
CS	5600
Computer	Systems

Project	4:	File	System	in	Pintos



File	System	in	Pintos

• Pintos	already	implements	a	basic	file	system
– Can	create	fixed	size	files	in	a	single	root	directory

• But	this	system	has	limitations
– No	support	for	nested	directories
– No	support	for	files	that	grow	in	size
– No	caching	or	preemptive	reading

2



Your	Goals
1. Implement	indexed	files
– Files	should	begin	life	as	a	single	sector	and	grow	

dynamically	as	necessary
– Processes	should	be	able	to	seek	and	write	past	the	

end	of	a	file
– Requires	heavily	modifying	Pintos’	inodes

2. Implement	nested	directories
– You	will	need	to	implement	new	system	calls	to	

manipulate	directories
– chdir(),	mkdir(),	readdir(),	isdir()
– Inode management:	inumber()	à get	the	inode of	a	

file	or	directory 3



Your	Goals	(cont.)
3. Implement	a	buffer	cache
– Up	to	64	sectors	of	disk	data	should	be	buffered	

in	RAM
– Implement	a	write-back	cache
– Cache	must	be	periodically	flushed	to	disk
– How	to	handle	eviction?

4. Carefully	synchronize	file	operations
– Accesses	to	independent	files/directories	should	

not	block	each	other
– Concurrent	reading/writing	of	a	single	file	needs	

to	be	handled	carefully 4



What	Pintos	Does	For	You
• Basic	disk	management
– Read/write	access	to	sectors
– Basic	management	of	free	space

• You’ve	already	implemented	file	descriptors	
and	most	of	the	file	system	API	;)

5



Inodes in	Pintos
• filesys/inode.c

/*	On-disk	inode.
Must	be	exactly	BLOCK_SECTOR_SIZE	bytes	long.	*/

struct inode_disk {
block_sector_t start;															/*	First	data	sector.	*/
off_t length;																							/*	File	size	in	bytes.	*/
unsigned	magic;																					/*	Magic	number.	*/
uint32_t	unused[125];															/*	Not	used.	*/
};

6



Directories	in	Pintos

• filesys/directory.c

• Implements	a	single	root	directory
– i.e.	no	subdirectories

• Must	be	overhauled	to	allow	a	directory	to	
contain	other	directories
– e.g.	subdirectories

7



Key	Challenges

• Choosing	the	right	data	structures
– How	do	you	encode	directory	and	file	information	
on	disk?

– How	do	you	keep	track	of	the	locations	of	
dynamically	allocated	file	blocks

• Properly	managing	your	cache
– Implementing	performant	cache	eviction	is	tricky
–Write-back	cache	must	be	periodically	flushed

• Implementing	correct	and	performant	
synchronization

8



More	Key	Challenges

• Each	process	needs	to	have	an	associated	
working	directory
– Necessary	for	resolving	relative	file	accesses
• E.g.	open(“../file.txt”)	or	open(“./my_thing”)

– Used	by	the	pwd program

9



Modified	Files
• filesys/Make.vars 6	
• filesys/cache.c 473 #	new	file!
• filesys/cache.h 23 #	new	file!
• filesys/directory.c 99
• filesys/directory.h 3	
• filesys/file.c 4	
• filesys/filesys.c 194
• filesys/filesys.h 5	
• filesys/free-map.c 45
• filesys/free-map.h 4	
• filesys/fsutil.c 8	
• filesys/inode.c 444
• filesys/inode.h 11	
• userprog/process.c 12
• userprog/syscall.c 37	
• 15+	files	changed,	1368	insertions(+),	286	deletions(-)

10



This	Project	Is	the	Biggest

• The	reference	solution	for	Project	4	includes	
way	more	lines	of	code	than	any	other	project	
thus	far

Start	early!

11



Dependency	on	older	Projects

• Project	4	can	built	on	top	of	Project	2	or	
Project	3

• If	you	build	on	top	of	Project	3,		requires	
having	a	rock-solid	VM	implementation

12



NO	EXTENSIONS	FOR	THIS	ONE!

DUE:	December	5
11:59:59PM	PST

13


