract has both a receive and a fallback function, the
latter is never called because receive is called in its place.)

9Ethereum also has another type of accounts, externally-owned accounts. Much of our discussion here applies to both types
of accounts, but our focus is on contract accounts. See https://ethereum.org/developers/docs/accounts/ for more.

18

https://remix.ethereum.org/
https://remix.ethereum.org/
https://ethereum.org/developers/docs/accounts/
https://ethereum.org/developers/docs/accounts/

3.3.3 Sending ETH

Ethereum accounts can send ETH (and hence decrease their balance). Contract accounts can send ETH is
several different ways, some of which are (see [5]):

� Via <address payable>.transfer and <address payable>.send.

� Via <address payable>.call{value: <ether_to_send>}("").

3.4 Bugs and attacks

3.4.1 The DAO attack

3.4.2 The Parity Wallet attacks

4 Formal methods and verification

4.1 The science of software

Formal methods is a fascinating topic and the one I spent most of my career on. The term formal methods
is not great, perhaps, as it emphasizes what kind of methods we are talking about, instead of what these
methods are used for. The term does not tell much to most students. But perhaps the term is revealing as
to the mentality of those who practice such methods and who, in my experience, are folks who like math,
formalism, and logic. But aside from personal preference and taste, formal methods are fundamental and
crucial for software development. In my mind, they are the science of software:

� Science is knowledge that can make predictions. Predictions can also be thought as guarantees. The
strongest the science, the strongest the predictions it can make. The science of physics can predict
with great accuracy the force required to lift a certain mass to a certain height, and the energy that
will be expended. The science of astronomy can predict with great accuracy (guarantee) the next time
when Halley’s Comet will appear. You can trust this prediction. You can bet money on it. Can you
say the same thing for the pseudoscience of astrology, or economics for that matter?

� What predictions can we make about software, that is, about the programs that we write?

� Can we guarantee that our program will not crash? That it won’t throw an exception? That it will
produce the correct output? And what exactly do we mean by “correct” output? Is the program
supposed to work for any input, or only for valid inputs, and what exactly do we mean by “valid”
input? Can we guarantee that our program is secure and what does “secure” mean exactly? And so
on.

� Formal methods are methods aimed at providing this kind of guarantees. In that sense, these methods
constitute the science of software.

You might think, if formal methods are so important, how come I have never heard of them before? You
might wonder how formal methods are related to the many programming courses you have already taken.
Software engineering, programming languages, and the like. These are fundamental, of course. But in the
end of the day, the methods covered in such courses do not answer the above questions in a satisfactory
way. They cannot make strong enough guarantees. When it comes to program correctness, most software
engineering methods boil down to testing, that is, running the program enough times on enough inputs. But
as famous computer scientist Dijkstra famously quipped, program testing can be a very effective way to show
the presence of bugs, but is hopelessly inadequate for showing their absence [18].

Formal methods is a vast area. It is both vast and deep, which might explain its relative absence from
undergraduate computer science curricula. The latter is changing though. More and more universities
introduce formal methods into their curriculum. At Northeastern, we have undergraduate course CS 2800:
Logic and Computation (some other courses related to the topics of CS 2800 are listed in [56]). I am

19

also regularly giving a crosslisted graduate/advanced undergraduate course CS 7430: Formal Specification,
Verification, and Synthesis / CS 4830: System Specification, Verification, and Synthesis. See my website for
the latest edition of these courses. Other profs at Northeastern also give courses either exclusively on formal
methods, or with formal methods content in them. There are many textbooks on topics related to formal
methods. I will not prescribe a certain textbook here (if you are interested, see [56] for a partial list). We
will use the TLA+ book [29] and other material as needed. Remember that this course is not a course about
formal methods. Formal methods are a means to an end, not the end. Our goal is the analysis of smart
contracts. In terms of what we said above, we want to make predictions/guarantees about smart contracts,
and we shall use formal methods for that purpose.

We should point out here that formal methods are not the only ... formal methods out there! They
are just one sub-area of the larger area of program analysis, which includes many formal or semi-formal
techniques, such as type theory, static analysis, and many more. We will not be covering those. This is not
to say they are not relevant to smart contracts. Indeed, there are many program analysis techniques that
are routinely applied to smart contracts. There is also active research in areas such as static analysis for
smart contracts (e.g., see [22, 53]). This course has been inspired by my contact with Prof. Smaragdakis
who does research and teaches courses on static analysis for smart contracts – c.f. §9.

In what follows in this section, we introduce the most fundamental concepts in formal methods.

4.2 Formal specification and verification = formal proofs

Much of formal methods boils down to proving that a given program is correct. The keyword here is proof,
as in mathematical proof. In order to prove anything mathematically, we need to do two things:

� We need to define what it is that we are trying to prove. For instance, in math, we need to state a
theorem or a lemma or something like that. This mathematical statement will typically involve some
concepts that we need to define formally as well, in order for the statement to make sense. For example,
in order for the statement every polynomial of odd degree has a root to make sense, we need to define
what a polynomial is, what its degree and root are, and so on.

� Once the statement is completely defined, we need to prove it, that is, we need to write a proof.

In formal methods we have the same two concepts, under the names specification and verification:

Specification: This consists in defining formally what we are trying to prove. In our case, it consists
in defining formally two things: (1) the program that we are interested in; and (2) what it means for this
program to be correct.10 Typically, the activity of formal specification results in two formal models: (1) a
formal description P of the program; and (2) a formal description ϕ of what it means for P to be correct.
Both P and ϕ are written in some underlying theory/logic which has itself a formal notion of satisfaction, i.e.,
of what it means for P to satisfy ϕ. This is what it means for P to be “correct” (w.r.t. ϕ). In mathematical
notation, this is often written as P |= ϕ.

Verification: This consists in developing a formal proof that the program is correct. In terms of the above,
it consists in developing a formal proof of the statement P |= ϕ.

Refutation and counterexamples: If we manage to prove P |= ϕ, great. Our job is done and we can
take the rest of the day off. But what if we cannot prove P |= ϕ? Well, it might be because the statement
does not hold! That is, it might be that P does not satisfy ϕ, written P ̸|= ϕ (this is the same as ¬(P ̸|= ϕ),
the negation of P ̸|= ϕ, which can be read as it is not the case that P satisfies ϕ).

Showing that P does not satisfy ϕ (i.e., proving formally P ̸|= ϕ) is interesting in itself, because it tells
us either that P is incorrect (i.e., P indeed has bugs), or that ϕ is not what we want. The latter case is

10Sometimes people use formal specification to mean only part (2), namely, the specification of correctness. Here we follow [29]
and use specification to mean the formal definition of both the program and its correctness.

20

particularly interesting, and as we shall see, arises often. It is often the case that when we try to write down
formally what we mean by correctness, we make mistakes! Such mistakes are very educational and are yet
another indication of how important it is to have strong, formal guarantees in software.

Moreover, it is sometimes (but not always) easier to disprove P |= ϕ (i.e., to prove P ̸|= ϕ) than to prove
it. As we shall see in this class, we typically model P as a set of behaviors (executions or runs of a so-called
transition system, see §4.3 that follows). Then, P |= ϕ typically means that all behaviors of P satisfy ϕ (we
will see what it means for one behavior to satisfy ϕ). Thus, if we find one behavior of P that does not satisfy
ϕ, we have proven P ̸|= ϕ. Such a behavior is called a counterexample. It’s a proof that P does not satisfy ϕ.
A counterexample is a very useful thing, because it can help us determine whether P is at fault (and often
even help us locate the bug in P) or whether ϕ is at fault (that is, not the right notion of correctness).

It could also be the case that we can neither complete the proof of P |= ϕ, nor find a counterexample. In
this sad situation (which however does arise in practice, due to the difficulty of such proofs) we don’t know
whether P is correct or not. We might be stuck or at a loss as to how to proceed. We will discuss such
situations in this class.

4.3 Formal modeling of programs: transition systems and state machines

Let us say a few things on how to formally model programs, i.e., in terms of the above, how to develop
the formal model P . There are many many modeling languages, tools, and formalisms in which P can be
written.11 We will not cover this topic in any depth, as this is beyond the goals of this class. We will use
only what we need for our own modeling purposes (e.g., TLA+ and its references [29]). Still, it is important
to give here a short description of the foundations.

4.3.1 Transition systems

A transition system is something that has states and transitions. (For that reason, it is sometimes also
called state-transition system.) Mathematically, we can represent a transition system as a tuple (S, T) where
S and T are two sets. S represents the set of states. T represents the set of transitions. But what is a
transition? A transition models a “move” or “jump” if you want, from one state to another state. So a
transition can be modeled mathematically as a pair of states. For example, if S = {s0, s1, s2, s3}, then the
pair (s0, s1) represents a move from s0 to s1. The pair (s1, s3) represents a move from s1 to s3. The pair
(s1, s1) represents a move from s1 back to itself (this is generally allowed). So, in order for T to be a valid
set of transitions, T must be a set of pairs of states. That is, T must have the right type. Mathematically,
T must be a subset of S × S (the Cartesian product of S with itself). We write this as T ⊆ S × S.

We typically also need to equip the transition system with a set of initial states which captures all the
states where the transition system can start at. So, in addition to S and T , we have a set S0 of initial states.
Since initial states are states, S0 must be a subset of S, that is, S0 ⊆ S.

That’s what a transition system is. A triple (S, S0, T) where S is the set of states, S0 ⊆ S is the set of
initial states, and T ⊆ S × S is the set of transitions. This type of object looks deceptively simple, but it
is very rich. It is also as fundamental to computer science as numbers are to mathematics and physics. We
will not discuss further transition systems in this document, and refer to the resources provided in §4.5 for
an in-depth discussion.

4.3.2 State machines

A state machine can be seen as a refinement of a transition system (or equivalently, the transition system
can be seen as an abstraction of the state machine). It is a refinement in the sense that a transition in a state
machine is augmented with extra information, namely, the input. In addition, a state machine has outputs,
either on the transitions, or on the states, dependending on the type of the state machine (Mealy or Moore,
see below). Formally, a state machine is a tuple (S, s0, I, O, δ, λ) where:

11For a discussion of the difference between formalism and language, see [10].

21

� S is the set of states and s0 ∈ S is the (unique) initial state.

� I is the set of inputs.

� O is the set of outputs.

� δ : S × I → S is the transition function. It is a function from S × I to S. That is, δ takes a pair
(s, x) ∈ S × I and returns s′ = δ(s, x) so that s′ ∈ S. In the pair (s, x), s ∈ S is a state and x ∈ I is
an input. The return value s′ is also a state (s′ could be the same as s). So what does the transition
function tell us? It tells us that if the machine is at state s and it receives input x then it moves to
state s′.

� λ is the output function. The type (signature) of λ depends on the type of the state machine. There are
two types of machines typically encountered in the literature [35, 25, 31]: Moore and Mealy machines.

In Moore machines, the output only depends on the state, and therefore λ has type λ : S → O. This
tells us that while the machine is at state s it outputs y = λ(s).

In Mealy machines, the output depends both on the state and on the input, and therefore λ has type
λ : S × I → O. This tells us that while the machine is at state s, its output changes depending on the
input. If the input is x1, then the machine outputs y1 = λ(s, x1). If the input changes to x2 (while
the state still remains s) then the output changes to y2 = λ(s, x2). And so on.

We note that our state machines are deterministic in the following two senses. First, given the current
state and an input, the next state is uniquely defined. Second, the output is also uniquely defined (either by
the current state, or by both the current state and the current input). Our state machines are also complete
in that the functions δ and λ are both total (and not partial) functions. This means they are always defined
(i.e., they are defined for all elements of their respective domains). This in turn means that the next state
is always defined, and also that the output is always defined.

State machines were originally used to model things like electronic circuits (microchips) and since such
systems are finite-state, they can be modeled by finite-state machines (FSMs) [35, 25, 31]. However, the
concept of a state machine is fundamental and very general. State machines can be used to model pretty
much every dynamical system (although we may sometimes need to use nondeterministic or probabilistic
machines, which we will not worry about in this course). In particular, state machines are very useful to
conceptualize several things that are at the heart of our course. For example, an object in an object-oriented
programming language can be seen as a state machine (not necessarily finite-state). The states of the machine
correspond to all the possible assignments of values to the state variables: the state variables are the private
and public variables of the object. The initial state is determined by what values the constructor assigns to
those variables. The transitions correspond to the methods of the class, which update the state variables.
The outputs can be seen as the public state variables, as well as the return values of the methods.

4.4 Formal verification

4.5 Readings and other resources on formal verification

There are several books and other resources on formal verification. In addition to the material by Lamport
on TLA+ [29, 28] and Holzmann’s books on Spin [23, 24], there are books focusing on model-checking and
explaining concepts such as transition systems and temporal logics, e.g. [33, 34, 8]. Formal verification
is closely tied to the study of logic, and encompasses techniques other than model-checking, for instance,
theorem-proving. The lecture notes of my CS-2800 course provide many references to those topics [56].

5 Blockchains

A blockchain like Bitcoin or Ethereum is a distributed system, that is, a collection of computers, typically
distributed geographically and connected via some network (in the case of Bitcoin and Ethereum the network

22

is the Internet). Each of the computers runs a copy of the blockchain protocol, that is, the software that
implements the blockchain. (The honest nodes are supposed to all run the correct protocol. The dishon-
est/malicious or simply faulty nodes might be doing other things. More on this in §5.2.) The blockchain
protocol does two things:

� It executes all the functions necessary to maintain the blockchain itself. The blockchain is what solves
the distributed consensus problem. This aspect of blockchains is discussed in §5.2.

� It provides to the users of the blockchain all the promised services. This aspect is discussed in §5.1.

We typically use the term node to mean the physical computer (the hardware machine) plus the software
that runs on that computer. For example, an Ethereum node is a computer that runs the Ethereum client.
The Ethereum client is a software implementation of the Ethereum protocol.

5.1 Blockchains: the user perspective

5.2 Blockchains: the science under the hood

At the heart of blockchains is distributed agreement: the set of nodes participating in the blockchain must
agree which, among the proposed blocks, is going to be the next block in the chain. In computer science
literature, distributed agreement is also called distributed consensus. The consensus problem is both fun-
damental and hard. It is fundamental because almost all computing systems are distributed: not just the
internet and the cloud, but also computing that could in principle be done on a single machine is often
distributed on multiple machines in order to defend against single-machine failures. And distributed systems
must often reach consensus: for instance, a distributed database of a bank must have a consistent view of
the bank’s accounts.12

The consensus problem would be easy if the network never failed, no nodes ever failed, and all nodes were
“honest” (i.e., secure, non-compromised, not hacked, non-malicious, and so on). But honesty and absence of
failures are unrealistic assumptions to make in the real world, which is why the consensus problem is hard.
In fact, it is among the hardest problems in computer science. It has occupied some of the greatest computer
scientists in the past [30] and it is still an active area of research. Consensus is a fascinating topic which
deserves not one, but many courses devoted exclusively to that topic. In this course we will barely scratch the
surface. Interested students who wise to study consensus more in-depth are referred to specialized courses
and reading material: see §5.3. Our discussion here draws from all these resources.

5.3 Readings and other resources on blockchains

The science of blockchains belongs to the science of distributed protocols. There are many classic books on
distributed protocols, for instance [32]. Turing Award winner Leslie Lamport has done a lot of foundational
research not just on formal methods but also on distributed systems, and it’s worth reading some of his
classic papers on the topic, e.g., [27].

Prof. Tim Roughgarden has a lot of material available online in the web pages of his courses Foundations
of Blockchains – https://timroughgarden.github.io/fob21/ – and The Science of Blockchains – https:

//timroughgarden.org/s25/ . Roughgarden also has a list of video lectures available on youtube: https:
//youtube.com/playlist?list=PLEGCF-WLh2RLOHv_xUGLqRts_9JxrckiA .

See also Prof. Elaine Shi’s online book Foundations of Distributed Consensus and Blockchains [49].

12[49] mentions aircraft control as another application, which in fact motivated original research in distributed fault tolerant
computing.

23

https://timroughgarden.github.io/fob21/
https://timroughgarden.github.io/fob21/
https://timroughgarden.org/s25/
https://timroughgarden.org/s25/
https://timroughgarden.org/s25/
https://timroughgarden.org/s25/
https://youtube.com/playlist?list=PLEGCF-WLh2RLOHv_xUGLqRts_9JxrckiA
https://youtube.com/playlist?list=PLEGCF-WLh2RLOHv_xUGLqRts_9JxrckiA
https://youtube.com/playlist?list=PLEGCF-WLh2RLOHv_xUGLqRts_9JxrckiA
https://youtube.com/playlist?list=PLEGCF-WLh2RLOHv_xUGLqRts_9JxrckiA

6 Decentralized Finance – DeFi

The birth of cryptocurrencies can be considered to have happened in 2008 with the introduction of Bit-
coin [36].13 Many other cryptocurrencies followed. But cryptocurrencies (“money without banks”) are not
the only applications of blockchains and smart contracts in the domain of finance. There are many more, such
as liquidity pools, automated market makers (AMMs), decentralized exchanges (DEXs), MEV bot networks, ♠
and many others. Together all these applications constitute the world of Decentralized Finance (DeFi).
In this section we explore some of the fundamental concepts of DeFi, starting with even the most basic
questions.

6.1 What is money?

What is money? I could answer money is something that has value. But that’s a somewhat tautological
definition, because it begs the next question: what is value? Perhaps a better definition is this: money is
something that can be exchanged. The keyword is exchange, which implies some sort of transaction where
you give money and you get something else. So the value of money is really what transactions/exchanges
we can do with it.

If you look at what banks say about this question [6, 9, 38], you will see that they list three basic
functions of money: (1) money as a medium of exchange, (2) money as a store of value, and (3) money as
a unit of account. Medium of exchange is what we said above. Store of value is again tautological: money
has value, therefore can be used to store value. Unit of account means that money provides a common base
for comparing prices of things. This again follows from the fact that money has value. And value means
capacity for exchange.

So in the end, it all boils down to money being something that can be exchanged. But exchanged for
what? It could be exchanged for something “real” (a commodity such as bread or wood or gold or a bicycle
or real estate). It could be exchange also for some other thing that itself has value (i.e., capacity to itself be
exchanged), that is, some other kind of money. For example, USD can be exchanged for EUR.

6.2 Money and trust

Some things like food or wood have intrinsic value to humans. You can eat the food and you can use wood
for many purposes. Fiat money like USD or EUR does not have any intrinsic value. Yet it has value in the
sense of capacity of exchange. What gives (fiat) money this value? Why do I believe that I can exchange
USD for something else? The answer is: because everyone else also believes that (or at least so I think).

Here’s how banks put it: “money works because people believe that it will”[6]; “Money [...] has a value
that people trust”[9]; “It is up to a government to decide the value of its fiat money and to regulate its
supply. This system relies on public trust in the government and its management of the economy, rather
than on the set value of a physical asset.”[38] 14

So money is a social convention. Its value comes from a common belief in it (an agreement or consensus
if you prefer). Therefore, money is fundamentally a matter of trust. Not just individual trust (I trust the
government or my bank) but also collective trust (I trust that everyone else also trusts the government and
the banks). When trust erodes the entire system is in danger of collapsing, as many of us who have lived
through the recent financial crises know.

13However, there were several ideas and attempts before that: for instance, see https://en.wikipedia.org/wiki/

Cryptocurrency under History, and https://www.investopedia.com/tech/were-there-cryptocurrencies-bitcoin/. It is in-
teresting to note that the wei denomination of ETH is named after Wei Dai, a computer scientist who proposed b-money as
“a scheme for a group of untraceable digital pseudonyms to pay each other with money and to enforce contracts amongst
themselves without outside help” [13].

14The last statement is somewhat misleading: first, it is not the government that regulates the supply of money but ostensibly
independent central banks (like the Federal Reserve in the US and the European Central Bank in the EU. But central banks
are not the only entities that are allowed to create (“print”) money: commercial banks also create money by issuing loans.
According to https://en.wikipedia.org/wiki/Money_creation, “the majority of the money supply that the public uses for
conducting transactions is created by the commercial banking system in the form of commercial bank deposits. Bank loans
issued by commercial banks expand the quantity of bank deposits.”

24

https://en.wikipedia.org/wiki/Cryptocurrency
https://en.wikipedia.org/wiki/Cryptocurrency
https://en.wikipedia.org/wiki/Cryptocurrency
https://en.wikipedia.org/wiki/Cryptocurrency
https://www.investopedia.com/tech/were-there-cryptocurrencies-bitcoin/
https://www.investopedia.com/tech/were-there-cryptocurrencies-bitcoin/
https://en.wikipedia.org/wiki/Money_creation
https://en.wikipedia.org/wiki/Money_creation

6.3 The double-spending problem

Suppose Alice owns a digital coin and wants to transfer it to Bob, in exchange for one of Bob’s delicious pies.
Bob gives Alice the pie, and Alice transfers the digital coin to Bob’s account, somehow. Bob is happy. But
since the coin is digital, not physical, nothing prevents Alice to pretend that she still owns it. Indeed, Alice
can go to Chris, get one of his delicious cookies, and transfer the digital coin to Chris’ account, following
the same process as she did with Bob. Who owns Alice’s coin now? Bob or Chris? And what prevents Alice
from spending her digital coin as many times as she likes?

This double-spending problem (see [36], section Transactions) does not arise with physical currency. If
I have a physical dollar and I give it to you, I don’t have it anymore, so I cannot double-spend it. The
problem does not arise with digital means of payment that go through a centralized point, either. Consider,
for instance, your credit card. Although you might have a physical card in your wallet (and these days
you might not even have that, instead having only a digital card on your phone) you don’t give your card
when you pay for something. You tap your card, and keep it for the next transaction. However, you cannot
double-spend the money of your card, because every transaction needs to be approved by your bank (or
Visa, or Mastercard, etc). If you have $100 left in your card’s limit and you buy $100 worth of goods, then
quickly try to re-use your card again to buy another $100 worth of something, you will fail. The second
transaction will not be approved, because all transactions are processed by the same centralized authority
(your bank, or Visa, etc). By the time the second request arrives, the centralized authority knows that you
have reached your card’s limit, and denies your request.

But note that we want to have digital money without a centralized authority. How can we then solve the
double-spending problem? One idea is to broadcast (i.e., publicly announce to everyone) all transactions [13,
36]. So, in the example above when Alice pays Bob a message is sent to everyone saying Alice paid Bob her
digital coin. Chris sees this message, so when Alice goes to him and tries to double-spend her coin, Chris is
not fooled: he knows the coin no longer belongs to Alice but to Bob. The problem with this idea is that it
assumes instantaneous and reliable broadcast, which does not exist in the real world. Real networks have
delays, and may occasionally also lose messages (lost messages can be retransmitted, which adds further
delay). In our example, the message Alice paid Bob her digital coin might not arrive at Chris until after
Alice buys something from Chris. Indeed, as Lamport explained in his famous paper [27], an order of events
based on time does not apply in a distributed system: the fact that Alice paid Bob before she paid Chris is
something that Alice knows but neither Chris nor Bob know.

Therefore, we seem to be stuck. The solution, once again, is consensus. We need a mechanism (a protocol)
by which a set of distributed parties can agree on a unique order of transactions. Blockchains are such a
mechanism.

The double-spending problem is a wonderful illustration of both (1) the novel challenges that arise from
trying to build digital money without a centralized authority (double-spending), and (2) how overcoming
these challenges leads to solving fundamental and difficult problems in computer science and distributed
systems.

6.4 The future of cryptocurrencies and DeFi?

What is the future of cryptocurrencies and DeFi in general? Nobody knows. It is worth noting that
cryptocurrencies are illegal in many countries today: see https://en.wikipedia.org/wiki/Legality_

of_cryptocurrency_by_country_or_territory. They are legal in the EU and in the US, but are not
considered official legal tender, meaning that although you can buy and sell Bitcoin, say, you cannot pay
your taxes or your fines with Bitcoin. An interesting case is that of El Salvador: the country made Bitcoin a
legal tender in 2021 (and seems to be the only country to have done so), but decided it will no longer accept
tax payments in Bitcoin in 2025 – see https://en.wikipedia.org/wiki/Bitcoin_in_El_Salvador.

Another interesting case is that of Facebook’s cryptocurrency Diem (originally called Libra) which was
abandoned in 2022 – see https://en.wikipedia.org/wiki/Diem_(digital_currency). Within the Diem
project, the programming language Move was created by computer scientist David L. Dill and his team [19].
Notably, although Diem is dead, Move seems to still be alive – see https://github.com/move-language/ ♠

25

https://en.wikipedia.org/wiki/Legality_of_cryptocurrency_by_country_or_territory
https://en.wikipedia.org/wiki/Legality_of_cryptocurrency_by_country_or_territory
https://en.wikipedia.org/wiki/Legality_of_cryptocurrency_by_country_or_territory
https://en.wikipedia.org/wiki/Legality_of_cryptocurrency_by_country_or_territory
https://en.wikipedia.org/wiki/Bitcoin_in_El_Salvador
https://en.wikipedia.org/wiki/Bitcoin_in_El_Salvador
https://en.wikipedia.org/wiki/Diem_(digital_currency)
https://en.wikipedia.org/wiki/Diem_(digital_currency)
https://github.com/move-language/move
https://github.com/move-language/move
https://github.com/move-language/move
https://github.com/move-language/move
https://github.com/move-language/move
https://github.com/move-language/move
https://github.com/move-language/move
https://github.com/move-language/move

move.

7 Cryptography and Zero-Knowledge

8 Decentralized/Digital Democracy etc

9 Acknowledgments

The idea for this course came during my sabbatical in 2024-2025 at the University of Athens, Greece. I
would like to thank Prof. Yannis Smaragdakis for hosting me there. Prof. Smaragdakis is an expert in
static analysis and smart contracts, and this course grew out of my discussions with him and his group. I
was also inspired by Prof. Smaragdakis’ course M228 Analysis of Smart Contracts on Blockchain Platforms
which I partly attended in the Spring of 2025: https://yanniss.github.io/M228/. The two courses are
different in that M228 focuses on static analysis methods, while our course here focuses on formal verification
methods such as model-checking.

References

[1] Ethereum. https://ethereum.org/en/ and https://ethereum.org/en/developers/docs/.

[2] Etherscan. https://etherscan.io/.

[3] Foundry. https://getfoundry.sh/.

[4] Remix. https://remix.ethereum.org.

[5] Solidity. https://docs.soliditylang.org/en/latest/index.html.

[6] Irena Asmundson and Ceyda Oner. What Is Money? Available at https://www.imf.org/external/
pubs/ft/fandd/2012/09/basics.htm. International Monetary Fund.

[7] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A Survey of Attacks on Ethereum Smart Con-
tracts SoK. In Proceedings of the 6th International Conference on Principles of Security and Trust -
Volume 10204, page 164–186, Berlin, Heidelberg, 2017. Springer-Verlag.

[8] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[9] European Central Bank. What is money? https://www.ecb.europa.eu/ecb-and-you/explainers/

tell-me-more/html/what_is_money.en.html.

[10] David Broman, Edward A. Lee, Stavros Tripakis, and Martin Törngren. Viewpoints, Formalisms,
Languages, and Tools for Cyber-Physical Systems. In 6th International Workshop on Multi-Paradigm
Modeling (MPM’12), 2012.

[11] Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Application Plat-
form, 2014. Available at https://ethereum.org/en/whitepaper/.

[12] Stefanos Chaliasos, Jens Ernstberger, David Theodore, David Wong, Mohammad Jahanara, and Ben-
jamin Livshits. SoK: What don’t we know? Understanding Security Vulnerabilities in SNARKs, 2024.

[13] Wei Dai. b-money, a scheme for a group of untraceable digital pseudonyms to pay each other with
money and to enforce contracts amongst themselves without outside help. Available at http://www.
weidai.com/bmoney.txt.

26

https://github.com/move-language/move
https://github.com/move-language/move
https://github.com/move-language/move
https://github.com/move-language/move
https://yanniss.github.io/M228/
https://yanniss.github.io/M228/
https://ethereum.org/en/
https://ethereum.org/en/
https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/
https://etherscan.io/
https://etherscan.io/
https://getfoundry.sh/
https://getfoundry.sh/
https://remix.ethereum.org
https://remix.ethereum.org
https://docs.soliditylang.org/en/latest/index.html
https://docs.soliditylang.org/en/latest/index.html
https://www.imf.org/external/pubs/ft/fandd/2012/09/basics.htm
https://www.imf.org/external/pubs/ft/fandd/2012/09/basics.htm
https://www.imf.org/external/pubs/ft/fandd/2012/09/basics.htm
https://www.imf.org/external/pubs/ft/fandd/2012/09/basics.htm
https://www.ecb.europa.eu/ecb-and-you/explainers/tell-me-more/html/what_is_money.en.html
https://www.ecb.europa.eu/ecb-and-you/explainers/tell-me-more/html/what_is_money.en.html
https://www.ecb.europa.eu/ecb-and-you/explainers/tell-me-more/html/what_is_money.en.html
https://www.ecb.europa.eu/ecb-and-you/explainers/tell-me-more/html/what_is_money.en.html
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
http://www.weidai.com/bmoney.txt
http://www.weidai.com/bmoney.txt
http://www.weidai.com/bmoney.txt
http://www.weidai.com/bmoney.txt

[14] Dedaub. The Cetus AMM $200M Hack: How a Flawed “Over-
flow” Check Led to Catastrophic Loss. https://dedaub.com/blog/

the-cetus-amm-200m-hack-how-a-flawed-overflow-check-led-to-catastrophic-loss/, 23
May 2025.

[15] Dedaub. Bedrock vulnerability disclosure and actions. https://dedaub.com/blog/

bedrock-vulnerability-disclosure-and-actions/, 26 September 2024.

[16] Dedaub. The $11M Cork Protocol Hack: A Critical Les-
son in Uniswap V4 Hook Security. https://dedaub.com/blog/

the-11m-cork-protocol-hack-a-critical-lesson-in-uniswap-v4-hook-security/, 30 May
2025.

[17] Kevin Delmolino, Mitchell Arnett, Ahmed E. Kosba, Andrew Miller, and Elaine Shi. Step by Step
Towards Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab. IACR
Cryptol. ePrint Arch., page 460, 2015.

[18] Edsger W. Dijkstra. The Humble Programmer. ACM Turing Lecture 1972. Available at https:

//www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html.

[19] David L. Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, and Jingyi Emma Zhong. Fast
and reliable formal verification of smart contracts with the move prover. In Dana Fisman and Grigore
Rosu, editors, Tools and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of
Lecture Notes in Computer Science, pages 183–200. Springer, 2022.

[20] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State. The eye of horus:
Spotting and analyzing attacks on ethereum smart contracts. In Financial Cryptography and Data
Security: 25th International Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected
Papers, Part I, page 33–52, Berlin, Heidelberg, 2021. Springer-Verlag.

[21] Dor Geyer. Securing Protocols During Development - From a High Level Invariant to
a Pool-Draining Vulnerability in SushiSwap’s Trident. https://medium.com/certora/

exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f.
Note: the link to the code provided in the article is no longer valid. Use this instead: https:

//github.com/sushiswap/trident/blob/master/contracts/pool/constant-product/

ConstantProductPool.sol.

[22] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis.
MadMax: analyzing the out-of-gas world of smart contracts. Commun. ACM, 63(10):87–95, September
2020.

[23] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[24] G. Holzmann. The Spin Model Checker. Addison-Wesley, 2003.

[25] Z. Kohavi. Switching and finite automata theory. McGraw-Hill, 2 edition, 1978.

[26] John Kolb, John Yang, Randy H. Katz, and David E. Culler. Quartz: A framework for engineering
secure smart contracts. Technical Report UCB/EECS-2020-178, UC Berkeley, Aug 2020.

[27] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–
565, 1978.

[28] Leslie Lamport. My TLA+ Home Page. https://lamport.azurewebsites.net/tla/tla.html.

27

https://dedaub.com/blog/the-cetus-amm-200m-hack-how-a-flawed-overflow-check-led-to-catastrophic-loss/
https://dedaub.com/blog/the-cetus-amm-200m-hack-how-a-flawed-overflow-check-led-to-catastrophic-loss/
https://dedaub.com/blog/the-cetus-amm-200m-hack-how-a-flawed-overflow-check-led-to-catastrophic-loss/
https://dedaub.com/blog/the-cetus-amm-200m-hack-how-a-flawed-overflow-check-led-to-catastrophic-loss/
https://dedaub.com/blog/bedrock-vulnerability-disclosure-and-actions/
https://dedaub.com/blog/bedrock-vulnerability-disclosure-and-actions/
https://dedaub.com/blog/bedrock-vulnerability-disclosure-and-actions/
https://dedaub.com/blog/bedrock-vulnerability-disclosure-and-actions/
https://dedaub.com/blog/the-11m-cork-protocol-hack-a-critical-lesson-in-uniswap-v4-hook-security/
https://dedaub.com/blog/the-11m-cork-protocol-hack-a-critical-lesson-in-uniswap-v4-hook-security/
https://dedaub.com/blog/the-11m-cork-protocol-hack-a-critical-lesson-in-uniswap-v4-hook-security/
https://dedaub.com/blog/the-11m-cork-protocol-hack-a-critical-lesson-in-uniswap-v4-hook-security/
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f
https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f
https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f
https://medium.com/certora/exploiting-an-invariant-break-how-we-found-a-pool-draining-bug-in-sushiswaps-trident-585bd98a4d4f
https://github.com/sushiswap/trident/blob/master/contracts/pool/constant-product/ConstantProductPool.sol
https://github.com/sushiswap/trident/blob/master/contracts/pool/constant-product/ConstantProductPool.sol
https://github.com/sushiswap/trident/blob/master/contracts/pool/constant-product/ConstantProductPool.sol
https://github.com/sushiswap/trident/blob/master/contracts/pool/constant-product/ConstantProductPool.sol
https://github.com/sushiswap/trident/blob/master/contracts/pool/constant-product/ConstantProductPool.sol
https://github.com/sushiswap/trident/blob/master/contracts/pool/constant-product/ConstantProductPool.sol
https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html

[29] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engi-
neers. Addison-Wesley, 2002. Available at https://lamport.azurewebsites.net/tla/book.html.

[30] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, July 1982.

[31] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - A survey. Proceed-
ings of the IEEE, 84:1090–1126, 1996.

[32] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1996.

[33] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, New York, 1991.

[34] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, New
York, 1995.

[35] E.F. Moore. Gedanken-experiments on sequential machines. In Automata Studies, number 34. Princeton
University Press, 1956.

[36] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Available at https://bitcoin.

org/bitcoin.pdf, 2008.

[37] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff.
How Amazon Web Services Uses Formal Methods. Commun. ACM, 58(4):66–73, March 2015.

[38] Bank of England. What is money? https://www.bankofengland.co.uk/explainers/what-is-money.

[39] Marco Ortu, Giacomo Ibba, Giuseppe Destefanis, Claudio Conversano, and Roberto Tonelli. Taxonomic
insights into ethereum smart contracts by linking application categories to security vulnerabilities.
Scientific Reports, 14(23433), 2024.

[40] Alexander Remie, Dominik Teiml, and Josselin Feist. Uniswap V3 Core Security Assessment. Trail
of Bits audit report, available at https://www.trailofbits.com/documents/UniswapV3Core.pdf,
March 12, 2021.

[41] Mooly Sagiv. Five Myths about Formally Verifying Smart Contracts. https://medium.com/certora/
five-myths-about-formally-verifying-smart-contracts-e9a85868e89, Dec 21, 2022.

[42] Dimitri Saingre, Thomas Ledoux, and Jean-Marc Menaud. The cost of immortality: A Time To Live
for smart contracts. In IEEE Symposium on Computers and Communications (ISCC), pages 1–7, 2021.

[43] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. Smart Contract: Attacks and Protections. IEEE
Access, 8:24416–24427, 2020.

[44] William Schultz, Ian Dardik, and Stavros Tripakis. Formal verification of a distributed dynamic recon-
figuration protocol. In Proceedings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2022, page 143–152, New York, NY, USA, 2022. Association for Computing
Machinery.

[45] William Schultz, Ian Dardik, and Stavros Tripakis. Plain and Simple Inductive Invariant Inference for
Distributed Protocols in TLA+. In FMCAD 2022: Formal Methods in Computer-Aided Design, 2022.

[46] William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis. Design and Analysis of a Logless
Dynamic Reconfiguration Protocol. In Quentin Bramas, Vincent Gramoli, and Alessia Milani, editors,
25th International Conference on Principles of Distributed Systems (OPODIS 2021), volume 217 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:16, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

28

https://lamport.azurewebsites.net/tla/book.html
https://lamport.azurewebsites.net/tla/book.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.bankofengland.co.uk/explainers/what-is-money
https://www.bankofengland.co.uk/explainers/what-is-money
https://www.trailofbits.com/documents/UniswapV3Core.pdf
https://www.trailofbits.com/documents/UniswapV3Core.pdf
https://medium.com/certora/five-myths-about-formally-verifying-smart-contracts-e9a85868e89
https://medium.com/certora/five-myths-about-formally-verifying-smart-contracts-e9a85868e89
https://medium.com/certora/five-myths-about-formally-verifying-smart-contracts-e9a85868e89
https://medium.com/certora/five-myths-about-formally-verifying-smart-contracts-e9a85868e89

[47] William Schultz, Siyuan Zhou, and Stavros Tripakis. Brief Announcement: Design and Verification of
a Logless Dynamic Reconfiguration Protocol in MongoDB Replication. In Seth Gilbert, editor, 35th
International Symposium on Distributed Computing (DISC 2021), volume 209 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 61:1–61:4, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[48] OpenZeppelin Security. Uniswap v4 Core Audit. OpenZeppelin audit report, available at https:

//blog.openzeppelin.com/uniswap-v4-core-audit, August 27, 2024.

[49] Elaine Shi. Foundations of Distributed Consensus and Blockchains. Available at https://www.

distributedconsensus.net/.

[50] Yannis Smaragdakis. The CPIMP Attack: an insanely far-
reaching vulnerability, successfully mitigated. https://dedaub.com/blog/

the-cpimp-attack-an-insanely-far-reaching-vulnerability-successfully-mitigated/,
15 July 2025.

[51] Yannis Smaragdakis. Phantom Functions and the Billion-Dollar No-op. https://medium.com/dedaub/
phantom-functions-and-the-billion-dollar-no-op-c56f062ae49f, Jan 24, 2022.

[52] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris.
Symbolic value-flow static analysis: deep, precise, complete modeling of ethereum smart contracts. Proc.
ACM Program. Lang., 5(OOPSLA):1–30, 2021.

[53] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris.
Symbolic value-flow static analysis: deep, precise, complete modeling of Ethereum smart contracts.
Proc. ACM Program. Lang., 5(OOPSLA), October 2021.

[54] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, Ilias Tsatiris, Yannis
Bollanos, and Tony Rocco Valentine. Program analysis for high-value smart contract vulnerabilities:
Techniques and insights. CoRR, abs/2507.20672, 2025.

[55] Justin Thaler. Proofs, Arguments, and Zero-Knowledge. Available at https://people.cs.

georgetown.edu/jthaler/ProofsArgsAndZK.html.

[56] Stavros Tripakis. CS 2800 Logic and Computation – Lecture Notes, Fall 2023. Available at https:

//course.ccs.neu.edu/cs2800f23/lecture-notes.pdf, 2023.

[57] Gavin Wood. Ethereum: A Secure Decentralized Generalized Transaction Ledger. Available at https:
//ethereum.github.io/yellowpaper/paper.pdf.

[58] Zihan Zheng, Jerry Chen, Ethan Wang, and Jakub Jackowiak. Parity Wallet Hacks: Postmortem. Slides,
available at https://tc.gts3.org/cs8803/2023-spring/student_presentations/team7.pdf.

29

https://blog.openzeppelin.com/uniswap-v4-core-audit
https://blog.openzeppelin.com/uniswap-v4-core-audit
https://blog.openzeppelin.com/uniswap-v4-core-audit
https://blog.openzeppelin.com/uniswap-v4-core-audit
https://www.distributedconsensus.net/
https://www.distributedconsensus.net/
https://dedaub.com/blog/the-cpimp-attack-an-insanely-far-reaching-vulnerability-successfully-mitigated/
https://dedaub.com/blog/the-cpimp-attack-an-insanely-far-reaching-vulnerability-successfully-mitigated/
https://dedaub.com/blog/the-cpimp-attack-an-insanely-far-reaching-vulnerability-successfully-mitigated/
https://dedaub.com/blog/the-cpimp-attack-an-insanely-far-reaching-vulnerability-successfully-mitigated/
https://medium.com/dedaub/phantom-functions-and-the-billion-dollar-no-op-c56f062ae49f
https://medium.com/dedaub/phantom-functions-and-the-billion-dollar-no-op-c56f062ae49f
https://medium.com/dedaub/phantom-functions-and-the-billion-dollar-no-op-c56f062ae49f
https://medium.com/dedaub/phantom-functions-and-the-billion-dollar-no-op-c56f062ae49f
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://course.ccs.neu.edu/cs2800f23/lecture-notes.pdf
https://course.ccs.neu.edu/cs2800f23/lecture-notes.pdf
https://course.ccs.neu.edu/cs2800f23/lecture-notes.pdf
https://course.ccs.neu.edu/cs2800f23/lecture-notes.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://tc.gts3.org/cs8803/2023-spring/student_presentations/team7.pdf
https://tc.gts3.org/cs8803/2023-spring/student_presentations/team7.pdf

	Introduction
	Cryptocurrencies: money without banks
	Blockchains: decentralized trust
	Smart Contracts: Decentralized Finance (and more)
	Security problems and attacks
	Mitigations – Audits, War Rooms, and Formal Methods
	Cryptography and Zero-Knowledge
	Beyond DeFi: Digital Democracy?
	A public visit to https://etherscan.io/
	Industry

	What we will be doing in this class
	Tools you will need
	Readings
	Assignments
	Resources
	On the use of AI in this class
	On plagiarism

	Summary

	Smart Contracts
	Solidity
	Permanent storage on the blockchain
	Reactivity – state machines
	Atomicity – transactions – require statements
	Gas, ether, wei
	Special types
	Events – logs
	Interaction with the Ethereum blockchain
	Read the Solidity docs

	Running Solidity programs
	Foundry foundry
	REMIX

	Solidity contract interaction with Ethereum
	Contract account, address, and balance
	Receiving ETH
	Sending ETH

	Bugs and attacks
	The DAO attack
	The Parity Wallet attacks

	Formal methods and verification
	The science of software
	Formal specification and verification = formal proofs
	Formal modeling of programs: transition systems and state machines
	Transition systems
	State machines

	Formal verification
	Readings and other resources on formal verification

	Blockchains
	Blockchains: the user perspective
	Blockchains: the science under the hood
	Readings and other resources on blockchains

	Decentralized Finance – DeFi
	What is money?
	Money and trust
	The double-spending problem
	The future of cryptocurrencies and DeFi?

	Cryptography and Zero-Knowledge
	Decentralized/Digital Democracy etc
	Acknowledgments

