
Optimization Coaching ∗

Optimizers Learn to Communicate with Programmers

Vincent St-Amour Sam Tobin-Hochstadt Matthias Felleisen
PLT @ Northeastern University

{stamourv,samth,matthias}@ccs.neu.edu

Abstract
Optimizing compilers map programs in high-level languages
to high-performance target language code. To most program-
mers, such a compiler constitutes an impenetrable black box
whose inner workings are beyond their understanding. Since
programmers often must understand the workings of their
compilers to achieve their desired performance goals, they
typically resort to various forms of reverse engineering, such
as examining compiled code or intermediate forms.

Instead, optimizing compilers should engage program-
mers in a dialog. This paper introduces one such possi-
ble form of dialog: optimization coaching. An optimization
coach watches while a program is compiled, analyzes the
results, generates suggestions for enabling further compiler
optimization in the source program, and presents a suitable
synthesis of its results to the programmer. We present an
evaluation based on case studies, which illustrate how an
optimization coach can help programmers achieve optimiza-
tions resulting in substantial performance improvements.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Integrated Programming Environments; D.3.4
[Programming Languages]: Processors—Compilers

Keywords Optimization Coaching, Visualization

1. Compilers: A Dialog with Programmers
With optimizing compilers programmers can create fast ex-
ecutables from high-level code. As Knuth (1971) observed,
however, “[p]rogrammers should be strongly influenced by
what their compilers do; a compiler writer ... may in fact
know what is really good for the programmer and would

∗ Supported in part by NSF grants, the DARPA CRASH program, a grant
from the Mozilla Foundation, and an NSERC scholarship for V. St-Amour.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tuscon, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

Figure 1: Our optimization coach in action

like to steer him towards a proper course. This viewpoint has
some merit, although it has often been carried to extremes in
which programmers have to work harder and make unnatural
constructions just so the compiler writer has an easier job.”
Sadly, the communication between compilers and program-
mers has not improved in the intervening 40 years.

To achieve high quality results, expert programmers learn
to reverse-engineer the compiler’s approach to optimization
from object code generated for some source programs. With
an appropriate model of the optimizer, they can then write
their programs to take advantage of compiler optimizations.
Other programmers remain at the mercy of the compiler,
which may or may not optimize their code properly. Worse,
if the compiler fails to apply an optimization rule, it fails
silently, and the programmer may never know. Sometimes
even experts cannot reliably predict the compiler’s behavior.
For example, during a recent discussion of1 about the perfor-
mance of a ray tracer, the authors of the compiler publically
disagreed on whether an inlining optimization had been per-
formed, eventually resorting to a disassembling tool.

Currently, programmers seeking maximal optimization
from their compilers turn to style guides (Fog 2012; Hagen
2006; Zakas 2010) on how to write programs that play nicely
with the optimizer. Naturally, the advice of such guides is
limited to generic, program-agnostic advice. They cannot of-
fer programmers targeted advice about individual programs.

In this paper, we propose an alternative solution to this
problem. Specifically, we introduce the idea of optimiza-

1 See Racket bug report http://bugs.racket-lang.org/old/12518

http://bugs.racket-lang.org/old/12518

Figure 2: Optimization Coach’s analysis of our example functions (with focus on get-y-coordinate’s body)

tion coaching and illustrate it with an implementation in the
Racket ecosystem (Flatt and PLT 2010). A compiler with an
optimization coach “talks back” to the programmer. It ex-
plains which optimizations it performs, which optimizations
it misses, and suggests changes to the source that should
trigger additional optimization. Figure 1 presents our tool,
named Optimization Coach, in action. Here the compiler
points to a specific expression where the optimizer could im-
prove the performance of the program, along with a partic-
ular recommendation for how to achieve the improvement.
As the figure shows, a compiler with an optimization coach
is no longer a capricious master but a programmer’s assistant
in search of optimizations.

2. Goals and Overview
An optimization coach engages the programmer in a dialog.
The objective is to gather information during compilation,
to analyze the information, and to present it in an easily
accessible manner. More concretely, an optimization coach
should report two kinds of information:

• successes: optimizations that the compiler performed on
the current program.

• near misses: optimizations that the compiler could per-
form if it had additional information. Since an optimiza-
tion coach may report many such near misses for a large
program, it should also rank changes according to how
they may affect the overall status of optimization.

Throughout, the programmer remains in charge; the opti-
mization coach merely provides information and advice. It
remains the programmer’s responsibility to act on these rec-
ommendations.

We propose the following architecture for optimization
coaches, consisting of four main phases:

1. An instrumented compiler logs optimization decisions.

2. The optimization coach analyzes the resulting logs to
detect successes and near-misses.

3. From the results of the analysis, it generates advice and
recommends changes to the program.

4. The optimization coach presents this information in a
comprehensible manner, but only on-demand.

Designing and implementing an optimization coach poses
challenges at every stage, e.g. how to accurately reconstruct
the optimization process, how to avoid the false positives
problem, how to present complex optimization informa-
tion in a comprehensible fashion. In response, we identify
several general concepts underlying optimizations, such as
optimization failures, optimization proximity and irritants,
making it possible to discuss optimization decisions ab-
stractly. Based on these concepts, we present optimization-
and compiler-agnostic solutions to the identified challenges.

To validate the usefulness of optimization coaching, we
have implemented an optimization coach, named Optimiza-
tion Coach, that instantiates our framework on two differ-
ent compilers that reflect two different approaches to opti-
mization. The first, for Typed Racket (Tobin-Hochstadt et
al. 2011), handles various local type-driven code specializa-
tion optimizations. The second, for the Racket production
optimizer, handles inlining optimizations. Typed Racket pro-
grams are also Racket programs and Optimization Coach
seamlessly composes the results from the two compilers.
Optimization coach presents its results via syntax coloring
and tool-tips in DrRacket (Findler et al. 2002), an integrated
development environment for Racket. We then used this pro-
totype on existing Racket code bases and uncovered opti-
mizations with minimal effort, greatly improving the per-
formance of several benchmarks and programs. The rest of
the paper starts with brief sections on the Racket and Typed
Racket compilers. The following sections discuss each of the
four phases of our proposed architecture by first outlining the
challenges faced by optimization coaches during that phase,
then explaining our solutions to these challenges, and finally
providing concrete examples drawn from our two prototype
instantiations. The result portion of the paper ends with an
empirical evaluation of the effectiveness of Optimization

Figure 3: Optimization near miss involving fixnum arithmetic

Figure 4: Confirming that the optimization failure is now fixed

Coach. The paper concludes with a comparison with other
techniques with goals similar to our own and a discussion of
future work.

3. The Typed Racket Compiler
The Typed Racket compiler is a research compiler that com-
piles Typed Racket programs to Racket programs (Tobin-
Hochstadt et al. 2011). It uses core Racket programs as a
high-level intermediate representation. This representation
is close to actual source programs, and most source-level
information is still present. Typed Racket performs source-
to-source transformations to implement optimizations. The
most important transformations are type-driven code spe-
cializations of generic operations. For example, a generic
use of the multiplication function can be specialized if both
its arguments are floating-point numbers, e.g. in definitions
such as this one:

(: add-sales-tax : Float -> Float)
(define (add-sales-tax price)
(* price 1.0625))

Since Typed Racket’s type system validates that this mutli-
plication always receives floating-point numbers as its argu-
ments, the compiler may specialize it thus:

(: add-sales-tax : Float -> Float)
(define (add-sales-tax price)
(unsafe-fl* price 1.0625))

Similarly, if type information provides guarantees that a list
is non-empty, the compiler may elide checks for null:

(: get-y-coordinate :
(List Integer Integer Integer) -> Integer)

(define (get-y-coordinate 3d-pt)
(first 3d-pt))

In this case, the type specifies that the input is a three-
element list. Hence taking its first element is always safe:

(: get-y-coordinate :
(List Integer Integer Integer) -> Integer)

(define (get-y-coordinate 3d-pt)
(unsafe-first 3d-pt))

Figure 2 shows how Optimization Coach informs the pro-
grammer that the type specialization succeeds for such func-
tions. When the highlight surrounding an optimized region is
clicked, the tool brings up a new window with extra informa-
tion about that region. Hints also become available when the
optimizer cannot exploit some type information. Consider
the following function, which indexes into a TCP packet’s
payload, skipping the headers:

(: TCP-payload-ref : Bytes Fixnum -> Byte)
(define (TCP-payload-ref packet i)

; skip the TCP header
(define actual-i (+ i 20))
(bytes-ref packet actual-i))

Figure 5: Surprising optimization failure involving mixed-type arithmetic

This program works, but the optimizer cannot eliminate the
genericity overhead from the addition. Racket’s addition
function implicitly promotes results to bignums on overflow,
which may happen for the addition of 20 to a fixnum. There-
fore, the Typed Racket compiler cannot safely specialize the
addition to fixnum-only addition. Optimization Coach de-
tects this near miss and reports it, as shown in figure 3. In
addition, Optimization Coach suggests a potential solution,
namely, to restrict the argument type further, ensuring that
the result of the addition stays within fixnum range.

In figure 4 we show the result of following Optimization
Coach’s recommendation. Once the argument type is In-
dex, the optimizer inserts a fixnum addition for +, and Opti-
mization Coach confirms the optimization.

Next we consider a surprising optimization failure:

(define IM 139968)
(define IA 3877)
(define IC 29573)

(define last 42)
(define max 156.8)
(define (gen-random)

(set! last (modulo (+ (* last IA) IC) IM))
(/ (* max last) IM))

This code implements Lewis et al. (1969)’s pseudo-random
number generator, using mixed-type arithmetic in the pro-
cess. In Racket, mixing integers and floating-point numbers
in arithmetic operations usually results in the coercion of the
integer argument to a floating-point value and the return of a
floating-point number. Therefore, the author of this code ex-
pected the last expression of gen-random to be specialized
for floating-point numbers.

Unbeknownst to the programmer, however, this code suf-
fers from a special case in Racket’s treatment of mixed-type
arithmetic. Integer-float multiplication produces a floating
point number, unless the integer is 0, in which case the result
is the integer 0. Thus the result of the above multiplication
is a floating-point number most of the time, but not always,
making floating-point specialization unsafe.

The Typed Racket optimizer knows this fact (St-Amour
et al. 2012) but most programmers fail to think of it when
they program. Hence, this optimization failure may surprise
them and is thus worth reporting. Figure 5 shows how Opti-
mization Coach explains this failure.

Again, the programmer can respond to this recommenda-
tion with the insertion of coercions:

(define (gen-random)
(set! last (modulo (+ (* last IA) IC) IM))
(/ (* max (exact->inexact last))

(exact->inexact IM)))

Optimization Coach confirms that this change enables fur-
ther optimization.

4. The Racket Compiler
The Racket compiler is a mature ahead-of-time compiler
that has been in development for 17 years and comes with
a sophisticated optimizer. It compiles Racket programs to
bytecode, which the Racket virtual machine then translates
to machine code just in time, at the first call of each function.
This runtime code-generation does not perform significant
additional optimization. The compiler is written in C and
consists of several passes.

The first pass, which we focus on in this paper, features a
large number of optimizations, including inlining as well as
constant and copy propagation plus constant folding. Sub-
sequent passes perform closure conversion (Appel and Jim
1989) and lambda lifting.

Optimization Coach provides two kinds of information
concerning inlining transformations:

• which functions are inlined and how often.
• which functions are not inlined, and why.

Both kinds of information are associated with function def-
initions. This is no accident; while inlining is an optimiza-
tion that happens at call sites, the only way programmers can
control the process is through the definition. Therefore, any

Figure 6: Optimization Coach confirming that inlining is happening (with focus on inS)

information that would help the user get the most out of the
inliner has to be explained in terms of the definition sites.

To illustrate the kind of information provided by Opti-
mization Coach, let us consider two functions implementing
geometric formulas: inS checks whether a point is inside a
square, and inC checks whether a point is inside a circle.
The programmer introduced these helper functions to make
the surrounding program readable, but it would be unfortu-
nate if this refactoring were to result in extra function calls,
especially if they were to hurt the program’s performance.
As shown in figure 6, the Racket inliner does inline inS at
all of its call sites.

In contrast, the inC function is not inlined to a satisfac-
tory level, as evidenced by the red highlight in figure 7. This
may be indicative of low-hanging optimization fruit. One
way to resolve the issue is to use a Racket macro to force
inlining. When we follow this advice, Optimization Coach
confirms that the manual inlining is successful. Breaking up
the function into smaller pieces might also work.

5. Optimizer Instrumentation
In order to explain an optimizer’s results to programmers, we
must discover what happens during optimization. One option
is to reconstruct the optimizations via analysis of the com-
piler’s output. Doing so would mimic the actions of highly-
expert programmers with a thorough understanding of the
compiler—with all their obvious disadvantages. In addition,
it would forgo all the information that the compiler gener-
ates during the optimization phase. Our proposed alternative
is to equip the optimizer with instrumentation that gathers
information as optimizations are performed or rejected. De-
bugging tools that explain the behavior of compilers or run-
time systems (Clements et al. 2001; Culpepper and Felleisen
2010) have successfully used similar techniques in the past.

The goal of the instrumentation is to generate a complete
log of the optimization decisions that the compiler makes
as it compiles a given program. In particular, Optimization
coaching is concerned with reporting near misses and unex-

pected optimization failures. For this reason, merely logging
optimization successes is insufficient. We also need to log
cases where optimizations were not applied, i.e. optimiza-
tion failures. While most of these failures are not interesting
to the programmer, pruning the log is left to a separate phase.

The following two subsections explain the instrumenta-
tion for the Racket and Typed Racket compilers.

5.1 Instrumentation of Typed Racket
As mentioned, the Typed Racket compiler mostly performs
source-to-source optimizations. These optimizations are im-
plemented using pattern matching and templating, e.g.:
(pattern

(+ f1:float-expr f2:float-expr)
#:with opt #’(unsafe-fl+ f1.opt f2.opt))

Each optimization is specified with a similar pattern con-
struct. The only factors that affect whether a term is opti-
mized are its shape—in this case, an AST that represents the
application of the addition function—its type, and the type
of its subterms.

Instrumenting the optimizer to log optimization successes
is straightforward; we add a logging statement to each pat-
tern describing which optimization happened, the code in-
volved, its source location, and the information that affected
the optimization decision (the shape of the term, its type and
the type of its subterms):
(pattern

(+ f1:float-expr f2:float-expr)
#:with opt
(begin (log-optimization

"binary float addition"
this-syntax)

#’(unsafe-fl+ f1.opt f2.opt)))

When we compile the add-sales-tax and get-y-
coordinates functions from figure 2, the instrumented
optimizer generates this log, confirming that it applies the
optimizations mentioned above:

Figure 7: The inC function, failing to be inlined (with focus on inC)

TR opt: TR-examples.rkt 5:2 (* price 1.0625)
-- Float Float -- binary float multiplication

TR opt: TR-examples.rkt 10:2 (first 3d-pt)
-- (List Integer Integer Integer)
-- pair check elimination

To log optimization failures, we add an additional pat-
tern form that catches all non-optimized additions and does
not perform any optimizations:

(pattern
(+ n1:expr n2:expr)
#:with opt
(begin (log-optimization-failure

"generic addition"
this-syntax)

this-syntax)) ; no change

This pattern is general enough to produce superfluous log-
ging information: to avoid generating excessive amounts of
such information, we restrict failure logging to terms that
could at least conceivably be optimized. For instance, we
log additions that are not specialized, but we do not log all
non-optimized function applications.

As in the optimization success case, the logs contain the
kind of optimization considered, the term involved, its type,
and the types of its subterms. The following log entry shows
evidence for the failed optimization in the TCP-payload-
ref function of figure 3:

TR opt failure: tcp-example.rkt 5:18 (+ i 20)
-- Fixnum Positive-Byte -- generic addition

Overall, the instrumentation is fairly lightweight. Each
optimization clause is extended to perform logging in addi-
tion to optimizing; a few catch-all clauses log optimization
failures. The structure of the optimizer is unchanged.

5.2 Instrumentation of the Racket Inliner
The Racket inliner is based on a design by Serrano (1997)
and is a much more sophisticated optimizer than the Typed

Racket optimizer. Its decision process is guided by multiple
factors, including the size of the inlining candidate and the
amount of inlining that has already been performed in the
context of the candidate call site. This makes the Racket in-
liner similar to other production compiler optimizers, and it
also makes it unrealistic to log all the factors that contributed
to a given optimization decision.

An additional constraint is that the inliner is a complex
program, and instrumentation should not increase its com-
plexity. Specifically, instrumentation should not add new
paths to the inliner. Concretely, this rules out the use of
catch-all clauses.

Finally, the Racket inliner is deep enough in the compiler
pipeline that most source-level information is not available
in the internal representation. As a result, it becomes diffi-
cult to correlate optimization decisions with the original pro-
gram. Again, these constraints on the available information
are representative of production optimizers.

To record optimization successes, we identify all code
paths that trigger an inlining transformation and, on each
of them, log the name of the function being inlined and
the location of the original call site. It is worth noting that
precise information about the original call site may not be
available at this point in the compiler; the call site may
also have been introduced by a previous optimization pass,
in which case source location would be meaningless. In
general, though, it is possible to locate the call site with
at least function-level granularity; that is, we can usually
determine the function body where the call site is located.

Inlining is a sufficiently general optimization that it could
conceivably apply almost anywhere. This makes defining
and logging optimization failures challenging. Since our
goal is to ultimately enumerate a list of optimization near
misses and surprising failures, we need to consider only op-
timization failures that directly contribute to near misses.
For example, the failure of a large function to be inlined is
an optimization failure that is unlikely to be linked to a near
miss or a surprising optimization failure.

Consequently we consider as optimization failures only
cases where inlining was considered by the compiler, but
ultimately decided against. We identify the code paths where
inlining is decided against and add logging to them. As in the
case of inlining successes, we log the name of the candidate
and the call site. In addition, we also log the cause of failure
to provide an explanation to the user. The most likely cause
of failure is the inliner running out of fuel. To avoid code
size explosions, each call site is given a limited amount of
fuel, and inlining a function inside this call site consumes
a quantity of fuel proportional to the size of the function
being inlined. If the inliner runs out of fuel for a specific
instance, it is not performed and the optimization fails. For
these kinds of failures, we also log the size of the function
being considered for inlining, as well as the remaining fuel.

Here is an excerpt from the inliner log produced when
compiling the binarytrees benchmark from section 9:

mzc: no inlining, out of fuel #(for-loop 41:6)
in #(main 34:0) size=77 fuel=8

mzc: inlining #(loop 25:2) in #(check 24:0)
mzc: inlining #(loop 25:2) in #(check 24:0)
mzc: no inlining, out of fuel #(loop 25:2)
in #(check 24:0) size=28 fuel=16

mzc: inlining #(check 24:0) in #(for-loop 46:1)
mzc: no inlining, out of fuel #(check 24:0)
in #(for-loop 46:18) size=31 fuel=24

6. Optimization Analysis
Compiling a program with an instrumented compiler gen-
erates a log of optimization-related decisions. We use this
log as a starting point to generate a high-level optimization
report for the programmer.

Optimization logs are not directly suitable for user con-
sumption due to several reasons. First, the sheer amount of
data in these logs makes it hard to visualize the optimization
process. Indeed, large portions of that information turn out
to be irrelevant.

Second, some optimizations are related by causality: one
optimization can open up further optimization opportunities,
or an optimization failure may prevent other optimizations
from happening. In these cases, presenting a combined re-
port of the related optimizations yields more useful informa-
tion than reporting them individually. Otherwise, Optimiza-
tion Coach would shift the burden of establishing causality
to the programmer, which we consider unacceptable.

Finally, some optimizations are related by locality: mul-
tiple optimizations are applied to one piece of code or
the same piece of code triggers optimizations in different
places. Again, aggregated information about these optimiza-
tion events helps summarize information.

In the remainder of this section, we explain the three main
phases of the optimization analysis in general terms. The last
two subsections illustrate them with concrete examples.

6.1 Log Pruning
The sheer amount of log data calls for criteria that discrimi-
nate good opportunities from irrelevant information. For the
former, we introduce the notion of optimization proximity;
for the latter, we use three ground rules.

Optimization proximity is an optimization-specific metric
that measures how close an optimization is from happening.
For a particular optimization, it might be derived from the
number of program changes that would be necessary to
trigger the optimization of interest. Log entries with close
proximity are retained, others are pruned from the log.

Some log entries are considered incomprehensible be-
cause they are about code that is not present in the orig-
inal program. Such code might be introduced by macro-
expansion or by previous optimization passes. Since the
main goal of optimization coaching is to help programmers
adapt their code to enable further compiler optimization, it is
of limited usefulness to report about code that is not present
in source programs.

Other optimization failures are considered irrelevant be-
cause the non-optimized semantics is likely to be desired by
design. For example, reporting that an addition could not be
specialized to floating-point numbers is irrelevant if the ad-
dition is used in a generic way. Presenting recommendations
that programmers are most likely to reject is unhelpful, so
we prune these kinds of reports.

Finally, we prune harmless optimization failures, a kind
that we associate with opportunities due to actual opti-
mizations. Consider a loop that is unrolled several times—
eventually, unrolling must stop. This final decision is still
reported in the log as an optimization failure, because the
optimizer considered unrolling further but decided against
it. It is a harmless failure, however, because loop unrolling
cannot go on forever. These failures and others like them are
therefore pruned from the logs.

6.2 Causality Merging
Once the log has been pruned, the optimization analyzer tries
to detect clusters of optimization events that are related by
causality. It consolidates these clusters into a single opti-
mization event. We call this step causality merging. Our no-
tion of causality heavily relies on the concept of irritant. In
the case of some optimizations, we can relate an optimiza-
tion failure for a term to one or several of its subterms. These
subterms may have the wrong shape or the wrong type.

Since irritants are terms, they can themselves be the sub-
jects of optimization failures, meaning they may contain irri-
tants. All these related optimization failures are grouped into
a tree. Each failure becomes a node, and its irritants become
children. Irritants that do not contain irritants form the leaves
of the tree; they are the initial causes of the optimization fail-
ure. The optimization failure that is caused by all the others
becomes the root of the tree. The entire tree can be merged
into a single entry, with the root of the tree as its subject and

the leaves as its irritants. The intermediate nodes of the tree
can be safely ignored since they are not responsible for the
failure; they only propagate it.

Causality merging reduces the size of the logs and helps
pinpoint the program points that cause optimization failures.
Furthermore, grouping these optimization events enables a
ranking of missed optimizations according to their impact on
the overall optimization status of the program. If we know
a subexpression heads a cascade of missed optimizations,
fixing it will have a significant impact. Thus, the size of the
irritant tree is used in the merged log entry as a badness
measure to formulate the presentation of the analysis results.

In addition to being useful for causality merging, the no-
tion of irritant is also useful to help explain optimization fail-
ures to the programmer and to synthesize recommendations.

6.3 Locality Merging
Next, the optimization coach synthesizes a single log entry
for clusters of optimization reports that affect the same piece
of code. Doing so helps formulate a coherent diagnosis about
all the optimizations that affect a given piece of code. We call
this phase locality merging.

Reports that are related by locality but concern unrelated
optimizations are still grouped together, but the grouping
process unions the reports without further analysis. These
groupings, while they do not infer new information, improve
the user interface by providing all the relevant information
about a piece of code in a single location.

This step also aggregates log entries that provide infor-
mation too low-level to be of use to the programmer directly.
New log entries report on these patterns and replace the low-
level entries in the log.

6.4 Analysis of Typed Racket Optimizations
Log pruning and causality merging are particularly relevant
in the context of the Typed Racket optimizer. In this section
we illustrate these concepts with concrete examples. For
instance, the following function

(: sum : (Listof Number) -> Number)
(define (sum list-of-numbers)
(if (null? list-of-numbers)

0
(+ (first list-of-numbers)

(sum (rest list-of-numbers)))))

uses + in a generic way. This code is not specialized by the
Typed Racket optimizer, creating the following log entry:

TR opt failure: sum-example.rkt 5:6
(+ (first list-of-numbers)

(sum (rest list-of-numbers)))
-- Number Number -- generic addition

Since the generic behavior is actually desired for sum, it
should not be eliminated by optimization. Optimization
analysis should therefore detect these cases and remove them
from the logs.

To trigger a specialization optimization, all the arguments
to a generic operation must be convertible to the same type,
and that type needs to be one for which a specialized version
of the operation is available. We define optimization proxim-
ity for this optimization to be the number of arguments that
would need to have a different type in order to reach a state
where optimization could happen.

For example, the combination of argument types

(+ Float Real)

is 1-close to being optimized, while this one

(+ Float Real Real)

is 2-close, and thus further from being optimized, since
addition cannot be specialized for Real numbers, but can
be for Floats. Only optimization failures within a specific
proximity threshold are kept. Our prototype uses a threshold
of 1 for this optimization, which works well in practice. The
generic addition in the sum function above has a 2-close
measure and is therefore ignored by Optimization Coach.

Our Typed Racket prototype also provides examples
of causality merging. Let us consider the last part of the
pseudo-random number generator from section 3:

(/ (* max last) IM)

While max is of type Float, last and IM have type In-
teger. Therefore, the multiplication cannot be specialized,
which causes the type of the multiplication to be Real. This
type, in turn, causes the division to remain generic. Here is
the relevant excerpt from the logs:

TR opt failure: prng-example.rkt 11:5
(* max last)
-- Float Integer -- generic multiplication

TR opt failure: prng-example.rkt 11:2
(/ (* max last) IM)
-- Real Integer -- generic division

The subject of the multiplication entry is an irritant of the
division entry. Optimization Coach joins the two entries in a
new one: the entire division becomes the subject of the new
entry with last and IM as irritants.

6.5 Analysis of Racket Inlining Optimizations
Optimization log entries from the Racket inliner provide two
main pieces of information: which function is inlined, and at
which call site it is inlined. On one hand, this information is
not especially enlightening to users. On the other hand, for
widely used functions, it is likely that there is a large number
of such reports; the number of inlining reports grows with
the number of call sites of a function.

Clusters of log entries related to inlining the same func-
tion are a prime target for locality merging. Locality merging
provides an aggregate view of a function’s inlining behavior.
Based on the ratio of inlining successes and failures, Opti-
mization Coach decides whether the function as a whole is
successful with regards to inlining or not.

Figure 8: Optimization Coach ordering near misses by predicted importance (with focus on add-discount-and-sales-
tax); the most important near miss is in a darker shade of red and the least important one is in a lighter shade of red

A function with a high success to failure ratio is reported
as an inlining success. In contrast, a function for which in-
lining failures outnumber sucesses is reported as a potential
point for improvement. This ratio is also used to compute
the badness measure with which Optimization Coach ranks
the importance of optimization events. We determined the
threshold ratios for successes and failures empirically; thus
far, they have been accurate in practice.

In the case of failures the instrumented compiler also
logs the size of the function and the amount of fuel left.
This information can be used to assign a weight to specific
inlining failures before computing the above ratio. When
little fuel is left, only small functions can be inlined. In these
cases, the blame for the inlining failure lays more with the
call site than with the function being called. Therefore, these
failures should count for less than other failures; applying
such discount avoids penalizing the relevant function.

Since Racket is a mostly functional language, loops are
expressed as tail recursive functions; therefore, function in-
lining also expresses loop unrolling. An important role of
optimization analysis for the Racket inliner is to determine
which log entries were produced as part of loop unrolling
and which were produced as part of traditional inlining. This
analysis can only be performed post-facto because the same
code paths apply to both forms of inlining.

Considering unrolling and inlining separately has two
benefits. First, as previously mentioned, unrolling failures
are not usually problematic; any series of unrollings needs
to end in a failure. These failures should not be confused
with inlining failures, which may actually be problematic.
Treating failed unrollings separately avoids false positives,
which would lead to overly pessimistic reports. Second, ab-
sence of inlining successes for a given function is usually
more alarming than absence of unrollings. Confusing inlin-
ing and unrolling successes can lead to false negatives. A
function that is never inlined, but does get unrolled several
times, would be reported as an overall success. Fortunately,
considering an unrolling of a recursive function is a simple

and highly effective heuristic to identify loop unrollings. It
is accurate in practice and leads to improved analysis results.

7. Generating Recommendations
After optimization analysis, reports of success and failure
are at the appropriate level of abstraction. In this shape,
they are suitable for presentation to the programmer. Fur-
thermore, it is now possible to generate concrete advice from
these reports—when possible—to help programmers elimi-
nate optimization failures.

To identify the expressions for which to recommend
changes, the optimization coach reuses the concept of ir-
ritant. Recall that irritants are terms whose structure caused
optimization to fail. If these terms were changed to have
an appropriate structure, the optimizer would be able to ap-
ply transformations. Irritants are thus ideal candidates for
recommendation targets.

Determining the best change to a given irritant relies on
optimization-specific logic. Since each optimization has its
own failure modes, general rules do not apply here.

In some cases, generating recommendations is impossi-
ble, mostly due to the nature of an optimization or to the
particular term. Irritants are reported nonetheless; knowing
the cause of a failure may still help the programmer.

7.1 Recommendations for Typed Racket
In the context of Typed Racket, Optimization Coach’s rec-
ommendations suggest changes to the types of irritants. The
fixes are determined as part of the optimization analysis
phase. Recommendation generation for Typed Racket is
therefore a straightforward matter of connecting the facts
and presenting the result in an informative manner.

For example, when presented with the fixnum arithmetic
example from figure 3, Optimization Coach recommends
changing the type of i to Byte or Index. In the case of the
pseudo-random number generator from figure 5, Optimiza-
tion Coach recommends changing the types of the irritants
to Float to conform with max.

Figure 9: A function affected by both an optimization success and an optimization near miss

7.2 Recommendations for Inlining
Inlining is not as easy to control through changes in the
source program as Typed Racket’s type-driven optimiza-
tions. Therefore, recommendations relating to inlining op-
timizations are less precise than those for Typed Racket.

Since lack of fuel is the main reason for failed inlinings,
reducing the size of functions is the simplest recommenda-
tion. In some cases, it is possible to give the programmer
an estimate of how much to reduce the size of the function,
using its current size and the remaining fuel.

For languages with macros, an optimization coach can
also recommend turning a function into a macro, i.e., inlin-
ing it manually at all call sites. To avoid infinite expansion,
Optimization Coach recommends this action only for non-
recursive functions. Figure 7 shows examples of Optimiza-
tion Coach’s recommendations related to inlining.

8. User Interface
The integration of an optimization coach into the program-
mer’s workflow requires a carefully designed tool for pre-
senting relevant information. While the tool must present
some of the information immediately, it must hide other
pieces until there is a demand for it. In both cases, the pre-
sentation must remain easily comprehensible.

Optimization Coach is a plug-in tool for DrRacket (Find-
ler et al. 2002). As such a tool, Optimization Coach has ac-
cess to both the Racket and Typed Racket compilers and can
easily collect instrumentation output in a non-intrusive fash-
ion. At the press of a button, Optimization Coach compiles
the program, analyzes the logs, and presents the results.

As our screenshots show, Optimization Coach highlights
regions that are affected by either optimizations or near
misses. To distinguish the two, green boxes highlight opti-
mized areas and red boxes pinpoint areas affected by near

misses. If a region is affected by both optimizations and
missed optimizations, a red highlight is used; missed opti-
mizations are more cause for concern than optimizations and
should not be hidden. The scale-y-coordinate function
from figure 9 contains both an optimization success—taking
the first element of its input list—and an optimization near
miss—scaling it by a floating-point factor.

The user interface uses different shades of red to express
an ordering of near misses according to the number of op-
timization failures involved. Optimization Coach uses the
badness measure introduced in section 6.2 to generate this
ordering. Figure 8 shows ordering in action; the body of
add-sales-tax contains a single near miss and is there-
fore highlighted with a lighter shader of red, distinct from
the body of add-discount-and-sales-tax, which con-
tains two near misses.

Clicking on a region brings up a tool-tip that enumerates
and describes the optimization events that occurred in the re-
gion. The description includes the relevant code, which may
be a subset of the region in the case of nested optimizations.
It especially highlights the irritants and, with these, explains
the event. Finally, the window also comes with recommen-
dations when available.

9. Evaluation
To validate our optimization coach empirically, we con-
ducted two experiments to confirm that our optimization
coach can find critical optimizations and that following its
recommendation improves the performance of programs.
First, we ran Optimization Coach on non-optimized ver-
sions of five small benchmarks from the Computer Lan-
guage Benchmark Game,2 followed the recommendations,
measured the performance of the resulting programs, and

2 http://shootout.alioth.debian.org

http://shootout.alioth.debian.org

binarytrees
heapsort

mandebrot
moments

nbody

0

0.2

0.4

0.6

0.8

1

Non-
optimized
Recommenda
tion-
optimized
Hand-
optimized

binarytrees
heapsort

mandebrot
moments

nbody

0

0.2

0.4

0.6

0.8

1

Non-
optimized
Tool-
optimized
Hand-
optimized

binarytrees
heapsort

mandebrot
moments

nbody

0

0.2

0.4

0.6

0.8

1

Non-
optimized
Tool-
optimized
Hand-
optimized

Figure 10: Optimization Coach’s impact on benchmarks
(smaller is better)

compared it to versions of the programs that had been hand-
optimized by experts. Second, we identified two small but
performance-intensive Racket applications and used Opti-
mization Coach to identify missed optimizations.3

9.1 Benchmarks
The selected benchmark programs were highly tuned by ex-
pert Racket programmers. For each program, we also bench-
mark the non-optimized version from which the highly-
optimized version is derived. Then we used the optimization
coach to construct a third version of each benchmark. Specif-
ically, we ran Optimization Coach on the non-optimized ver-
sion and followed all of its recommendations.

Figure 10 compares the running time of the three ver-
sions, and illustrates how close we get to the highly-tuned,
hand-optimized version of each benchmark just by follow-
ing Optimization Coach’s recommendations. On three of the
benchmarks, Optimization Coach’s recommendations trans-
late to significant performance improvements. On two of
these three, the Optimization Coach-optimized version is al-
most as fast as the hand-optimized version.

In addition to this quantitative evaluation, we performed
a qualitative evaluation by comparing the specific opti-
mizations recommended by Optimization Coach to those
performed by experts. For all the benchmarks, the hand-
optimized version includes all the optimizations recom-
mended by Optimization Coach. No false positives and no
novel optimizations were found. Experts also performed op-
timizations outside the domains covered by Optimization
Coach, suggesting potential areas for future improvements.

Here are specific comments on the benchmark programs:

3 See http://github.com/stamourv/oopsla2012-benchmarks for
the complete code for the experiments. All our benchmarking timings report
the average of 10 runs on a 2.50GHz Intel Core 2 Quad 8300 processor with
2 GB of memory running Ubuntu 11.10.

binarytrees Optimization Coach does not provide useful
recommendations for improving optmization. However, it
does confirm that all helper functions are inlined as expected.
The performance gains observed in the hand-optimized ver-
sions come almost entirely from a single optimization: all
the data structures were changed from structures to vectors,
which have a lower allocation overhead. This transforma-
tion is not worth recommending in general because struc-
ture semantics is often desirable. However, an optimization
coach with access to profiling information could recommend
changing structures to vectors if structures are allocated in a
hot loop. This integration is a key area of future work.

heapsort Optimization Coach finds most of the optimiza-
tions present in the hand-optimized version. The heapsort
implementation is written in Typed Racket and most opti-
mizations are type-related. Optimization Coach successfully
recommends changing types and inserting coercions in all
the places where the expert programmer inserted them. Man-
ual vector bounds-check elimination explains the remaining
performance gains in the hand-optimized version.

mandelbrot The hand-optimized version benefits from two
major optimizations: the manual inlining of a helper function
too large to be inlined by the optimizer and the manual un-
rolling/specialization of an inner loop. Optimization Coach
detects that the helper function is not being inlined and rec-
ommends using a macro to force inlining, which is exactly
what the expert did. Optimization Coach does not recom-
mend manually unrolling the loop; its recommendation gen-
eration process does not extend to unrolling.

moments The expert-optimized version of the moments
benchmark, which also uses Typed Racket, includes replac-
ing types with low optimization potential with types with
greater potential. In places, this transformation involves
adding dynamic coercions to the desired type when the type
system cannot guarantee the desired type bound. Optimiza-
tion Coach recommends the same type changes performed
by the expert. However, Optimization Coach’s recommenda-
tions do not place the coercions in the same locations as the
expert’s. The expert placed the coercions in locations where
their runtime overhead is low, which is responsible for the
performance gains of the hand-optimized version over the
Optimization Coach-optimized version.

nbody Optimization Coach identifies expressions where
the Typed Racket compiler must conservatively assume that
sqrt may produce complex numbers, leading to optimiza-
tion failures. Following Optimization Coach’s recommenda-
tions, we replaced uses of sqrt by flsqrt, which is guar-
anteed to return floating-point numbers, leading to another
optimization visible in the hand-optimized version. The rest
of the performance improvements in the hand-optimized ver-
sion are due to replacing structures and lists with vectors, as
in binarytrees.

https://github.com/stamourv/oopsla2012-benchmarks

codec Ray-tracer

0

0.2

0.4

0.6

0.8

1

Non-
optimized
Tool-
optimized

codec ray-tracer

0

0.2

0.4

0.6

0.8

1

Non-
optimized
Tool-
optimized

video ray-tracer

0

0.2

0.4

0.6

0.8

1

Non-
optimized
Tool-
optimized

video ray-tracer

0

0.2

0.4

0.6

0.8

1

Original
Tool-
optimized

video-chat ray-tracer

0

0.2

0.4

0.6

0.8

1

Original
Tool-
optimized

Figure 11: Optimization Coach’s impact on full applications
(smaller is better)

9.2 Full Applications
To measure Optimization Coach’s effectiveness in a realis-
tic setting, we applied it to two Racket applications: a simple
video chat client written by Tony Garnock-Jones (Northeast-
ern University Programming Research Lab) and a ray tracer
for rendering icons written by Neil Toronto (Brigham Young
University). Messrs. Garnock-Jones and Toronto are highly
experienced Racket programmers, and both worked hard to
make their applications performant.

Our experiment proceeded as follows. First, we ran Opti-
mization Coach on each code base. Second, we modified the
programs following the recommendations that Optimization
Coach considered most important. Finally, we measured the
performance impact of the changes using the same setup as
the benchmark measurements. Figure 11 shows our perfor-
mance measurements, in the same format as figure 10.

Video Chat The first application we studied is a simple
video chat client. For scale, the chat client is 860 lines of
Racket code. We focused our effort on the simple differential
video coder-decoder (codec) in the client. To measure the
performance of each version of the codec, we timed the
decoding of 600 pre-recorded video frames. The code mostly
consists of bitwise operations on pixel values. Optimization
Coach uncovered additional opportunities for the Racket
optimizer.

The decoding computation is spread across several helper
functions. Optimization Coach confirmed that Racket in-
lines most of these helper functions, avoiding extra func-
tion call overhead and enabling other optimizations. How-
ever, the three largest helper functions (kernel-decode,
clamp-pixel and integrate-delta) were either not in-
lined to a satisfactory level or not inlined at all. Optimization
Coach predicted that inlining kernel-decode and clamp-
pixel would have the biggest impact on performance and

highlighted them in a darker shade of red than integrate-
delta, as decribed in section 8.

We followed these two recommendations, turning both
helper functions into macros. Each change was local, re-
quired only a change to a single line of code and did not
require understanding the behavior of the function or its role
in the larger computation. These two changes are solely re-
sponsible for the speedup shown in figure 11.

Afterwards, we followed the last, weaker, recommenda-
tion: inlining integrate-delta. The impact on perfor-
mance was negligible. This suggests that, at least for this
program, Optimization Coach’s recommendation ordering
heuristics are accurate and useful in practice. However, the
tool can order recommendations only relative to each other.
After the important recommendations were followed, it be-
came impossible to tell whether the impact of the last one
would be significant. This points out an interesting limi-
tation. Running Optimization Coach on programs with lit-
tle potential for optimization is likely to yield only low-
impact recommendations, but programmers cannot learn this
by looking at the output of the tool alone. Addressing this
limitation calls for future work, possibly the integration of a
profiling tool.

Ray Tracer The second application we studied is a ray
tracer that is used to render the logos and icons used by
DrRacket and the Racket website. For scale, the ray tracer
is 3,199 lines of code. It supports a wide variety of features,
such as refraction, multiple highlight and reflection modes,
plus text rendering.

Over time, most icons in the Racket codebase have been
ported to use this ray tracer, and it eventually became a bot-
tleneck in the Racket build process. Its author spent signifi-
cant time and effort4 to improve its performance.

To determine whether an optimization coach would have
helped him, we attempted to optimize the original version of
the ray tracer ourselves using Optimization Coach. For our
measurements, we rendered a 600 × 600 pixel logo using
each version of the ray tracer.

Starting from the original version of the ray tracer, we
ran Optimization Coach on the files containing the core of
the computation. Optimization coach identified three helper
functions that Racket failed to inline. We followed its rec-
ommendations by turning the three functions into macros.
As with the video codec, the changes were local and did not
require knowledge of the code base. Furthermore, diagnosis
was entirely automatic; the tool pinpointed the exact location
of the recommended change.

The ray tracer’s author had independently performed
the same changes, which were responsible for most of the
speedups over his original ray tracer. Optimization Coach
successfully identified the same sources of the performance

4 Leading to the discussion mentioned in the introduction.

bugs as a Racket expert and provided solutions, making a
strong case for the effectiveness of optimization coaching.

10. Related Work
Optimization coaching assists programmers with finding
missed optimizations and gives suggestions on how to en-
able them. We briefly survey previous efforts that pursue
related goals.

10.1 Profilers
Programmers use profilers (Altman et al. 2010; Ammons et
al. 2004; Jovic et al. 2011) heavily when diagnosing perfor-
mance issues. Profilers answer the question

Which pieces of the program take a long time?

but programmers still need to determine which parts of a pro-
gram take an abnormally long time before they can address
performance issues.

Optimization coaches, in contrast, answer a different
question, namely

Which pieces could still be optimized?

and the answers identify the location of potential code im-
provements. Optimization coaches are unaware of which
parts of the program are heavily executed, though, and may
suggest recommendations about infrequently used regions.
Such recommendations are unlikely to lead to significant
performance improvements. Similarly, optimization coaches
may recommend performing optimizations that, despite ap-
plying to hot code, have only minimal effect on performance.

It is up to programmers to judge which recommendations
are likely to have a significant impact on the resulting per-
formance of the program and to focus on those. This duality
suggests that profilers and optimization coaches are comple-
mentary tools and should be used together. Combining the
two into a single, unified tool is a direction for future work.

Furthermore, for profilers to produce meaningful output,
they need to run programs with representative input, but
performance-heavy inputs may appear only after deploy-
ment, at which point fixing performance bugs becomes sig-
nificantly more expensive than during development. In con-
trast, optimization coaching operates statically, in the ab-
sence of program input. Then again, an optimization coach
reports observations about the optimizer’s omissions, and a
fix may or may not impact the performance of the program.

Finally, profilers also do not interpret their results to ex-
plain what causes specific program regions to be slow nor
do they provide recommendations for improvement. The
Zoom5 system-wide profiler is an exception, providing hints
to programmers about possibly slow operations. However,
Zoom describes their operations at the assembly instruc-
tion level, which makes it challenging for programmers—

5 http://www.rotateright.com/zoom.html

especially for non-experts—to act on these recommenda-
tions using a high-level language.

10.2 Analysis Visualization
A large number of tools exist for visualizing analysis results,
of which MrSpidey (Flanagan et al. 1996) is an early ex-
ample. Some of these tools focus on helping programmers
understand and debug their programs; others help compiler
writers understand and debug their analyses.

Two recent efforts additionally aim to help programmers
optimize their programs. Lhoták’s work (Lhoták et al. 2004;
Shaw 2005) introduces a plug-in for the Eclipse IDE that
displays the results of static analyses computed by Soot
(Vallée-Rai et al. 2000), an optimization framework for Java
bytecode. While most of these visualizations are targeted at
compiler researchers or students learning about compilers,
their visualization (Shaw (2005), page 87) of Soot’s array
bounds check analysis (Qian et al. 2002) informs program-
mers about provably safe array accesses. Similarly, their vi-
sualization of loop invariants (Shaw (2005), page 99) high-
lights expressions that, according to Soot’s analysis, can
safely be hoisted out of the loop by the compiler.

Although these visualizations are relevant for program-
mers concerned with optimization, they differ from those of
an optimization coach in two major ways. First, they report
the results of an analysis, not those of the optimizer. The two
are closely related,6 but analysis information is only a proxy
for the decisions of the optimizer.

Second, while Lhoták’s tool reports potentially unsafe
array accesses—and explains which bounds are to blame—
it does not attempt to distinguish between expected failures
and near misses. In contrast to Optimization Coach, it also
fails to issue recommendations concerning which piece of
code needs to change to eliminate the array bounds check.

JIT Inspector7 is a Firefox extension that provides opti-
mization metrics for JIT-compiled Javascript code. Most im-
portantly, it provides information about whether operations
are executed in JIT code or whether they require calls to the
runtime system.

In addition, JIT Inspector gives programmers some in-
sight into the type inference (Hackett and Guo 2012) process
that the SpiderMonkey JIT compiler uses to guide optimiza-
tion. Like the Soot-Eclipse plug-in, however, JIT Inspector
presents the results of an analysis not those of the optimizer.

10.3 Compiler Logging
Several compilers implement logging in their optimizers,
e.g., GCC (The Free Software Foundation 2012) supports
the -ftree-vectorizer-verbose flag for its vector-
izer. Similarly, GHC (The GHC Team 2011) provides the

6 We ignore the fact that, as implemented, the plugin uses its own instance
of Soot (Shaw (2005), page 15), that may not reflect the analyses performed
by the compiler.
7 http://addons.mozilla.org/firefox/addon/jit-inspector/

http://www.rotateright.com/zoom.html
https://addons.mozilla.org/firefox/addon/jit-inspector/

-ddump-rule-firings flag that enumerates the rewrit-
ing rules that it applies to its input program. SBCL (The
SBCL Team 2012) goes one step further and also logs some
optimization failures, such as failures to specialize generic
operations or to allocate some objects on the stack.

The logged information of these compilers is similar to
the result of the logging phase of our optimization coach.
This information can be useful to expert programmers with a
solid understanding of the compiler internals, but without the
interpretive phases of an optimization coach, it is not suitable
for non-expert programmers or for casual use.

The FeedBack compiler (Binkley et al. 1998), based on
lcc (Fraser and Hanson 1995), improves on compiler log-
ging by visualizing the optimizations it applies to programs.
It was primarily designed to help students and compiler
writers understand how specific optimizations work. Implic-
itly, it also informs programmers of the optimizations ap-
plied to their programs. The Feedback Compiler’s visual-
izations illustrate two optimizations: a stepper-like interface
that replays common subexpression elimination events and
a graphical representation of array traversals affected by it-
eration space reshaping (Wolfe 1986).

While the output of the FeedBack compiler is easier to
understand than a textual log, the tool suffers from most of
the same problems as optimization logging. It directly re-
ports optimization events, without post-processing or filter-
ing them, leaving the interpretation step to programmers. It
also does not detect or report near misses; optimization fail-
ures must be inferred by programmers from the absence of
optimization reports.

10.4 Other Tools
Jin et al. (2012) extract source-based rules from known per-
formance bugs in various applications, then use these rules
to detect previously unknown performance bugs in other ap-
plications. When their rules uncover matches, their tools rec-
ommend the change that fixed the original bug as a potential
solution for the newly discovered bug.

Their corpus of rules successfully discovers potential per-
formance bugs, which their suggestions can fix. Their work
focuses on algorithmic and API usage-related performance
bugs and is complementary to optimization coaching.

Kremlin (Garcia et al. 2011) is a tool that analyses pro-
gram executions and generates recommendations concern-
ing parallelization efforts. Like an optimization coach, the
Kremlin tool issues program-specific recommendations but,
in contrast to an optimization coach, it works dynamically.
Like a profiler, it requires representative input to produce
meaningful results, which exposes it to the same limitations
and criticisms as profilers. Finally, Kremlin is a special-
purpose tool; it is unclear whether its techniques would ap-
ply to other optimization domains.

11. Future Work
Optimization coaching should apply beyond the optimiza-
tions covered here. In this section, we discuss several stan-
dard optimizations and describe how optimization coaching
may apply. For each optimization, we explain its purpose
and prerequisites. We then propose a way of detecting near
misses of this kind of optimization, which is usually but not
always based on optimization proximity. Finally, we sketch
ideas for how a programmer could react to a near miss.

Common Subexpression Elimination (CSE) CSE (Much-
nick (1997), §13.1) is only valid if the candidate expressions
do not depend on variables that may be mutated.

An optimization coach can detect cases where an ex-
pression is computed multiple times—and is a candidate for
CSE—but a reference to a mutated variable prevents the op-
timization from happening. The optimization coach could
recommend that the programmer reconsider mutating the
relevant variable.

Test Reordering Conditionals with multiple conjuncts can
be optimized by performing the cheaper tests (e.g. integer
comparisons) before the more expensive ones (e.g. unknown
function calls). This optimization (Muchnick (1997), §12.3)
is only valid if the reordered tests are pure.

Counting the number of impure tests should identify near
misses; specifically, the lower the ratio of impure tests to the
total number of tests, the closer the optimizer is to triggering
the reordering. To further rank missed optimizations, an
optimization coach can take into account the size of the body
of the conditional because the cost of the condition matters
more for small conditionals. When reporting near misses, the
optimization coach can recommend making the problematic
tests pure or reordering them manually.

Scalar Replacement A scalar replacement optimization
(Muchnick (1997), §20.3) breaks up aggregates, e.g., struc-
tures or tuples, and stores each component separately. Like
inlining, scalar replacement is mostly useful because it opens
up further optimization possibilities and reduces allocation.
Scalar replacement is performed only when the target aggre-
gate does not escape.

Typed Racket performs scalar replacement on complex
numbers. Optimization Coach reports when and where the
optimization triggers, but it does not currently detect near
misses or provide recommendations.

An optimization coach could use the ratio of escaping use
sites to non-escaping use sites of the aggregate as a possible
optimization proximity metric. This metric can be refined by
considering the size of the aggregate: breaking up larger ag-
gregates may enable more optimizations than breaking up
smaller ones. When it does discover near misses, the opti-
mization coach can recommend eliminating escaping uses
or manually breaking up the aggregate.

Loop-Invariant Code Motion (LICM) A piece of code is
loop-invariant (Muchnick (1997), §13.2) if all reaching def-

initions of variables in the piece of code come from outside
the loop. If one or more relevant definitions come from in-
side the loop, the optimization is inapplicable.

A potential proximity metric for LICM would measure
how many problematic assignments in the body of the loop
could potentially be avoided. This can be refined by also
considering the ratio of assignments and references inside
the loop for problematic variables. Variables that are used
often and mutated rarely are more easily made loop-invariant
than those that are mutated often. When presenting such near
misses, the optimization coach could recommend avoiding
the problematic assignments or performing the code motion
manually. Assignments to loop index variables cannot be
avoided, however; attempting to make them loop-invariant
would defeat the purpose of using a loop. Such necessary
assignments can be recognized and should not count towards
the optimization proximity metric.

Devirtualization In object-oriented languages, a method
call can be turned into a direct procedure call if its receivers
belong to one single class. The transformation avoids the
cost of runtime dispatch (Dean et al. 1995). If the receivers
belong to a small set of classes, the compiler can inline a
small type-case at the call site, which is still cheaper than
full-fledged method dispatch. If the set of classes is too large,
the compiler uses general dispatch.

An obvious proximity metric for devirtualization would
be the number of receiver classes minus the maximum for
which the optimizer generates a type-case. In cases where
this number is small, the optimization coach can recommend
using more precise type annotations to narrow down the type
of the receiver or writing the type-case manually.

Reducing Closure Allocation When a compiler decides
whether—and where—to allocate closures, they take into
account a number of factors (Adams et al. 1986). A closed
function corresponds to just a code pointer. A non-escaping
function can have its environment allocated on the stack,
avoiding heap allocation. Efficient treatment of closures is
a key optimization for functional languages.

An optimization coach could warn programmers when
the compiler needs to allocate closures on the heap. For
instance, storing a function in a data structure almost always
forces it to be allocated on the heap. An optimization coach
can remind programmers of that fact, and encourage them to
avoid storing functions in performance-sensitive code.

To reduce the number of false positives, the optimization
coach can discard reports that correspond to common pat-
terns where heap allocation is desired, such as functions that
mutate variables from their lexical context.

Specialization of Polymorphic Containers Polymorphic
containers, such as lists, usually require a uniform repre-
sentation for their contents, in order for operations such as
map to operate generically. In some cases, however, a spe-
cialized representation e.g., a list of unboxed floating-point

numbers, can be more efficient. Leroy (1992) and Shao and
Appel (1995) propose optimizations that allow specialized
representations to be used where possible and to fall back on
uniform representations when not. To avoid excessive copy-
ing when converting between representations, these opti-
mizations are typically applied only when the element types
are sufficiently small. For example, a list of 4-tuples may be
specialized, but not a list of 5-tuples.

An optimization coach could communicate to the pro-
grammer which datatypes are not specialized and report how
much they need to be shrunk to enable optimization.

Case-of-Case Transformation The case-of-case transfor-
mation (Peyton Jones 1996) rewrites nested pattern match-
ing of the form (in Haskell syntax)

case (case E of {P1 -> R1; P2 -> R2}) of
{Q1 -> S1; Q2 -> S2}

to this form

case E of {P1 -> case R1 of {Q1 -> S1; Q2 -> S2};
P2 -> case R2 of {Q1 -> S1; Q2 -> S2}}

which potentially exposes more optimization opportunities.
This transformation may lead to code duplication—just

as with inlining—and may generate extra closures for join
points. Whether it is worth performing depends on the op-
timizations it enables, and compilers must resort to heuris-
tics. As with inlining, an optimization coach can report cases
where the case-of-case transformation is possible but ulti-
mately not performed, along with the cause of the failure.

12. Conclusion
In this paper, we identify an unfilled niche in the program-
ming ecosystem—feedback from the compiler’s optimizer
concerning successes and failures of specific optimizing
transformations. Currently, if a programmer wishes to un-
derstand how the compiler views a program, the best option
is to study the compiler’s generated code. We propose an
alternative technique: optimization coaching. Our first opti-
mization coach operates at compile time and provides de-
tailed, program-specific information about the optimizer’s
actions and omissions.

In addition to reporting optimization successes and fail-
ures, our tool generates recommendations as to what changes
would allow optimizations. By applying these suggestions
to a variety of programs, we show that optimization coach-
ing can automatically identify crucial optimization opportu-
nities. Reacting to its recommendations can often recover
many of the performance gains available to manual opti-
mization by an expert.

Acknowledgments We gratefully acknowledge Matthew
Flatt’s help with Racket’s optimizer. Robby Findler sug-
gested working with the Racket inliner. The OOPSLA re-
viewers, including James Noble, helped us hone our ideas.

Software Optimization Coach is available in version 5.3 of
DrRacket (August 2012) at http://racket-lang.org.

Bibliography
Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul

Hudak, and James Philbin. ORBIT: an optimizing compiler for
Scheme. In Proc. Symp. on Compiler Construction, 1986.

Erik Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell.
Performance analysis of idle programs. In Proc. Conf. Object-
Oriented Programming Systems, Languages, and Applications,
pp. 739–753, 2010.

Glenn Ammons, Jong-Deok Choi, Manish Gupta, and Nikhil
Swamy. Finding and removing performance bottlenecks in large
systems. In Proc. European Conf. on Object-Oriented Program-
ming, pp. 172–196, 2004.

Andrew Appel and Trevor Jim. Continuation-passing, closure-
passing style. In Proc. Symp. on Principles of Programming
Languages, pp. 293–302, 1989.

David Binkley, Bruce Duncan, Brennan Jubb, and April Wielgosz.
The FeedBack compiler. In Proc. International Works. on Pro-
gram Comprehension, pp. 198–206, 1998.

John Clements, Matthew Flatt, and Matthias Felleisen. Modeling
an algebraic stepper. In Proc. European Symp. on Programming,
pp. 320–334, 2001.

Ryan Culpepper and Matthias Felleisen. Debugging hygienic
macros. Science of Computer Programming 75(7), pp. 496–515,
2010.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis.
In Proc. European Conf. on Object-Oriented Programming, pp.
77–101, 1995.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias
Felleisen. DrScheme: a programming environment for Scheme.
J. of Functional Programming 12(2), pp. 159–182, 2002.

Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi,
Stephanie Weirich, and Matthias Felleisen. Catching bugs in
the web of program invariants. In Proc. Conf. on Programming
Language Design and Implementation, pp. 23–32, 1996.

Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-
2010-1, 2010. http://racket-lang.org/tr1/

Agner Fog. Software optimization resources. 2012. http://www.
agner.org/optimize/

Christopher W. Fraser and David R. Hanson. A Retargetable C
Compiler: Design and Implementation. Addison-Wesley, 1995.

Saturnino Garcia, Donghwan Jeon, Chris Louie, and Michael Bed-
ford Taylor. Kremlin: rethinking and rebooting gprof for the
multicore age. In Proc. Programming Language Design and Im-
plementation, pp. 458–469, 2011.

Brian Hackett and Shu-Yu Guo. Fast and precise type inference for
JavaScript. In Proc. Conf. on Programming Language Design
and Implementation, pp. 239–250, 2012.

William von Hagen. The Definitive Guide to GCC. Apress, 2006.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and
Shan Lu. Understanding and detecting real-world performance
bugs. In Proc. Conf. on Programming Language Design and
Implementation, pp. 77–88, 2012.

Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch me
of you can: performance bug detection in the wild. In Proc.
Conf. Object-Oriented Programming Systems, Languages, and
Applications, pp. 155–170, 2011.

Donald E. Knuth. An empirical study of FORTRAN programs.
Software—Practice and Experience 1, pp. 105–133, 1971.

Xavier Leroy. Unboxed objects and polymorphic typing. In Proc.
Symp. on Principles of Programming Languages, pp. 177–188,
1992.

Peter A. W. Lewis, A. S. Goodman, and J. M. Miller. A pseudo-
random number generator for the System/360. IBM Systems
Journal 8(2), pp. 136–146, 1969.

Jennifer Lhoták, Ondřej Lhoták, and Laurie J. Hendren. Integrating
the Soot compiler infrastructure into an IDE. In Proc. Symp. on
Compiler Construction, pp. 281–297, 2004.

Stephen S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan-Kaufmann, 1997.

Simon L Peyton Jones. Compiling Haskell by program transfor-
mation a report from the trenches. In Proc. European Symp. on
Programming, pp. 18–44, 1996.

Feng Qian, Laurie J. Hendren, and Clark Verbrugge. A compre-
hensive approach to array bounds check elimination for Java. In
Proc. Symp. on Compiler Construction, pp. 325–342, 2002.

Manuel Serrano. Inline expansion: when and how. In Proc. Inter-
national Symp. on Programming Language Implementation and
Logic Programming, pp. 143–147, 1997.

Zhong Shao and Andrew Appel. A type-based compiler for stan-
dard ML. In Proc. Conf. on Programming Language Design and
Implementation, pp. 116–129, 1995.

Jennifer Elizabeth Shaw. Visualisation Tools for Optimizing Com-
pilers. MS dissertation, McGill University, 2005.

Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and
Matthias Felleisen. Typing the numeric tower. In Proc. Inter-
national Symp. on Practical Aspects of Declarative Languages,
pp. 289–303, 2012.

The Free Software Foundation. GCC 4.7.0 Manual. 2012.
The GHC Team. The Glorious Glasgow Haskell Compilation Sys-

tem User’s Guide, Version 7.4.1. 2011.
The SBCL Team. SBCL 1.0.55 User Manual. 2012.
Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,

Matthew Flatt, and Matthias Felleisen. Languages as libraries.
In Proc. Programming Language Design and Implementation,
pp. 132–141, 2011.

Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
Patrice Pominville, and Vijay Sundaresan. Optimizing Java
bytecode using the Soot framework: is it feasible? In Proc.
Symp. on Compiler Construction, pp. 18–34, 2000.

Michael Wolfe. Loop skewing: the wavefront method revisited. J.
of Parallel Programming 15(4), pp. 279–293, 1986.

Nicholas C. Zakas. High Performance JavaScript. O’Reilly, 2010.

http://racket-lang.org
http://racket-lang.org/tr1/
http://www.agner.org/optimize/
http://www.agner.org/optimize/

	1 Compilers: A Dialog with Programmers
	2 Goals and Overview
	3 The Typed Racket Compiler
	4 The Racket Compiler
	5 Optimizer Instrumentation
	5.1 Instrumentation of Typed Racket
	5.2 Instrumentation of the Racket Inliner

	6 Optimization Analysis
	6.1 Log Pruning
	6.2 Causality Merging
	6.3 Locality Merging
	6.4 Analysis of Typed Racket Optimizations
	6.5 Analysis of Racket Inlining Optimizations

	7 Generating Recommendations
	7.1 Recommendations for Typed Racket
	7.2 Recommendations for Inlining

	8 User Interface
	9 Evaluation
	9.1 Benchmarks
	9.2 Full Applications

	10 Related Work
	10.1 Profilers
	10.2 Analysis Visualization
	10.3 Compiler Logging
	10.4 Other Tools

	11 Future Work
	12 Conclusion

