
Proofs; appendix for “Chaperones and Impersonators: Run-time
Support for Reasonable Interposition”

Version 5.3.0.16

August 4, 2012

The definition of the approximates relation:

������������������� = ����������������� ��� ��� ��� �� ��

���������������� ��� �� ��� ��� �� ���� �� ��� ��� ��� �� �����

���������������� ��� �� ��� ��� �� ���� �� ��� ��� ��� �� �����

��������������������� ��� ������� ��� ��� �� ���� �� ��� ��� ��� �� �����

������������������������������� ��� ������� ��� �� ��� ���� ��� ��� �� ���� �� ��� ��� ��� �� �����

������������������������������� ��� ���� ���� ��� ��� �� ���� �� ��� ��� ��� �� �����

�������������� ��� �� ��� ������������

������������������� ��� ����� ��� ��� �� ���� �� ��� ��� ��� �� �����

������������������ ���� ��� ��� ��� ��� �� ���� �� ��� ���������������� ��� ��� �� ���� ��

������������������������ � � �����������

������������������ ���� ��� ���� ���� ��� ��� �� ���� �� ��� ����������������������� ����� ��� ��� ����� ��� ��� �� ���� ��

������������������������ �� �������������������������������� �� �������������

������������������ ���� ��� ���� ���� ��� ���� ��� ��� ��� ��� ��� ��� ���� �� ��� ��� ���� ��� ��� ��� ��� ��� ��� �����

������������������ ���� ��� ���� ���� ��� ���� ��� ��� ��� ��� ��� ��� ���� �� ��� ��� ���� ��� ��� ��� ��� ��� ��� �����

������������������ ���� ��� ���� ���� ��� ���� ��� ��� ��� ��� ��� ��� ���� �� ��� ��� ���� ��� ��� ��� ��� ��� ��� �����

������������������ ���� ��� ���� ���� ��� ��� �� ���� �� ��� ����������������� ��� ���� ��� �� �� ���� ��

�������������������������������

��������������������� ��� ���� ���� ��� ������� ��� ���� ���� ��� ��� �� ���� �� ��� ������������������������������� ��� ��� ��� ��� �� ���� ��

����������������� ��� ��� ��� ��� �� ���� �� ��� ��� ��� �� �����

����������������� ����� ��� ��� ����� ��� ��� �� ���� �� ��� ����������������������� ����� ��� ��� ����� ��� ��� �� ���� ��

������������������ ���� ��� ���� ����� ��� ���� ���� ��� ���� ����� ��� ��� �� ���� �� ��� ����������������������� ��� ������������������� ��� ��� ��� ����� ��� ��� �� ���� ��

����������������� ��� ��� ����� ��� ��� ��� ��� ����� ��� ��� �� ���� �� ��� ������������������������ ��� ����� ��� ���� ��� ����� ��� ��� �� ���� ��

�������������������� ����������� ��� ������ ����������� ��� ��� �� ���� �� ��� ��� ��� �� �����

����������������� ��� ��� ��� ��� �� ���� �� ��� ��� ��� �� �����

����������������������� ��� ��� ��� ��� �� ���� �� ��� ��� ��� �� �����

����������������������� �� ����� ��� ��� �� ����� ��� ��� �� ���� �� ��� ����������������������� ����� ��� ��� ����� ��� ���� ��� ���� ��

���������� ���� ��� ������������������������� ��� ��� ��� ��� �� ���� ��

����������������������� �� ����� ��� ��� �� ����� ��� ��� �� ���� �� ��� ��� ���� ��� �����

���������� ���� ��� ������������������������� ��� ��� ��� ��� �� ���� ��

The definition of the immutable metafunction:

1

������������� ���� �� �� ��� ��

������������������������ � �����������

������������� ���� �� �� ��� ������������� � ��

������������������������ � � ���������

������������� � �� ��� ��

The definition of the equal metafunction:

��������� ��� �� �� ��� ��

���������� ��� �� ������������������ ��� ��� �� ��

���������� �� �� ��� �� ���� �� ��� ��� ��� �� �����

���������� ���� ���� ���� ���� ��� �� ���� �� ��� ��� ��� �� �����

��������������������� ��� ��� �� ���� ��

���������� ���� ���� ���� ���� ��� �� ���� �� ��� ���������� ���� ���� ���� ���� ��� �� ���� ��

������������������������ ���� ��� �� �����������

���������� ���� ���� ���� ���� ��� �� ���� �� ��� ���������� ���� ���� ���� ���� ��� �� ���� ��

������������������������ ���� ��� �� �����������

���������� ���� ���� ���� ���� ��� �� ���� �� ��� ���������� ���� ���� ���� ���� ��� �� ���� ��

�������������������������� ���� ��� �� �����������

���������� ���� ���� ���� ���� ��� �� ���� �� ��� ���������� ���� ���� ���� ���� ��� �� ���� ��

�������������������������� ���� ��� �� �����������

���������� ���� ���� ���� ���� ��� �� ���� �� ��� ����������� ���� ��� ����� ���� ��� �� �� ���� ��

�������������� �� ��������������������� �� ������������������ ������������ �����

���������� ���� ���� ���� ���� ��� �� ���� �� ��� ����������� ���� ��� ����� ���� ��� �� �� ���� ��

������������������������ �� ������������������������������� �� ������������������ ������������ �����

���������� ��� ��� ��� �� ���� �� ��� ��� ��� �� �����

����������� ��� ��� �� ���� �� ��� ��� ��� �� �����

����������� ����� ���� ���� ���� ����� ��� �� ���� �� ��� ����������� ����� ���� ����� ������ ����� ���� ��

���������� ������ ����� ������������������ ���� ���� ��� �� ���� ��

����������� ���� ��� ����� ��� �� ���� �� ��� ��� ��� �� �����

Store extension:

A store s’ is an extension of a store s (that is, s’ <= s) if
for all locations x in the domain of s, x is in the domain of s’, and
for all such locations:
1) s(x) = s’(x)
2) s(x) = (vector b v_1 ... v_n) and s’(x) = (vector b v’_1 ... v’_n).

(That is, shared locations must either contain the same term or a mutable
vector that cannot differ in either the boolean marker or the length, but
only in the stored contents.)

Theorem 1:

For all e, if e is a user-writeable program, Eval(e) = v, and that evaluation
contains no reductions where the left-hand side is of the form
(s #t (vector-set! (loc x) n v_a)) where s(x) = (vector #f v_v ...),
then Eval(|e|) = v.

(|e| is defined as e[chaperone-vector |-> (lambda (v x y) v)])

(e is user-writeable means e contains no uses of set-marker or clear-marker
and contains no values of the form (loc x).)

2

Lemma 1 (Substitution lemma):
For all e_1, s_1, e_2, s_2, x ..., e_3 ..., and e_4 ...:

if <e_1, s_1> ∼ <e_2, s_2> and <e_3, s_1> ∼ <e_4, s_4> ...
then <e_1[x |-> e_3, ...], s_1> ∼ <e_2[x |-> e_4, ...], s_2>.

Lemma 2 (approximations of unique decomposition):
For all e_1, s_1, e_2, s_2.

if <e_1, s_1> ∼ <e_2, s_2> and e_2 = E_2[e_4],
then e_1 = E_1[e_3], <E_1, s_1> ∼ <E_2, s_2>, and <e_3, s_1> ∼ <e_4, s_2>.

Lemma 3 (context filling honors approximation):
For all E_1, e_1, s_1, E_2, e_2, s_2.

if <e_1, s_1> ∼ <e_2, s_2> and <E_1, s_1> ∼ <E_2, s_2>,
then <E_1[e_1], s_1> ∼ <E_2[e_2], s_2>.

General argument for the next four lemmas: approximation ensures that
the combination of a value and a store has the same graph structure
(ignoring chaperones) as its approximate value/store. Thus, the
traversal of that graph structure done by immutable, equal, and
chaperone-of will reveal the same result on the approximate
value/store as the original value/store, since addition or removal of
chaperones does not affect the result of these operations.

Lemma 4 (approximations are likewise equal):
For all v_1, v_3, s_1, e_2, v_4, s_2.

if <v_1, s_1> ∼ <v_2, s_2> and <v_3, s_1> ∼ <v_4, s_4>,
then equal[[s_1, v_1, v_3]] = equal[[s_2, v_2, v_4]].

Lemma 5 (approximations are likewise immutable):
For all v_1, s_1, v_2, s_2.

if <v_1, s_1> ∼ <v_2, s_2>,
then immutable[[s_1, v_1]] = immutable[[s_2, v_2]].

Lemma 6 (approximations are likewise chaperone-of):
vFor all v_1, v_3, s_1, v_2, v_4, s_2.

if <v_1, s_1> ∼ <v_2, s_2> and <v_3, s_1> ∼ <v_4, s_4>,
then chaperone-of[[s_1, v_1, v_3]] = chaperone-of[[s_2, v_2, v_4]].

Lemma 7 (chaperones of approximates are approximates):
For all v_1, v_3, s_1, v_2, s_2:

If chaperone-of[[s_1, v_3, v_1]] and <v_1, s_1> ∼ <v_2, s_2>,
then <v_3, s_1> ∼ <v_2, s_2>.

(The ∼ relation strips off chaperones when it finds them when checking
approximation, so adding one doesn’t change the result.)

Lemma 8 (approximates are still approximates in pure store extensions):
For all v_1, s_1, s_1’, v_2, s_2, s_2’:

If <v_1, s_1> ∼ <v_2, s_2>,
and s_1’ <∼ s_1,

3

and s_2’ <∼ s_2,
then <v_1, s_1’> ∼ <v_2, s_2’>.

(Define <∼ to be the same as <= except with the additional caveat that
if s_1(x) = (vector #f v ...), then s_1’(x) = (vector #f v ...).
That is, there are no changes in vectors allocated by the main program.
Since no vectors of the form (vector #t v ...) are traversed by a
successful approximation, the approximation algorithm will follow
exactly the same path with the same results in the extensions.)

Lemma 9:

For all e_2 that do not contain set-marker, get-marker, or chaperone-vector,
Let E_2[e_6] = e_2.

If there exists an s_2, v_2, s_4.
<E_2[e_6], #f, s_2> reduces to <E_2[v_2], #f, s_4>,

For all e_1 and s_1 such that <e_1, s_1> ∼ <e_2, s_2>, let E_1[e_5] = e_1.
Also, require that the reduction of <e_1, #f, s_1> contains no program
states of the form <E[(vector-set! (loc x) n v), #t, s> where
s(x) = (vector #f v_e ...).

Either:
1) <e_1, #f, s_1> diverges
2) there exists a b, s_3.

<e_1, #f, s_1> reduces to <(error ’variable), b, s_3>
3) there exists an e_3, b, s_3.

<e_1, #f, s_1> reduces to <e_3, b, s_3> and
e_3 is a stuck state.

4) there exists a v_1, s_3.
<e_1, #f, s_1> reduces to <E_1[v_1], #f, s_3> and
<E_1[v_1], s_3> ∼ <E_2[v_2], s_4>.

Proof:

Fix e_2 = E_2[e_6]. Retrieve s_2, v_2, s_4 from our hypothesis about
reduction (I), and fix e_1 and s_1. Since we have that e_1 and e_2 are
approximates in their respective stores (hypothesis II), we
know from Lemma 2 that <E_1, s_1> ∼ <E_2, s_2> and <e_5, s_1> ∼ <e_6, s_2>.
Now we’ll induct on the length of the reduction sequence from
<E_2[e_6], #f, s_2> to <E_2[v_2], #f, s_4> and the size of the chaperone
chain (if any) for values in e_5. That is, either we make progress by
taking a step in e_2, or we make progress by removing a chaperone from
some part of the values present in e_5.

<E_2[(lambda (y ...) e_b)], #f, s_2> -> <E_2[(loc z)], #f, s_2[z |-> e_6]>
Since <e_5, s_1> ∼ <e_6, s_2>, then e_5 is either a lambda term
or is the operator ‘chaperone-vector’ (if e_6 is (lambda (v x y) v)).
If e_5 = chaperone-vector,

<e_1, #f, s_1> ∼ <E_2[(loc z)], #f, s_2[z |-> e_6]>. Applying the
IH on the rest of the reduction sequence, using e_1 and s_1 and the
approximation above to discharge the hypothesis, we get our desired

4

result immediately.
If e_5 is a lambda, then we choose a fresh location w.

<E_1[e_5], #f, s_1> -> <E_1[(loc w)], #f, s_1[w |-> e_5]>
By the definition of the approximation location,
<E_1[(loc w)], #f, s_1[w |-> e_5]> ∼ <E_2[(loc z)], #f, s_2[z |-> e_6]>,
since in each case we’re just introducing an indirection into the store.
Since the two locations are fresh, we won’t run into the case where one
appears in the mapping but the other doesn’t, and the locations point to
approximately equal values (the store addition doesn’t change their
approximateness). Applying the IH to the rest of the reduction sequence,
using E_1[(loc w)] and s_1[w |-> e_5] as our new e_1 and s_1 and the
approximation above to discharge the hypothesis, we get the rest
of the reduction sequence for our old e_1 if we don’t get divergence,
a stuck state, or an error. If we do, then e_1 diverges, gets stuck,
or errors, respectively.

<E_2[((loc z) v_4 ...)], #f, s_2> -> <E_2[e_b2[y_2 |-> v_4, ...]], #f, s_2>
where s_2(z) = (lambda (y_2 ...) e_b2)

There are two cases for e_5 from the definition of approximation:
e_5 = ((loc w) v_3 ...)

Since <E_1[((loc w) v_3 ...)], s_1> ∼ <E_2[((loc z) v_3 ...)], #f, s_2>
and s_2(z) = (lambda (y_2 ...) e_b2),
then from approximation we get s_1(w) = (lambda (y_1 ...) e_b1),
where <(lambda (y_1 ...) e_b1), s_1> ∼ <(lambda (y_2 ...) e_b2), s_2>.
Since <v_3, s_1> ∼ <v_4, s_2> for each v_3 and v_4,
<E_1[e_b1[y_1 |-> v_3, ...]], s_1> ∼ <E_2[e_b2[y_2 |-> v_4, ...]], s_2>.
Apply our IH to the rest of the reduction sequence for e_2, using
E_1[e_b1[y_1 |-> v_3, ...]] and s_1 as e_1 and s_1 and the approximation
above to discharge the hypothesis, and stitch together the reduction
sequence we get back with the step we took above in e_1.

e_5 = (chaperone-vector v_3 v_5 v_7):
Then e_6 = ((loc z) v_4 v_6 v_8) and s_2(z) = (lambda (v x y) v),
thus the RHS of the reduction step for e_2 simplifies to

<E_2[v_4], #f, s_2>.
We know that <v_3, s_1> ∼ <v_4, s_2> from hypothesis II.
Our first step in the reduction of e_1 is:
<E_1[(chaperone-vector v_3 v_5 v_7)], #f, s_1> ->

<E_1[(loc w)], #f, s_1[w |-> (chaperone-vector v_3 v_5 v_7)]>
Since ∼ ignores chaperones, (loc w) points to a chaperone of v_3, and
the new store just adds a new mapping and doesn’t change old ones,
we have that
<E_1[(loc w)], s_1[w |-> (chaperone-vector v_3 v_5 v_7)]> ∼

<E_2[v_4], s_2>.
Apply the IH to the rest of the reduction sequence for e_2, using
the LHS of the approximation above as our new e_1 and s_1, and then
stitch together the results with the single step taken above.

<E_2[(error ’variable)], #f, s_2> -> <(error ’variable), #f, s_2>

Breaks the hypothesis that <e_2, #f, s_2> reduces to <E_2[v_2], #f, s_4>.

5

<E_2[(vector v_4 ...)], #f, s_2> ->
<E_2[(loc z)], #f, s_2[z |-> (vector #f v_4 ...)]>

e_1 = E_1[(vector v_3 ...)], so we can take a step
<E_1[(vector v_3 ...)], #f, s_1> ->

<E_1[(loc w), #f, s_1[w |-> (vector #f v_3 ...)]>
From the approximation hypothesis, we have that <v_3, s_1> ∼ <v_4, s_2>
for all v_3 and v_4. By the definition of the approximation location,
<E_1[(loc w)], #f, s_1[w |-> (vector #f v_3 ...)]> ∼

<E_2[(loc z)], #f, s_2[z |-> (vector #f v_4 ...)]>,
since in each case we’re just introducing an indirection into the store
(plus adding the boolean that marks when this vector was allocated).
Since the two locations are fresh, we won’t run into the case where one
appears in the mapping but the other doesn’t, and the locations point to
approximately equal values (the store addition doesn’t change their
approximateness). Applying the IH to the rest of the reduction sequence,
using E_1[(loc w)] and s_1[w |-> (vector #f v_3 ...)] as our new e_1 and
s_1 and the approximation above to discharge the hypothesis, we get the
rest of the reduction sequence for our old e_1. As before, we stitch the
reduction step above onto the one (whether divergent, erroring, stuck, or
reduced to a value) we get from the IH.

<E_2[(vector-immutable v_4 ...)], #f, s_2> ->
<E_2[(loc z)], #f, s_2[z |-> (vector-immutable v_4 ...)]>

e_1 = E_1[(vector-immutable v_3 ...)], so we can take a step
<E_1[(vector-immutable v_3 ...)], #f, s_1> ->

<E_1[(loc w), #f, s_1[w |-> (vector-immutable v_3 ...)]>
From the approximation hypothesis, we have that <v_3, s_1> ∼ <v_4, s_2>
for all v_3 and v_4. By the definition of the approximation location,
<E_1[(loc w)], #f, s_1[w |-> (vector-immutable v_3 ...)]> ∼

<E_2[(loc z)], #f, s_2[z |-> (vector-immutable v_4 ...)]>,
since in each case we’re just introducing an indirection into the store.
Since the two locations are fresh, we won’t run into the case where one
appears in the mapping but the other doesn’t, and the locations point to
approximately equal values (the store addition doesn’t change their
approximateness). Applying the IH to the rest of the reduction sequence,
using E_1[(loc w)] and s_1[w |-> (vector-immutable v_3 ...)] as our new
e_1 and s_1 and the approximation above to discharge the hypothesis, we
get the rest of the reduction sequence for our old e_1. As before, we
stitch the reduction step above onto the one (whether divergent, erroring,
stuck, or reduced to a value) we get from the IH.

<E_2[(impersonate-vector l_2 m_2 o_2)], #f, s_2> ->
<E_2[(loc z)], #f, s_2[z |-> (impersonate-vector l_2 m_2 o_2)]>

e_1 = E_1[(impersonate-vector l_1 m_1 o_1)], so we can take a step
<E_1[(impersonate-vector l_1 m_1 o_1)], #f, s_1> ->

<E_1[(loc w), #f, s_1[w |-> (impersonate-vector l_1 m_1 o_1)]>

6

From the approximation hypothesis, we have that <l_1, s_1> ∼ <l_2, s_2>,
<m_1, s_1> ∼ <m_2, s_2>, and <o_1, s_1> ∼ <o_2, s_2>.
By the definition of the approximation location,
<E_1[(loc w)], #f, s_1[w |-> (impersonate-vector l_1 m_1 o_1)]> ∼

<E_2[(loc z)], #f, s_2[z |-> (impersonate-vector l_2 m_2 o_2)]>,
since in each case we’re just introducing an indirection into the store.
Since the two locations are fresh, we won’t run into the case where one
appears in the mapping but the other doesn’t, and the locations point to
approximately equal values (the store addition doesn’t change their
approximateness). Applying the IH to the rest of the reduction sequence,
using E_1[(loc w)] and s_1[w |-> (impersonate-vector l_1 m_1 o_1)] as our new
e_1 and s_1 and the approximation above to discharge the hypothesis, we
get the rest of the reduction sequence for our old e_1. As before, we
stitch the reduction step above onto the one (whether divergent, erroring,
stuck, or reduced to a value) we get from the IH.

immutable?, equal?, and chaperone-of? cases
Follows from the lemmas about immutable, equal, and chaperone-of
on approximations above.

<E_2[(immutable? v_4)], #f, s_2> -> <E_2[immutable[[s_2, v_4]]], #f, s_2>

e_1 = E_1[(immutable? v_3)], so we can take a step
<E_1[(immutable? v_3)], #f, s_1> -> <E_1[immutable[[s_1, v_3]]], #f, s_1>.
From approximation, we get <v_3, s_1> ∼ <v_4, s_2>, and from lemma 5, we
get that immutable[[s_1, v_3]] = immutable[[s_2, v_4]], so
<E_1[immutable[[s_1, v_3]]], s_1> ∼ <E_2[immutable[[s_2, v_4]]], s_2>.
Applying the IH to the rest of the reduction sequence,
using E_1[(immutable? v_3)] and s_1 as our new e_1 and s_1 and the
approximation above to discharge the hypothesis, we get the rest of the
reduction sequence for our old e_1. As before, we stitch the reduction
step above onto the one (whether divergent, erroring, stuck, or reduced to
a value) we get from the IH.

Applications of chaperone-of? and equal?:
Follows similarly using the appropriate lemma.

<E_2[(vector-ref (loc z) n), #f, s_2> ->
<E_2[(m_2 l_2 n (vector-ref l_2 n))], #f, s_2>

where s_2(z) = (impersonate-vector l_2 m_2 o_2)

e_1 = E_1[(vector-ref (loc w) n)], but based on the approximation from
hypothesis II, there are two possibilities for s_1(w):

s_1(w) = (impersonate-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-ref (loc w) n)], #f, s_1> ->

<E_1[(m_1 l_1 n (vector-ref l_1 n))], #f, s_1>
and <E_1[(m_1 l_1 n (vector-ref l_1 n))], s_1> ∼

<E_2[(m_2 l_2 n (vector-ref l_2 n))], #f, s_2>.
Applying the IH to the rest of the reduction sequence,

7

using E_1[(m_1 l_1 n (vector-ref l_1 n))] and s_1 as our new e_1 and s_1
and the approximation above to discharge the hypothesis, we get the rest
of the reduction sequence for our old e_1. As before, we stitch the
reduction step above onto the one (whether divergent, erroring, stuck, or
reduced to a value) we get from the IH.

s_1(w) = (chaperone-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-ref (loc w) n)], #f, s_1> ->

<E_1[(let ([old (vector-ref l_1 n)])
(let ([new (set-marker (m_1 l_1 n old))])

(clear-marker (if (chaperone-of? new old)
new
(error ’bad-cvref)))))],

#f, s_1>

Due to the approximation relation, we know that
<l_1, s_1> ∼ <(loc z), s_1> (since we skip through chaperones).
So what we will do is use the entire reduction for e_6, but use
E_1[(vector-ref l_1 n)] as e_1 (and keep s_1 the same), which removes
the calculation of a chaperone. From our IH, we get that
<E_1[(vector-ref l_1 n)], #f, s_1> either:

* Diverges: then the reduction of e_1 diverges
* Errors: then the reduction of e_1 errors
* Reaches a stuck state: then the reduction of e_1 reaches a stuck state.
* Reduces to <E_1[v_1], #f, s_3’> for some v_1’ and s_3’

where <v_1’, s_3’> ∼ <v_2, s_4>.

Then in reducing e_1, we get the same steps in the RHS of the first let:

<E_1[(vector-ref (loc w) n)], #f, s_1> ->*
<E_1[(let ([old v_1’])

(let ([new (set-marker (m_1 l_1 n old))])
(clear-marker (if (chaperone-of? new old)

new
(error ’bad-cvref)))))],

#f, s_3’> ->
<E_1[(let ([new (set-marker (m_1 l_1 n v_1’))])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref)))))],

#f, s_3’> ->
<E_1[(let ([new (m_1 l_1 n v_1’)])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref))))],

#t, s_3’>

For reducing (m_1 l_1 n v_1’) in this context, there are several cases:
* <E_1[(let ([new (m_1 l_1 n v_1’)])

8

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref))))],

#t, s_3’> diverges: then reducing e_1 diverges

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’> errors: then reducing e_1 errors

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’> reaches a stuck state:
then reducing e_1 reaches a stuck state

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’> ->*
<E_1[(let ([new v_1’’])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref))))],

#t, s_3’’> ->
<E_1[(clear-marker (if (chaperone-of? v_1’’ v_1’)

v_1’’
(error ’bad-cvref)))],

#t, s_3’’> ->
<E_1[(if (chaperone-of? v_1’’ v_1’) v_1’’ (error ’bad-cvref)))],
#f, s_3’’>

Now there are two cases: v_1’’ is not a chaperone of v_1’ or it is.

* Not a chaperone: then the reduction of e_1 errors.

* Is a chaperone. Then we have chaperone-of[[s_3’’, v_1’’, v_1’]],
and
<E_1[(if (chaperone-of? v_1’’ v_1’) v_1’’ (error ’bad-cvref)))],
#f, s_3’’> ->*

<E_1[v_1’’], #f, s_3’’>.

s_3’’ <= s_3’, and because of the restrictions on the reduction of
e_1, s_3’’ <∼ s_3’. Therefore, <v_1’, s_3’’> ∼ <v_2, s_2> by lemma 8
and by lemma 7, <v_1’’, s_3’’> ∼ <v_2, s_2>.
Therefore v_1’’ is the v_1 we need, and s_3’’ is the s_3 we need to
finish this case.

9

<E_2[(vector-set! (loc z) n v_4), #f, s_2> ->
<E_2[(vector-set! l_2 n (o_2 l_2 n v_4))], #f, s_2>

where s_2(z) = (impersonate-vector l_2 m_2 o_2)

e_1 = E_1[(vector-set! (loc w) n v_3)], but based on the approximation from
hypothesis II, there are two possibilities for s_1(w):

s_1(w) = (impersonate-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-set! (loc w) n)], #f, s_1> ->

<E_1[(vector-set! l_1 n (o_1 l_1 n v_3))], #f, s_1>
and <E_1[(vector-set! l_1 n (o_1 l_1 n v_3))], #f, s_1> ∼

<E_2[(vector-set! l_2 n (o_2 l_2 n v_4))], #f, s_2>
Applying the IH to the rest of the reduction sequence,
using E_1[(vector-set! l_1 n (o_1 l_1 n v_3))] and s_1 as our new e_1 and
s_1 and the approximation above to discharge the hypothesis, we get the
rest of the reduction sequence for our old e_1. As before, we stitch the
reduction step above onto the one (whether divergent, erroring, stuck, or
reduced to a value) we get from the IH.

s_1(w) = (chaperone-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-st! (loc w) n v_3)], #f, s_1> ->

<E_1[(let ([new (set-marker (o_1 l_1 n v_3))])
(clear-marker (if (chaperone-of? new v_3)

(vector-set! l_1 n new)
(error ’bad-cvref))))],

#f, s_1> ->
<E_1[(let ([new (o_1 l_1 n v_3])

(clear-marker (if (chaperone-of? new v_3)
(vector-set! l_1 n new)
(error ’bad-cvref))))],

#t, s_1>

Either (o_1 l_1 n v_3) reduces to a value or it doesn’t (diverges,
errors, gets stuck). If the latter, then the same is true for the
reduction of e_1. Otherwise, the program state above reduces to

<E_1[(let ([new v_3’])
(clear-marker (if (chaperone-of? new v_3)

(vector-set! l_1 n new)
(error ’bad-cvref))))],

#t, s_3’> ->
<E_1[(clear-marker (if (chaperone-of? v_1’ v_3)

(vector-set! l_1 n v_3’)
(error ’bad-cvref))))],

#t, s_3’> ->
<E_1[(if (chaperone-of? v_3’ v_3)

(vector-set! l_1 n v_3’)
(error ’bad-cvref))))],

#f, s_3’>
if v_3’ is not a chaperone of v_3 in s_3’, then we get an error.

10

Otherwise the above reduces to
<E_1[(vector-set! l_1 n v_3’)], #f, s_3’>

We have that chaperone_of[[s_3’, v_3’, v_3]] and s_3’ <∼ s_1 (since
no inappropriate mutating states are allowed), and the latter via
lemma 8 gives us <v_3, s_3’> ∼ <v_4, s_2>. Using lemma 7, that means
<v_3’, s_3’> ∼ <v_4, s_2>. Since s_3’ <∼ s_1, we also have that
<(loc w), s_1> ∼ <(loc z), s_2> gives us <(loc w), s_3’> ∼ <(loc z), s_2>
via lemma 7. Since (loc w) points to a chaperone around
l_1, we also have <l_1, s_3’> ∼ <(loc z), s_2>, which means that
<E_1[(vector-set! l_1 n v_3’)], #f, s_3’> ∼

<E_2[(vector-set! (loc z) n v_4)], #f, s_2>
Thus, we use the IH on the reduction sequence of e_2, the location
corresponding to the chaperoned value (thus removing a single chaperone),
and this approximation to get the rest of the reduction sequence for
e_1, to which we prepend the above steps.

<E_2[(vector-ref (loc z) n), #f, s_2> ->
<E_2[(m_2 l_2 n (vector-ref l_2 n))], #f, s_2>

where s_2(z) = (impersonate-vector l_2 m_2 o_2)

e_1 = E_1[(vector-ref (loc w) n)], but based on the approximation from
hypothesis II, there are two possibilities for s_1(w):

s_1(w) = (impersonate-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-ref (loc w) n)], #f, s_1> ->

<E_1[(m_1 l_1 n (vector-ref l_1 n))], #f, s_1>
and <E_1[(m_1 l_1 n (vector-ref l_1 n))], s_1> ∼

<E_2[(m_2 l_2 n (vector-ref l_2 n))], #f, s_2>.
Applying the IH to the rest of the reduction sequence,
using E_1[(m_1 l_1 n (vector-ref l_1 n))] and s_1 as our new e_1 and s_1
and the approximation above to discharge the hypothesis, we get the rest
of the reduction sequence for our old e_1. As before, we stitch the
reduction step above onto the one (whether divergent, erroring, stuck, or
reduced to a value) we get from the IH.

s_1(w) = (chaperone-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-ref (loc w) n)], #f, s_1> ->

<E_1[(let ([old (vector-ref l_1 n)])
(let ([new (set-marker (m_1 l_1 n old))])

(clear-marker (if (chaperone-of? new old)
new
(error ’bad-cvref)))))],

#f, s_1>

Due to the approximation relation, we know that
<l_1, s_1> ∼ <(loc z), s_1> (since we skip through chaperones).
So what we will do is use the entire reduction for e_6, but use
E_1[(vector-ref l_1 n)] as e_1 (and keep s_1 the same), which removes
the calculation of a chaperone. From our IH, we get that

11

<E_1[(vector-ref l_1 n)], #f, s_1> either:

* Diverges: then the reduction of e_1 diverges
* Errors: then the reduction of e_1 errors
* Reaches a stuck state: then the reduction of e_1 reaches a stuck state.
* Reduces to <E_1[v_1], #f, s_3’> for some v_1’ and s_3’

where <v_1’, s_3’> ∼ <v_2, s_4>.

Then in reducing e_1, we get the same steps in the RHS of the first let:

<E_1[(vector-ref (loc w) n)], #f, s_1> ->*
<E_1[(let ([old v_1’])

(let ([new (set-marker (m_1 l_1 n old))])
(clear-marker (if (chaperone-of? new old)

new
(error ’bad-cvref)))))],

#f, s_3’> ->
<E_1[(let ([new (set-marker (m_1 l_1 n v_1’))])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref)))))],

#f, s_3’> ->
<E_1[(let ([new (m_1 l_1 n v_1’)])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref))))],

#t, s_3’>

For reducing (m_1 l_1 n v_1’) in this context, there are several cases:
* <E_1[(let ([new (m_1 l_1 n v_1’)])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref))))],

#t, s_3’> diverges: then reducing e_1 diverges

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’> errors: then reducing e_1 errors

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’> reaches a stuck state:
then reducing e_1 reaches a stuck state

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new

12

(error ’bad-cvref))))],
#t, s_3’> ->*

<E_1[(let ([new v_1’’])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’’> ->
<E_1[(clear-marker (if (chaperone-of? v_1’’ v_1’)

v_1’’
(error ’bad-cvref)))],

#t, s_3’’> ->
<E_1[(if (chaperone-of? v_1’’ v_1’) v_1’’ (error ’bad-cvref)))],
#f, s_3’’>

Now there are two cases: v_1’’ is not a chaperone of v_1’ or it is.

* Not a chaperone: then the reduction of e_1 errors.

* Is a chaperone. Then we have chaperone-of[[s_3’’, v_1’’, v_1’]],
and
<E_1[(if (chaperone-of? v_1’’ v_1’) v_1’’ (error ’bad-cvref)))],
#f, s_3’’> ->*

<E_1[v_1’’], #f, s_3’’>.

s_3’’ <= s_3’, and because of the restrictions on the reduction of
e_1, s_3’’ <∼ s_3’. Therefore, <v_1’, s_3’’> ∼ <v_2, s_2> by lemma 8
and by lemma 7, <v_1’’, s_3’’> ∼ <v_2, s_2>.
Therefore v_1’’ is the v_1 we need, and s_3’’ is the s_3 we need to
finish this case.

<E_2[(vector-set! (loc z) n v_4), #f, s_2> ->
<E_2[(vector-set! l_2 n (o_2 l_2 n v_4))], #f, s_2>

where s_2(z) = (impersonate-vector l_2 m_2 o_2)

e_1 = E_1[(vector-set! (loc w) n v_3)], but based on the approximation from
hypothesis II, there are two possibilities for s_1(w):

s_1(w) = (impersonate-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-set! (loc w) n)], #f, s_1> ->

<E_1[(vector-set! l_1 n (o_1 l_1 n v_3))], #f, s_1>
and <E_1[(vector-set! l_1 n (o_1 l_1 n v_3))], #f, s_1> ∼

<E_2[(vector-set! l_2 n (o_2 l_2 n v_4))], #f, s_2>
Applying the IH to the rest of the reduction sequence,
using E_1[(vector-set! l_1 n (o_1 l_1 n v_3))] and s_1 as our new e_1 and
s_1 and the approximation above to discharge the hypothesis, we get the
rest of the reduction sequence for our old e_1. As before, we stitch the
reduction step above onto the one (whether divergent, erroring, stuck, or
reduced to a value) we get from the IH.

s_1(w) = (chaperone-vector l_1 m_1 o_1)
Then we get the following reduction step:

13

<E_1[(vector-set! (loc w) n v_3)], #f, s_1> ->
<E_1[(let ([new (set-marker (o_1 l_1 n v_3))])

(clear-marker (if (chaperone-of? new v_3)
(vector-set! l_1 n new)
(error ’bad-cvref))))],

#f, s_1> ->
<E_1[(let ([new (o_1 l_1 n v_3])

(clear-marker (if (chaperone-of? new v_3)
(vector-set! l_1 n new)
(error ’bad-cvref))))],

#t, s_1>

Either (o_1 l_1 n v_3) reduces to a value or it doesn’t (diverges,
errors, gets stuck). If the latter, then the same is true for the
reduction of e_1. Otherwise, the program state above reduces to

<E_1[(let ([new v_3’])
(clear-marker (if (chaperone-of? new v_3)

(vector-set! l_1 n new)
(error ’bad-cvref))))],

#t, s_3’> ->
<E_1[(clear-marker (if (chaperone-of? v_1’ v_3)

(vector-set! l_1 n v_3’)
(error ’bad-cvref))))],

#t, s_3’> ->
<E_1[(if (chaperone-of? v_3’ v_3)

(vector-set! l_1 n v_3’)
(error ’bad-cvref))))],

#f, s_3’>
if v_3’ is not a chaperone of v_3 in s_3’, then we get an error.
Otherwise the above reduces to

<E_1[(vector-set! l_1 n v_3’)], #f, s_3’>
We have that chaperone_of[[s_3’, v_3’, v_3]] and s_3’ <∼ s_1 (since
no inappropriate mutating states are allowed), and the latter via
lemma 8 gives us <v_3, s_3’> ∼ <v_4, s_2>. Using lemma 8, that means
<v_3’, s_3’> ∼ <v_4, s_2>. Since s_3’ <∼ s_1, we also have that
<(loc w), s_1> ∼ <(loc z), s_2> gives us <(loc w), s_3’> ∼ <(loc z), s_2>
via lemma 7. Since (loc w) points to a chaperone around
l_1, we also have <l_1, s_3’> ∼ <(loc z), s_2>, which means that
<E_1[(vector-set! l_1 n v_3’)], #f, s_3’> ∼

<E_2[(vector-set! (loc z) n v_4)], #f, s_2>
Thus, we use the IH on the reduction sequence of e_2, the location
corresponding to the chaperoned value (thus removing a single chaperone),
and this approximation to get the rest of the reduction sequence for
e_1, to which we prepend the above steps.

<E_2[(vector-ref (loc z) n), #f, s_2> ->
<E_2[v_4n], #f, s_2>

where s_2(z) = (vector #f v_40 ... v_4n ... v_4k)
(and 0 <= n <= k, since e_6 reduces to a value in the context E_2)

14

e_1 = E_1[(vector-ref (loc w) n)], but based on the approximation from
hypothesis II, there are two possibilities for s_1(w):

s_1(w) = (vector #f v_30 ... v_3n ... v_3k)
Then we get the following reduction step:
<E_1[(vector-ref (loc w) n)], #f, s_1> -> <E_1[v_3n], #f, s_1>
and <E_1[v_3n], s_1> ∼ <E_2[v_4n], #f, s_2>, since the vectors were
already approximates in s_1/s_2. Thus, e_5 reduces to a value
(namely, v_3n).

s_1(w) = (chaperone-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-ref (loc w) n)], #f, s_1> ->

<E_1[(let ([old (vector-ref l_1 n)])
(let ([new (set-marker (m_1 l_1 n old))])

(clear-marker (if (chaperone-of? new old)
new
(error ’bad-cvref)))))],

#f, s_1>

Due to the approximation relation, we know that
<l_1, s_1> ∼ <(loc z), s_1> (since we skip through chaperones).
So what we will do is use the entire reduction for e_6, but use
E_1[(vector-ref l_1 n)] as e_1 (and keep s_1 the same), which removes
the calculation of a chaperone. From our IH, we get that
<E_1[(vector-ref l_1 n)], #f, s_1> either:

* Diverges: then the reduction of e_1 diverges
* Errors: then the reduction of e_1 errors
* Reaches a stuck state: then the reduction of e_1 reaches a stuck state.
* Reduces to <E_1[v_1], #f, s_3’> for some v_1’ and s_3’

where <v_1’, s_3’> ∼ <v_2, s_4>.

Then in reducing e_1, we get the same steps in the RHS of the first let:

<E_1[(vector-ref (loc w) n)], #f, s_1> ->*
<E_1[(let ([old v_1’])

(let ([new (set-marker (m_1 l_1 n old))])
(clear-marker (if (chaperone-of? new old)

new
(error ’bad-cvref)))))],

#f, s_3’> ->
<E_1[(let ([new (set-marker (m_1 l_1 n v_1’))])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref)))))],

#f, s_3’> ->
<E_1[(let ([new (m_1 l_1 n v_1’)])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref))))],

15

#t, s_3’>

For reducing (m_1 l_1 n v_1’) in this context, there are several cases:
* <E_1[(let ([new (m_1 l_1 n v_1’)])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref))))],

#t, s_3’> diverges: then reducing e_1 diverges

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’> errors: then reducing e_1 errors

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’> reaches a stuck state:
then reducing e_1 reaches a stuck state

* <E_1[(let ([new (m_1 l_1 n v_1’)])
(clear-marker (if (chaperone-of? new v_1’)

new
(error ’bad-cvref))))],

#t, s_3’> ->*
<E_1[(let ([new v_1’’])

(clear-marker (if (chaperone-of? new v_1’)
new
(error ’bad-cvref))))],

#t, s_3’’> ->
<E_1[(clear-marker (if (chaperone-of? v_1’’ v_1’)

v_1’’
(error ’bad-cvref)))],

#t, s_3’’> ->
<E_1[(if (chaperone-of? v_1’’ v_1’) v_1’’ (error ’bad-cvref)))],
#f, s_3’’>

Now there are two cases: v_1’’ is not a chaperone of v_1’ or it is.

* Not a chaperone: then the reduction of e_1 errors.

* Is a chaperone. Then we have chaperone-of[[s_3’’, v_1’’, v_1’]],
and
<E_1[(if (chaperone-of? v_1’’ v_1’) v_1’’ (error ’bad-cvref)))],
#f, s_3’’> ->*

<E_1[v_1’’], #f, s_3’’>.

s_3’’ <= s_3’, and because of the restrictions on the reduction of
e_1, s_3’’ <∼ s_3’. Therefore, <v_1’, s_3’’> ∼ <v_2, s_2> by lemma 8

16

and by lemma 7, <v_1’’, s_3’’> ∼ <v_2, s_2>.
Therefore v_1’’ is the v_1 we need, and s_3’’ is the s_3 we need to
finish this case.

(This exactly mirrors the vector-ref of a chaperoned impersonated
vector above, for good reason. I’m not going to repeat it for
a chaperoned immutable vector.)

<E_2[(vector-set! (loc z) n v_4), #f, s_2> ->
<E_2[(void)], #f, s_2[z |-> (vector #f v_40 ... v_4 ... v_4k)]>

where s_2(z) = (vector #f v_40 ... v_4n ... v_4k)

e_1 = E_1[(vector-set! (loc w) n v_3)], but based on the approximation from
hypothesis II, there are two possibilities for s_1(w):

s_1(w) = (vector #f v_30 ... v_3n ... v_3k)
Then we get the following reduction step:
<E_1[(vector-set! (loc w) n)], #f, s_1> ->

<E_1[(void)], #f, s_1[w |-> (vector #f v_30 ... v_3 ... v_3k)]>
and <E_1[(void)], #f, s_1[w |-> (vector #f v_30 ... v_3n ... v_3k)]> ∼

<E_2[(void)], #f, s_2[z |-> (vector #f v_40 ... v_4 ... v_4k)]>
(since the only change in the store is replacing the corresponding
element in two approximated vectors with approximate values).

(void) is a value, so e_5 evaluates to a value (void) and the resulting
expression/store is appropriately approximate to the result of reducing
e_6.

s_1(w) = (chaperone-vector l_1 m_1 o_1)
Then we get the following reduction step:
<E_1[(vector-set! (loc w) n v_3)], #f, s_1> ->

<E_1[(let ([new (set-marker (o_1 l_1 n v_3))])
(clear-marker (if (chaperone-of? new v_3)

(vector-set! l_1 n new)
(error ’bad-cvref))))],

#f, s_1> ->
<E_1[(let ([new (o_1 l_1 n v_3])

(clear-marker (if (chaperone-of? new v_3)
(vector-set! l_1 n new)
(error ’bad-cvref))))],

#t, s_1>

Either (o_1 l_1 n v_3) reduces to a value or it doesn’t (diverges,
errors, gets stuck). If the latter, then the same is true for the
reduction of e_1. Otherwise, the program state above reduces to

<E_1[(let ([new v_3’])
(clear-marker (if (chaperone-of? new v_3)

(vector-set! l_1 n new)
(error ’bad-cvref))))],

#t, s_3’> ->
<E_1[(clear-marker (if (chaperone-of? v_1’ v_3)

(vector-set! l_1 n v_3’)

17

(error ’bad-cvref))))],
#t, s_3’> ->

<E_1[(if (chaperone-of? v_3’ v_3)
(vector-set! l_1 n v_3’)
(error ’bad-cvref))))],

#f, s_3’>
if v_3’ is not a chaperone of v_3 in s_3’, then we get an error.
Otherwise the above reduces to

<E_1[(vector-set! l_1 n v_3’)], #f, s_3’>
We have that chaperone_of[[s_3’, v_3’, v_3]] and s_3’ <∼ s_1 (since
no inappropriate mutating states are allowed), and the latter via
lemma 8 gives us <v_3, s_3’> ∼ <v_4, s_2>. Using lemma 7, that means
<v_3’, s_3’> ∼ <v_4, s_2>. Since s_3’ <∼ s_1, we also have that
<(loc w), s_1> ∼ <(loc z), s_2> gives us <(loc w), s_3’> ∼ <(loc z), s_2>
via lemma 7. Since (loc w) points to a chaperone around
l_1, we also have <l_1, s_3’> ∼ <(loc z), s_2>, which means that
<E_1[(vector-set! l_1 n v_3’)], #f, s_3’> ∼

<E_2[(vector-set! (loc z) n v_4)], #f, s_2>
Thus, we use the IH on the reduction sequence of e_2, the location
corresponding to the chaperoned value (thus removing a single chaperone),
and this approximation to get the rest of the reduction sequence for
e_1, to which we prepend the above steps.

(Again, mirrors the proof of vector-set! on a chaperoned impersonated
vector.)

<E_2[(vector-ref (loc z) n), #f, s_2> ->
<E_2[v_4n], #f, s_2>

where s_2(z) = (vector-immutable v_40 ... v_4n ... v_4k)
(and 0 <= n <= k, since e_6 reduces to a value in the context E_2)

e_1 = E_1[(vector-ref (loc w) n)], but based on the approximation from
hypothesis II, there are two possibilities for s_1(w):

s_1(w) = (vector-immutable v_30 ... v_3n ... v_3k)
Then we get the following reduction step:
<E_1[(vector-ref (loc w) n)], #f, s_1> -> <E_1[v_3n], #f, s_1>
and <E_1[v_3n], s_1> ∼ <E_2[v_4n], #f, s_2>, since the vectors were
already approximates in s_1/s_2. Thus, e_5 reduces to a value
(namely, v_3n).

s_1(w) = (chaperone-vector l_1 m_1 o_1)
As before, the proof follows exactly the format of earlier vector-refs
on chaperoned values, so I’m not repeating it a third time.

Lemma 10:

For all e_2 that do not contain set-marker, get-marker, or chaperone-vector
and s_2,

Let E_2[e_6] = e_2.

18

If there exists no v_2 or s_4 such that
<E_2[e_6], #f, s_2> reduces to <E_2[v_2], #f, s_4>,

For all e_1 and s_1 such that <e_1, s_1> ∼ <e_2, s_2>, let E_1[e_5] = e_1.
Also, require that the reduction of <e_1, #f, s_1> contains no program
states of the form <E[(vector-set! (loc x) n v), #t, s> where
s(x) = (vector #f v_e ...).

Either:
1) <e_1, #f, s_1> diverges
2) there exists a b, s_3.

<e_1, #f, s_1> reduces to <(error ’variable), b, s_3>
3) there exists an e_3, b, s_3.

<e_1, #f, s_1> reduces to <e_3, b, s_3> and
e_3 is a stuck state.

(That is, if the erased program does not reduce the current redex to a value,
then the unerased program cannot.)

Proof:

If there’s no initial reduction step for <e_2, #f, s_2>, then
we have a stuck state, and <e_1, #f, s_1> will also be a stuck state.
If there is an initial reduction step, then the proof
follows the same form as Lemma 9. Most of the proof just involves
stepping in both reduction sequences than inducting, so those stay
pretty much the same (that is, we get the same kind of result as the
hypothesis, which is that we DON’T reduce to a value). The main
difference in this proof is that in the chaperone cases for
vector-ref/vector-set!, vector-ref/vector-set! on the chaperoned value
(the IH) does _not_ reduce to a value. However, that’s fine, since
that’s exactly what we want! So in the vector-ref case, this is immediate,
since we first vector-ref the chaperoned value. In the vector-set! case,
we might either fail to reduce/diverge/error in the function from the chaperone
(which is A-OK), or we fail to reduce/diverge/error from doing vector-set!
on the chaperoned value.

Restatement of theorem 3:

For all e, if e is a user-writeable program, Eval(e) = v, and that evaluation
contains no reductions where the left-hand side is of the form
(s #t (vector-set! (loc x) n v_a)) where s(x) = (vector #f v_v ...),
then Eval(|e|) = v.

Proof:

Take the reduction sequence for <|e|, #f, {}>. Either it diverges,
ends in a stuck state, ends in an error state, or ends in a value.

Keep in mind that each reduction step in the erased program has a
corresponding reduction step in the unerased programs. (Chaperones

19

only add reduction steps to apply the interceding function and check
the returned value for chaperone-ness.)

Diverges:
Ends in a stuck state:
Ends in an error state:

All these cases force the unerased program to NOT reduce to a value
as shown in lemma 10. Therefore these break our initial hypothesis.

Ends in a value:
Let the value state be <v_2, #f, s_2>. By lemma 9 and the fact that
we know <e_1, #f, {}> reduces to <v_1, #f, s_1> for some state s_1
(since Eval(e) = v), then we know that <v_1, s_1> ∼ <v_2, s_2>.
Now let’s examine the cases of v_2:

v_2 is a boolean: then v_1 is the same boolean, and Eval(e) = Eval(|e|).
v_2 is a number: then v_1 is the same number, and Eval(e) = Eval(|e|).
v_2 is a pointer to a lambda: then v_1 must also be a pointer to a

lambda, and Eval(e) = Eval(|e|) = ‘proc’.
v_2 is a pointer to a mutable vector, immutable vector, or impersonator:

Then v_1 is a pointer to the same, or a pointer to a series of chaperones
that ends in the same. That is, v_1 cannot contain a lambda. Since
Eval only disambiguates locations on whether they contain a lambda or
not, and the not case returns ‘vector’, Eval(e) = Eval(|e|) = ‘vector’.

20

