
CS	5600
Computer	Systems

Lecture	5:	Synchronization,	Deadlock

• Motivating	Parallelism
• Synchronization	Basics
• Types	of	Locks	and	Deadlock

2

Concurrency	vs.	Parallelism

• Concurrent	execution	on	a	single-core	system:

• Parallel	execution	on	a	dual-core	system:

3

Core	1 P1 P2 P3 P4 P1 P2 P3 P4 P1 …

Time

Core	2 P2 P4 P2 P4 P2 P4 P2 P4 P2 …

Time

Core	1 P1 P3 P1 P3 P1 P3 P1 P3 P1 …

4

Transistors

Clock	Speed

Power	Draw

Perf/Clock

Implications	of	CPU	Evolution

• Increasing	transistor	count/clock	speed
– Greater	number	of	tasks	can	be	executed	
concurrently

• However,	clock	speed	increases	have	essentially	
stopped	in	the	past	few	years
– Instead,	more	transistors	=	more	CPU	cores
–More	cores	=	increased	opportunity	for	parallelism

5

Two	Types	of	Parallelism

• Data	parallelism
– Same	task	executes	on	many	cores
– Different	data given	to	each	task
– Example:	MapReduce

• Task	parallelism
– Different	tasks	execute	on	each	core
– Example:	any	high-end	videogame
• 1	thread	handles	game	AI
• 1	thread	handles	physics
• 1	thread	handles	sound	effects
• 1+	threads	handle	rendering 6

Amdahl’s	Law
• Upper	bound	on	performance	gains	from	
parallelism
– If	I	take	a	single-threaded	task	and	parallelize	it	over	N
CPUs,	how	much	more	quickly	will	my	task	complete?

• Definition:
– S is	the	fraction	of	processing	time	that	is	serial	
(sequential)

– N	is	the	number	of	CPU	cores

Speedup	≤	 !

"#(%&')) 7

Example	of	Amdahl’s	Law
• Suppose	we	have	an	application	that	is	75%	
parallel	and	25%	serial
– 1 core:	1/(.25+(1-.25)/1)	=	1	(no	speedup,	obviously)
– 2 core:	1/(.25+(1-.25)/2)	=	1.6
– 4 core:	1/(.25+(1-.25)/4)	=	2.29

• What	happens	as	Nà∞?
– Speedup	≤	 !

"#(%&'))
– Speedup	approaches	1/S
– The	serial	portion	of	the	process	has	a	disproportionate	
effect	on	performance	improvement

8

?
?
?

Limits	of	Parallelism

• Amdahl’s	Law	is	a	simplification	of	reality
– Assumes	code	can	be	cleanly	divided	into	serial	
and	parallel	portions

– In	other	words,	trivial	parallelism
• Real-world	code	is	typically	more	complex
–Multiple	threads	depend	on	the	same	data
– In	these	cases,	parallelism	may	introduce	errors

• Real-world	speedups	are	typically	<	what	is	
predicted	by	Amdahl’s	Law	

9

• Motivating	Parallelism
• Synchronization	Basics
• Types	of	Locks	and	Deadlock

10

The	Bank	of	Lost	Funds

• Consider	a	simple	banking	application
– Multi-threaded,	centralized	architecture
– All	deposits	and	withdrawals	sent	to	the	central	server	

11

class account {
private money_t balance;
public deposit(money_t sum) {
balance = balance + sum;

}
}

• What	happens	if	two	people	try	to	deposit	
money	into	the	same	account	at	the	same	
time?

12

balance = balance + sum;

mov eax, balance
mov ebx, sum
add eax, ebx
mov balance, eax

Thread 1 Thread 2

balance
$0

mov eax, balance
mov ebx, sum

add eax, ebx
mov balance, eax

deposit($50)

eax = $0

mov eax, balance
mov ebx, sum

eax = $0eax = $50 eax = $100

deposit($100)

$100$50

Context	Switch

Context	Switch

add eax, ebx
mov balance, eax

Race	Conditions

• The	previous	example	shows	a	race	condition
– Two	threads	“race”	to	execute	code	and	update	
shared	(dependent)	data

– Errors	emerge	based	on	the	ordering	of	
operations,	and	the	scheduling	of	threads

– Thus,	errors	are	nondeterministic

13

Example:	Linked	List

• What	happens	if	
one	thread	calls	
pop(),	and	another	
calls	push()	at	the	
same	time?

14

elem = pop(&list):
tmp = list
list = list->next
tmp->next = NULL
return tmp

push(&list, elem):
elem->next = list
list = elem

1 2 3list ∅

Thread 1 Thread 2
1. tmp = list

2. elem->next = list
3. list = list->next

4. list = elem
5. tmp->next = NULL

tmp

4

list

elem

list

∅

Critical	Sections

• These	examples	highlight	the	critical	section	
problem

• Classical	definition	of	a	critical	section:
“A	piece	of	code	that	accesses	a	shared	resource	
that	must	not	be	concurrently	accessed	by	more	

than	one	thread	of	execution.”
• Two	problems
– Code	was	not	designed	for	concurrency
– Shared	resource	(data)	does	not	support	concurrent	
access

15

Atomicity
• Race	conditions	lead	to	

errors	when	sections	of	
code	are	interleaved

16

Interleaved Execution

Read

Add

Store

Read

Add

Store

• These	errors	can	be	
prevented	by	ensuring	
code	executes	atomically

Non-Interleaved (Atomic) Execution

Read
Add
Store

Read
Add
Store

Read
Add
Store

Read
Add
Store

(a) (b)

Mutexes for	Atomicity

• Mutual	exclusion	lock	(mutex)	is	a	construct	
that	can	enforce	atomicity	in	code

17

m	=	mutex_create();
…
mutex_lock(m);
//	do	some	stuff
mutex_unlock(m);

mutex_lock(m)

(returns)

(returns)

unlock(m) blocked

Thread 1 Thread 2

critical
section

critical
section

(returns)

Fixing	the	Bank	Example

class account	{
mutex m;
money_t balance

public deposit(money_t sum)	{
m.lock();
balance	=	balance	+	sum;
m.unlock();

}
}

18

LOCK

UNLOCK

LOCK

UNLOCK

Read

Add

Store

Read

Add

Store

Thread	1 Thread	2

Implementing	Mutual	Exclusion

• Typically,	developers	don’t	write	their	own	
locking-primitives
– You	use	an	API	from	the	OS	or	a	library

• Why	don’t	people	write	their	own	locks?
–Much	more	complicated	than	they	at-first	appear
– Very,	very	difficult	to	get	correct
–May	require	access	to	privileged	instructions
–May	require	specific	assembly	instructions
• Instruction	architecture	dependent

19

Mutex on	a	Single-CPU	System

• On	a	single-CPU	system,	the	only	preemption	
mechanism	is	interrupts
– If	interrupts	are	disabled,	the	currently	executing	
code	is	guaranteed	to	be	atomic

• This	system	is	concurrent,	but	not	parallel
20

void lock_acquire(struct lock	*	lock)	{
sema_down(&lock->semaphore);
lock->holder	=	thread_current();

}

void sema_down(struct semaphore	*	sema)	{
enum intr_level old_level;
old_level =	intr_disable();
while (sema->value	==	0)	{	/*	wait	*/	}
sema->value--;
intr_level(old_level);

}

The	Problem	With	Multiple	CPUs
• In	a	multi-CPU	(SMP)	system,	two	or	more	
threads	may	execute	in	parallel
– Data	can	be	read	or	written	by	parallel	threads,	
even	if	interrupts	are	disabled

21

sema_down() {
while (sema->value == 0) { … }

sema->value--;

}

CPU	1	- Thread	1
sema_down() {

while (sema->value == 0) { … }

sema->value--;

}

CPU	2	- Thread	2

21

sema->value	=	1sema->value	=	?

Instruction-level	Atomicity

• Modern	CPUs	have	atomic	instruction(s)
– Enable	you	to	build	high-level	synchronized	objects

• On	x86:
– The	lock prefix	makes	an	instruction	atomic	

lock	inc eax ;	atomic	increment
lock	dec eax ;	atomic	decrement
• Only	legal	with	some	instructions

– The	xchg instruction	is	guaranteed	to	be	atomic
xchg eax,	[addr]	;	swap	eax and	the	value	in	memory

22

Behavior	of	xchg

• Atomicity	ensures	that	each	xchg occurs	
before	or	after	xchgs from	other	CPUs

23

eax: 1
1
0
0

eax: 2
2
0

0
0
1
1
1

xchg xchg

Illegal execution

CPU 1 CPU 2memory

Non-Atomic	xchg

eax: 1
1
0
0

eax: 2
2
1xchg xchg

Legal execution

CPU 1 CPU 2
0
0
1
2
2

memory

Atomic	xchg

Building	a	Spin	Lock	with	xchg
spin_lock:

mov eax,	1
xchg eax,	[lock_addr]
test	eax,	eax
jnz spin_lock

spin_unlock:
mov [lock_addr],	0

24

CPU 1 locks.

CPUs 0 and 2 both try
to lock, but cannot.

CPU 1 unlocks.

CPU 0 locks, simply
because it requested
it slightly before CPU
2.

Well-Behaved	Mutexes

• Textbooks	refer	to	the	Mutual	Exclusion	Problem
– Design	a	lock	mechanism	that	guarantees	the	
following	properties:
1. Mutual	exclusion:	only	one	process	may	hold	the	lock	at	a	

time
2. Progress:	the	decision	about	which	process	gets	the	lock	

next	cannot	be	postponed	indefinitely
3. Bounded	waiting:	if	all	lockers	unlock,	no	process	can	wait	

forever	to	get	the	lock

– A	mutex having	these	properties	is	well-behaved

25

Building	a	Multi-CPU	Mutex

26

typedef struct mutex_struct {
int spinlock = 0; // spinlock variable
int locked = 0; // is the mutex locked? guarded by spinlock
queue waitlist; // waiting threads, guarded by spinlock

} mutex;

void mutex_lock(mutex * m) {
spin_lock(&m->spinlock);
if (!m->locked){

m->locked = 1;
spin_unlock(&m->spinlock);

} else {
m->waitlist.add(current_process);
spin_unlock(&m->spinlock);
yield();
// wake up here when the mutex is acquired

}
}

Building	a	Multi-CPU	Mutex

27

typedef struct mutex_struct {
int spinlock = 0; // spinlock variable
int locked = 0; // is the mutex locked? guarded by spinlock
queue waitlist; // waiting threads, guarded by spinlock

} mutex;

void mutex_unlock(mutex * m) {
spin_lock(&m->spinlock);
if (m->waitlist.empty()) {

m->locked = 0;
spin_unlock(&m->spinlock);

} else {
next_thread = m->waitlist.pop_from_head();
spin_unlock(&m->spinlock);
wake(next_thread);

}
}

Compare	and	Swap

• Sometimes,	literature	on	locks	refers	to	compare	
and	swap	(CAS)	instructions
– CAS	instructions	combine	an	xchg and	a	test

• On	x86,	known	as	compare	and	exchange
spin_lock:

mov ecx,	1
mov eax,	0
lock	cmpxchg ecx,	[lock_addr]
jnz spinlock

– cmpxchg compares	eax and	the	value	of	lock_addr
– If	eax ==	[lock_addr],	swap	ecx and	[lock_addr]

28

The	Price	of	Atomicity

• Atomic	operations	are	very	expensive	on	a	
multi-core	system
– Caches	must	be	flushed
• CPU	cores	may	see	different	values	for	the	same	
variable	if	they	have	out-of-date	caches
• Cache	flush	can	be	forced	using	a	memory	fence	
(sometimes	called	a	memory	barrier)

–Memory	bus	must	be	locked
• No	concurrent	reading	or	writing

– Other	CPUs	may	stall
• May	block	on	the	memory	bus	or	atomic	instructions

29

• Motivating	Parallelism
• Synchronization	Basics
• Types	of	Locks	and	Deadlock
• Lock-Free	Data	Structures

30

Other	Types	of	Locks

• Mutex is	perhaps	the	most	common	type	of	lock
• But	there	are	several	other	common	types
– Semaphore
– Read/write	lock
– Condition	variable

• Used	to	build	monitors

31

Semaphores

• Generalization	of	a	mutex
– Invented	by	Edsger Dijkstra
– Associated	with	a	positive	integer	N
–May	be	locked	by	up	to	N concurrent	threads

• Semaphore	methods
– wait()	– if	N	>	0,	N--;	else	sleep
– signal()	– if	waiting	threads	>	0,	wake	one	up;	else	N++

32

The	Bounded	Buffer	Problem

• Canonical	example	of	semaphore	usage
– Some	threads	produce items,	add	items	to	a	list
– Some	threads	consume items,	remove	items	from	the	list
– Size	of	the	list	is	bounded

33

class semaphore_bounded_buffer:
mutex m
list buffer
semaphore S_space = semaphore(N)
semaphore S_items = semaphore(0)

put(item):
S_space.wait()
m.lock()
buffer.add_tail(item)
m.unlock()
S_items.signal()

get():
S_items.wait()
m.lock()
result = buffer.remove_head()
m.unlock()
S_space.signal()
return result

Example	Bounded	Buffer
buffer S_items S_space

[] 0 2

[a] 1 1

[a,	b] 2 0

[b] 1 1

[b,	c] 2 0

34

Thread	1 Thread	2 Thread	3 Thread	4

put(a)

put(b)

put(c)

get()

Read/Write	Lock

• Sometimes	known	as	a	shared	mutex
–Many	threads	may	hold	the	read	lock	in	parallel
– Only	one	thread	may	hold	the	write	lock	at	a	time
• Write	lock	cannot	be	acquired	until	all	read	locks	are	released
• New	read	locks	cannot	be	acquired	if	a	writer	is	waiting

• Ideal	for	cases	were	updates	to	shared	data	are	
rare
– Permits	maximum	read	parallelization

35

Example	Read/Write	Lock
list readers writers

[a,	b] 0 0

[a,	b] 1 0

[a,	b] 2 0

[a,	b] 1 0

[a,	b] 0 0

[a,	b] 0 1

[a,	b,	c] 0 1

[a,	b,	c] 0 0

[a,	b,	c] 1 0

[a,	b,	c] 1 0

36

Thread	1 Thread	2 Thread	3

lock_r()

lock_r()

lock_w()

unlock_r()

unlock_r()

lock_r()

unlock_w()

When	is	a	Semaphore	Not	Enough?

• In	this	case,	semaphores	are	not	sufficient
– weight is	an	unknown	parameter
– After	each	put(),	totalweight must	be	checked 37

class weighted_bounded_buffer:
mutex m
list buffer
int totalweight

get(weight):
while (1):

m.lock()
if totalweight >= weight:

result = buffer.remove_head()
totalweight -= result.weight
m.unlock()
return result

else:
m.unlock()
yield()

put(item):
m.lock()
buffer.add_tail(item)
totalweight += item.weight
m.unlock()

• No	guarantee	the	
condition	will	be	satisfied	
when	this	thread	wakes	up

• Lots	of	useless	looping	:(

Condition	Variables
• Construct	for	managing	control	flow	amongst	
competing	threads
– Each	condition	variable	is	associated	with	a	mutex
– Threads	that	cannot	run	yet	wait()	for	some	
condition	to	become	satisfied

–When	the	condition	is	satisfied,	some	other	thread	
can	signal()	to	the	waiting	thread(s)

• Condition	variables	are	not	locks
– They	are	control-flow	managers
– Some	APIs	combine	the	mutex and	the	condition	
variable,	which	makes	things	slightly	easier

38

Condition	Variable	Example

39

class weighted_bounded_buffer:
mutex m
condition c
list buffer
int totalweight = 0
int neededweight = 0

get(weight):
m.lock()
if totalweight < weight:

neededweight += weight
c.wait(m)

neededweight -= weight
result = buffer.remove_head()
totalweight -= result.weight
m.unlock()
return result

put(item):
m.lock()
buffer.add_tail(item)
totalweight += item.weight
if totalweight >= neededweight

and neededweight > 0:
c.signal(m)

else:
m.unlock()

• wait()	unlocks	the	mutex
and	blocks	the	thread

• When	wait()	returns,	the	
mutex is	locked

• signal()	hands	the	locked	
mutex to	a	waiting	thread

• In	essence,	we	have	built	a	construct	of	the	form:
wait_until(totalweight >=	weight)

Monitors
• Many	textbooks	refer	to	monitors when	they	
discuss	synchronization
– A	monitor	is	just	a	combination	of	a	mutex and	a	
condition	variable

• There	is	no	API	that	gives	you	a	monitor
– You	usemutexes and	condition	variables
– You	have	to	write your	own	monitors

• In	OO	design,	you	typically	make	some	user-defined	object	a	
monitor	if	it	is	shared	between	threads

• Monitors	enforce	mutual	exclusion
– Only	one	thread	may	access	an	instance	of	a	monitor	
at	any	given	time

– synchronized keyword	in	Java	is	a	simple	monitor
40

Be	Careful	When	Writing	Monitors

41

get(weight):
m.lock()
if totalweight < weight:

neededweight += weight
c.wait(m)

neededweight -= weight
result = buffer.remove_head()
totalweight -= result.weight
m.unlock()
return result

put(item):
m.lock()
buffer.add_tail(item)
totalweight += item.weight
if totalweight >= neededweight

and neededweight > 0:
c.signal(m)

else:
m.unlock()

get(weight):
m.lock()
if totalweight < weight:

neededweight += weight
c.wait(m)

result = buffer.remove_head()
totalweight -= result.weight
m.unlock()
return result

put(item):
m.lock()
buffer.add_tail(item)
totalweight += item.weight
if totalweight >= neededweight

and neededweight > 0:
c.signal(m)
neededweight -= item.weight

else:
m.unlock()

Original	Code Modified	Code

Incorrect!	The	mutex is	not	
locked	at	this	point	in	the	code

Pthread Synchronization	API

42

pthread_mutex_t m;
pthread_mutex_init(&m, NULL);
pthread_mutex_lock(&m);
pthread_mutex_trylock(&m);
pthread_mutex_unlock(&m);
pthread_mutex_destroy(&m);

pthread_rwlock_t rwl;
pthread_rwlock_init(&rwl, NULL);
pthread_rwlock_rdlock(&rwl);
pthread_rwlock_wrlock(&rwl);
pthread_rwlock_tryrdlock(&rwl);
pthread_rwlock_trywrlock(&rwl);
pthread_rwlock_unlock(&rwl);
pthread_rwlock_destroy(&rwl);

pthread_cond_t c;
pthread_cond_init(&c, NULL);
pthread_cond_wait(&c &m);
pthread_cond_signal(&c);
pthread_cond_broadcast(&c);
pthread_cond_destroy(&c);

sem_t s;
sem_init(&s, NULL, <value>);
sem_wait(&s);
sem_post(&s);
sem_getvalue(&s, &value);
sem_destroy(&s);

Mutex Condition	Variable

Read/Write	Lock POSIX	Semaphore

Layers
of	Locks

43

mutex A
mutex B

Thread 1

lock A
lock B
// do something
unlock B
unlock A

Thread 2

lock B
lock A
// do something
unlock A
unlock B

Thread	1 Thread	2

lock(A)

lock(B)

unlock(B)

unlock(A)

lock(B)

lock(A)

unlock(A)

unlock(B)

Thread	1 Thread	2

lock(A)

lock(B)

lock(B)

unlock(B)

unlock(A) lock(A)

unlock(A)

unlock(B)

Thread	1 Thread	2

lock(A) lock(B)

lock(B) lock(A)

Deadlock	:(

When	Can	Deadlocks	Occur?

• Four	classic	conditions	for	deadlock
1. Mutual	exclusion:	resources	can	be	exclusively	held	

by	one	process
2. Hold	and	wait:	A	process	holding	a	resource	can	

block,	waiting	for	another	resource
3. No	preemption:	one	process	cannot	force	another	to	

give	up	a	resource
4. Circular	wait:	given	conditions	1-3,	if	there	is	a	

circular	wait	then	there	is	potential	for	deadlock
• One	more	issue:

5. Buggy	programming:	programmer	forgets	to	release	
one	or	more	resources

44

Circular	Waiting

• Simple	example	of	circular	
waiting
– Thread	1	holds	lock	a,	waits	on	
lock	b

– Thread	2	holds	lock	b,	waits	on	
lock	a

45

Thread	1 Thread	2

lock(A) lock(B)

lock(B) lock(A)

Lock	A Lock	B

Thread	2

Thread	1

Avoiding	Deadlock

• If	circular	waiting	can	be	prevented,	no	deadlocks	
can	occur

• Technique	to	prevent	circles:	lock	ranking
1. Locate	all	locks	in	the	program
2. Number	the	locks	in	the	order	(rank)	they	should	be	

acquired
3. Add	assertions	that	trigger	if	a	lock	is	acquired	out-

of-order

• No	automated	way	of	doing	this	analysis
– Requires	careful	programming	by	the	developer(s)

46

Lock	Ranking	Example

• Rank	the	locks
• Add	assertions	to	enforce	rank	ordering
• In	this	case,	Thread	2	assertion	will	fail	at	
runtime

47

#1: mutex A
#2: mutex B

Thread 1

lock A
assert(islocked(A))
lock B
// do something
unlock B
unlock A

Thread 2

assert(islocked(A))
lock B
lock A
// do something
unlock A
unlock B

When	Ranking	Doesn’t	Work

• In	some	cases,	it	may	
be	impossible	to	rank	
order	locks,	or	
prevent	circular	
waiting

• In	these	cases,	
eliminate	the	hold	
and	wait	condition	
using	trylock()

48

class SafeList {
method append(SafeList more_items){

lock(self)
lock(more_items)

Example:	Thread	Safe	List

Safelist A,	B
Thread	1:	A.append(B)
Thread	2:	B.append(A)

Problem:

Solution:	Replace	lock()	with	trylock()
method append(SafeList more_items){
while (true) {

lock(self)
if (trylock(more_items) == locked_OK)
break

unlock(self)
}
// now both lists are safely locked

• Motivating	Parallelism
• Synchronization	Basics
• Types	of	Locks	and	Deadlock

49

Beyond	Locks

• Mutual	exclusion	(locking)	solves	many	issues	
in	concurrent/parallel	applications
– Simple,	widely	available	in	APIs
– (Relatively)	straightforward	to	reason	about

• However,	locks	have	drawbacks
– Priority	inversion	and	deadlock	only	exist	because	
of	locks

– Locks	reduce	parallelism,	thus	hinder	performance

50

Lock-Free	Data	Structures

• Is	it	possible	to	build	data	structures	that	are	
thread-safe	without	locks?
– YES

• Lock-free	data	structures
– Include	no	locks,	but	are	thread	safe
– However,	may	introduce	starvation
• Due	to	retry	loops	(example	in	a	few	slides)

51

Wait-Free	Data	Structures

• Wait-free	data	structures
– Include	no	locks,	are	thread	safe,	and	avoid	
starvation

–Wait-free	implies	lock-free
• Wait-free	is	much	stronger	than	lock-free

• Wait-free	structures	are	very hard	to	
implement
– Impossible	to	implement	for	many	data	structures
– Often	restricted	to	a	fixed	number	of	threads

52

Advantages	of	Going	Lock-Free

• Potentially	much	more	performant than	locking
– Locks	necessitate	waits,	context	switching,	CPU	stalls,	
etc…

• Immune	to	thread	killing
– If	a	thread	dies	while	holding	a	lock,	you	are	screwed

• Immune	to	deadlock	and	priority	inversion
– You	can’t	deadlock/invert	when	you	have	no	locks	:)

53

Caveats	to	Going	Lock-Free

• Very	few	standard	libraries/APIs	implement	
these	data	structures
– Implementations	are	often	platform-dependent
– Rely	on	low-level	assembly	instructions
–Many	structures	are	very	new,	not	widely	known

• Not	all	data	structures	can	be	made	lock-free
– For	many	years,	nobody	could	figure	out	how	to	
make	a	lock-free	doubly	linked	list

• Buyer	beware	if	implementing	yourself
– Very	difficult	to	get	right

54

Lock-free	Queue	Example:	Enqueue

55

void enqueue(int& t) {

last->next = new Node(t);

last = last->next;

// garbage collect dequeued nodes

while (first != divider) {

Node * tmp = first;

first = first->next;

delete tmp;

}

}

class Node {
Node * next;
int data;

};

// Queue pointers
volatile Node * first;
volatile Node * last;
volatile Node * divider;

lock_free_queue() {
// add the dummy node
first = last = divider

= new Node(0);
}

• Usage:	one	reader,	one	writer

first

Node	1 Node	2 Node	3

lastdivider

Node	0

Lock-free	Queue	Example:	Dequeue

56

bool dequeue(int& t) {

if (divider != last) {

t = divider->next->value;

divider = divider->next;

return true;

}

return false;

}

class Node {
Node * next;
int data;

};

// Queue pointers
volatile Node * first;
volatile Node * last;
volatile Node * divider;

lock_free_queue() {
// add the dummy node
first = last = divider

= new Node(0);
}

• Usage:	one	reader,	one	writer

first

Node	1 Node	2 Node	3

lastdivider

Node	0

Lock-free	Queue	Example:	Enqueue

57

void enqueue(int& t) {

last->next = new Node(t);

last = last->next;

// garbage collect dequeued nodes

while (first != divider) {

Node * tmp = first;

first = first->next;

delete tmp;

}

}

class Node {
Node * next;
int data;

};

// Queue pointers
volatile Node * first;
volatile Node * last;
volatile Node * divider;

lock_free_queue() {
// add the dummy node
first = last = divider

= new Node(0);
}

• Usage:	one	reader,	one	writer

first

Node	1 Node	2 Node	3

lastdivider

Node	0 Node	4

Why	Does	This	Work?
• The	enqueue thread	and	dequeue thread	write	
different	pointers
– Enqueue:	last,	last->next,	first,	first->next
– Dequeue:	divider,	divider->next
– Enqueue operations	are	independent	of	dequeue
operations

– If	these	pointers	overlap,	then	no	work	needs	to	be	
done

• The	queue	always	has	>1	nodes	(starting	with	
the	dummy	node)

58

More	Advanced	Lock-Free	Tricks
• Many	lock-free	data	structures	can	be	built	using	
compare	and	swap	(CAS)

bool cas(int * addr, int oldval, int newval) {
if (*addr == oldval) { *addr = newval; return true; }
return false;

}

• This	can	be	done	atomically	on	x86	using	the	cmpxchg
instruction

• Many	compilers	have	built	in	atomic	swap	functions
– GCC:	__sync_bool_compare_and_swap(ptr,	oldval,	newval)
– MSVC:	InterlockedCompareExchange(ptr,oldval,newval)

59

Lock-free	Stack	Example:	Push

void push(int t) {

Node* node = new Node(t);

do {

node->next = head;

} while (!cas(&head, node->next, node));

}

60

class Node {
Node * next;
int data;

};

// Root of the stack
volatile Node * head;

head Node	1 Node	2 Node	3

New	
Node	1

• Usage:	any	number	of	readers	and	writers

Lock-free	Stack	Example:	Push

void push(int t) {

Node* node = new Node(t);

do {

node->next = head;

} while (!cas(&head, node->next, node));

}

61

class Node {
Node * next;
int data;

};

// Root of the stack
volatile Node * head;

• Usage:	any	number	of	readers	and	writers

head Node	1 Node	2 Node	3

New	
Node	2

New	
Node	1

Thread	1

Thread	2

Lock-free	Stack	Example:	Pop
bool pop(int& t) {

Node* current = head;

while(current) {

if(cas(&head, current, current->next)) {

t = current->data;

delete current;

return true;

}

current = head;

}

return false;

}

62

class Node {
Node * next;
int data;

};

// Root of the stack
volatile Node * head;

head Node	1 Node	2 Node	3

current

Retry	Looping	is	the	Key

• Lock	free	data	structures	often	make	use	of	the	
retry	loop	pattern
1. Read	some	state
2. Do	a	useful	operation
3. Attempt	to	modify	global	state	if	it	hasn’t	changed	

(using	CAS)
• This	is	similar	to	a	spinlock
– But,	the	assumption	is	that	wait	times	will	be	small
– However,	retry	loops	may	introduce	starvation

• Wait-free	data	structures	remove	retry	loops
– But	are	much	more	complicated	to	implement

63

Many	Reads,	Few	Writes

• Suppose	we	have	a	
map	(hashtable)	that	is:
– Constantly	read	by	many	
threads

– Rarely,	but	occasionally	
written

• How	can	we	make	this	
structure	lock	free?

64

class readmap {
mutex mtx;
map<string, string> map;

string lookup(const string& k) {
lock l(mtx);
return map[k];

}

void update(const string& k,
const string& v) {

lock lock(mtx);
map[k] = v;

}
};

Duplicate	and	Swap

65

class readmap {
map<string, string> * map;

readmap() { map = new map<string, string>(); }

string lookup(const string& k) {
return (*map)[k];

}

void update(const string& k, const string& v) {
map<string, string> * new_map = 0;
do {

map<string, string> * old_map = map;
if (new_map) delete new_map;
// clone the existing map data
new_map = new map<string, string>(*old_map);
(*new_map)[k] = v;
// swap the old map for the new, updated map!

} while (cas(&map, old_map, new_map));
}

};

Memory	Problems

• What	is	the	problem	with	the	previous	code?
} while (cas(&map, old_map, new_map));

• The	old	map	is	not	deleted	(memory	leak)
• Does	this	fix	things?

} while (cas(&map, old_map, new_map));
delete old_map;

• Readers	may	still	be	accessing	the	old	map!
– Deleting	it	will	cause	nondeterministic	behavior

• Possible	solution:	store	the	old_map pointer,	
delete	it	after	some	time	has	gone	by

66

Hazard	Pointers
• Construct	for	managing	memory	in	lock-free	data	
structures

• Straightforward	concept:
– Read	threads	publish	hazard	pointers	that	point	to	any	
data	they	are	currently	reading

– When	a	write	thread	wants	to	delete	data:
• If	it	is	not	associated	with	any	hazard	pointers,	delete	it
• If	it	is	associated	with	a	hazard	pointer,	add	it	to	a	list
• Periodically	go	through	the	list	and	reevaluate	the	data

• Of	course,	this	is	tricky	in	practice
– You	need	lock-free	structures	to:

• Enable	publishing/updating	hazard	pointers
• Store	the	list	of	data	blocked	by	hazards 67

The	ABA	Problem
• Subtle	problem	that	impacts	many	lock-free	
algorithms

• Compare	and	swap	relies	on	the	uniqueness	of	
pointers
– Example:	cas(&head,	current,	current->next)

• However,	sometimes	the	memory	manager	will	
reuse pointers
item * a = stack.pop();
free a;
item * b = new item();
stack.push(b);
assert(a != b); // this assertion may fail!

68

ABA	Example

69

bool pop(int& t) {

Node* current = head;

while(current) {

if(cas(&head, current, current->next)) {

t = current->data;

delete current;

return true;

}

current = head;

}

return false;

}

head 0xA8B0:	
Node	3

Thread	1:	current

Order	of	Events

Thread	1:	pop() {
current	=	head;

Thread	2:	pop()	{…}

Thread	2:	push(int N)	{…}

cas(...);

0x055D:
Node	2

0x0F12:	
Node	1
0x0F12:	
Node	4

Applications	of	Lock-Free	Structures

• Stack
• Queue
• Deque
• Linked	list
• Doubly	linked	list
• Hash	table
• Many	variations	on	each
– Lock	free	vs.	wait	free

70

• Memory	managers
– Lock	free	malloc()	and	
free()

• The	Linux	kernel
–Many	key	structures	are	
lock-free

References

• Geoff	Langdale,	Lock-free	Programming
– http://www.cs.cmu.edu/~410-
s05/lectures/L31_LockFree.pdf

• Herb	Sutter,	Writing	Lock-Free	Code:	A	
Corrected	Queue
– http://www.drdobbs.com/parallel/writing-lock-
free-code-a-corrected-queue/210604448

71

