
CS	5600
Computer	Systems

Project	1:	Threads	in	Pintos

• Getting	Started	With	Pintos
•What	does	Pintos	Include?
• Threads	in	Pintos
• Project	1

2

What	is	Pintos?

• Pintos	is	a	teaching	operating	system	from	
Stanford
–Written	in	C
– Implements	enough	functionality	to	boot…
• …	perform	basic	device	I/O…
• …	and	has	a	small	standard	library

• Your	goal	will	be	to	expand	it’s	functionality

3

Pintos	Documentation

• All	of	the	Pintos	docs	are	available	on	the	
course	webpage

http://www.ccs.neu.edu/home/skotthe/classes/cs5600/fall/201
6/pintos/doc/pintos.html

• You	will	need	to	copy	the	Pintos	source	to	
your	home	directory
– See	Lab2

4

Pintos	Projects

• Each	project	in	this	class	corresponds	to	a	
particular	directory
Project	1:	 pintos/src/threads/
Project	2: pintos/src/userprog/
Project	3: pintos/src/vm/
Project	4: pintos/src/filesys/

• Each	directory	includes	a	Makefile,	and	all	
necessary	files	to	build	Pintos

5

Building	and	Running	Pintos

$	cd	~/pintos/src/threads
$	make
$	cd	build/
$	pintos		-v		-- -q	run	alarm-single

6

Script	to	run	
Pintos	in	the	

QEMU	simulator

Parameters	for	
the	simulator

Parameters	for	
the	Pintos	kernel

Making	Pintos

• When	you	run	make,	you	compile	two	things
– build/loader.bin

• The	Pintos	bootloader (512	byte	MBR	image)
• Locates	the	kernel	in	the	filesystem,	loads	it	into	memory,	
and	executes	it

– build/kernel.bin
• The	Pintos	kernel

• The	pintos script	automatically	creates	a	file	
system	image	that	includes	the	MBR	and	kernel

7

QEMU

• Pintos	could	be	run	on	an	actual	machine
– But	that	would	require	installing	it,	dual	booting	
with	another	OS

– Debugging	would	be	hard
• Instead,	we	will	run	Pintos	inside	QEMU
– QEMU	is	a	machine	emulator
• In	our	case,	a	32-bit	x86	CPU	with	basic	devices

– Executes	a	BIOS,	just	like	a	real	machine
• Loads	bootloader from	MBR	of	emulated	disk	drive

8

• Getting	Started	With	Pintos
•What	does	Pintos	Include?
• Threads	in	Pintos
• Project	1

9

Pintos	Features

• Pintos	is	already	a	basic,	bootable	OS
– Switches	from	real	to	protected	mode
– Handles	interrupts
– Has	a	timer-interrupt	for	process	preemption
– Does	basic	memory	management
– Supports	a	trivial	file	system

10

Devices

• pintos/src/devices/	includes	drivers	and	APIs	
for	basic	hardware	devices
– System	timer:	timer.h
– Video:	vga.h (use	lib/kernel/stdio.h to	print	text)
– Serial	port:	serial.h
– File	storage:	ide.h,	partition.h,	block.h
– Keyboard	input:	kbd.h,	input.h
– Interrupt	controller:	intq.h,	pit.h

11

Standard	Library

• The	typical	C	standard	library	is	not	available	
to	you	(C	lib	doesn’t	exist	in	Pintos)

• Pintos	reimplements a	subset	of	C	lib	in	
pintos/src/lib/
– Variable	types:	ctypes.h,	stdbool.h,	stdint.h
– Variable	argument	functions:	stdarg.h
– String	functions:	string.h
– Utility	functions:	stdlib.h
– Random	number	generation:	random.h
– Asserts	and	macros	for	debugging:	debug.h 12

Data	Structures

• pintos/src/lib/kernel/	includes	kernel	data	
structures	that	you	may	use
– Bitmap:	kernel/bitmap.h
– Doubly	linked	list:	kernel/list.h
– Hash	table:	kernel/hash.h
– Console	printf():	kernel/stdio.h

• Include	using	#include	<kernel/whatever.h>

13

Tests
• Each	Pintos	project	comes	with	a	set	of	tests
– Useful	for	debugging
– Also	what	we	will	use	to	grade	your	code

• Out-of-the-box,	Pintos	cannot	run	user	
programs
– Thus,	tests	are	compiled	into	the	kernel
– You	tell	the	kernel	which	test	to	execute	on	the	
command	line

$	pintos		-v		-- run	alarm-single
• Use $	make	check	to	run	the	tests

14

[>]	pintos	-v	-- -q	run	alarm-single
qemu -hda /tmp/8HDMnPzQrE.dsk	-m	4	-net	none	-nographic -monitor	null
PiLo hda1
Loading.........
Kernel	command	line:	run	alarm-single
Pintos	booting	with	4,088	kB	RAM...
382	pages	available	in	kernel	pool.
382	pages	available	in	user	pool.
Calibrating	timer...		523,468,800	loops/s.
Boot	complete.
Executing	'alarm-single':
(alarm-single)	begin
(alarm-single)	Creating	5	threads	to	sleep	1	times	each.
(alarm-single)	Thread	0	sleeps	10	ticks	each	time,
…
(alarm-single)	end
Execution	of	'alarm-single'	complete.	Execution	of	'alarm-single'	complete.
Timer:	276	ticks
Thread:	0	idle	ticks,	276	kernel	ticks,	0	user	ticks
Console:	986	characters	output
Keyboard:	0	keys	pressed
Powering	off...

Pintos	Bootup Sequence
• pintos/src/threads/init.càmain()

16

bss_init ();	/*	Clear	the	BSS	*/

argv =	read_command_line ();
argv =	parse_options (argv);

thread_init ();
console_init ();

printf ("Pintos	booting	with…”);

/*	Initialize	memory	system.	*/
palloc_init (user_page_limit);
malloc_init ();
paging_init ();

/*	Segmentation.	*/
tss_init ();
gdt_init ();

/*	Enable	Interrupts	*/
intr_init ();

/*	Timer	Interrupt	*/
timer_init ();

/*	Keyboard	*/
kbd_init ();
input_init ();	
exception_init ();

/*	Enable	syscalls */
syscall_init ();

/*	Initialize	threading	*/
thread_start ();
serial_init_queue ();
timer_calibrate ();

/*	Initialize	the	hard
drive	and	fs	*/

ide_init ();
locate_block_devices ();
filesys_init (format_filesys);

printf ("Boot	complete.\n");

/*	Run	actions	specified
on	kernel	command	line.	*/

run_actions (argv);

shutdown	();
thread_exit ();

• Getting	Started	With	Pintos
•What	does	Pintos	Include?
• Threads	in	Pintos
• Project	1

17

Threads	in	Pintos

• Pintos	already	implements	a	simple	threading	
system
– Thread	creation	and	completion
– Simple	scheduler	based	on	timer	preemption
– Synchronization	primitives	(semaphore,	lock,	
condition	variable)

• But	this	system	has	problems:
–Wait	is	based	on	a	spinlock	(i.e.	it	just	wastes	CPU)
– The	thread	priority	system	is	not	implemented

18

Threading	System
• thread_create()	starts	new	threads
– Added	to	all_list and	ready_list

• Periodically,	the	timer	interrupt	fires
– Current	thread	stops	running
– Timer	interrupt	calls	schedule()

static	void schedule	(void)	{
struct thread	*cur	=	running_thread ();
struct thread	*next	=	next_thread_to_run ();
struct thread	*prev =	NULL;

if	(cur	!=	next)	prev =	switch_threads (cur,	next);
thread_schedule_tail (prev);

} 19

Switching	Threads

• Remember	the	switch()	function	we	talked	
about	earlier?

• Pintos	has	one	in	threads/switch.S
– Saves	the	state	of	the	CUR	thread
– Saves	ESP	of	the	CUR	thread
– Loads	the	state	of	the	NEXT	thread
– Loads	ESP	of	the	NEXT	thread
– Returns	to	NEXT	thread

20

Idle	Thread
• There	is	always	one	thread	in	the	system
• Known	as	the	idle	thread
– Executes	when	there	are	no	other	threads	to	run

for (;;)	{
intr_disable ();	/*	Disable	interrupts	*/
thread_block ();	/*	Let	another	thread	run	*/

/*	Re-enable	interrupts	and	wait	for	the	next	one.
The	`sti'	instruction	disables	interrupts	until	the
completion	of	the	next	instruction,	so	these	two
instructions	are	executed	atomically.	*/

asm volatile ("sti;	hlt"	:	:	:	"memory");
}

21

• Getting	Started	With	Pintos
•What	does	Pintos	Include?
• Threads	in	Pintos
• Project	1

22

Pintos	Projects

• All	four	Pintos	projects	will	involve	two	things
1. Modifying	the	Pintos	OS
2. Producing	a	DESIGNDOC	that	explains	your	

modifications
• We	will	use	automated	tests	to	gauge	the	
correctness	of	your	modified	code

• The	TA/graders	will	evaluate	the	quality	of	
your	DESIGNDOC
– Templates	for	DESIGNDOCs	are	provided	by	us

23

Project	1	Goals
1. Fix	the	timer_sleep()	function	to	use	proper	

synchronization
– No	busy	waiting

2. Implement	the	thread	priority	system
– High	priority	threads	execute	before	low	priority
– Watch	out	for	priority	inversion!

24

Goal	1:	Fixing	timer_sleep()
• Sometimes,	a	thread	may	want	to	wait	for	
some	time	to	pass,	a.k.a.	sleep

• Problem:	Pintos’	implementation	of	sleep	is	
very	wasteful

• devices/timer.c

void timer_sleep (int64_t	ticks)	{
int64_t	start	=	timer_ticks ();
while (timer_elapsed (start)	<	ticks)

thread_yield ();
}

25

Modifying	timer_sleep()

void timer_sleep (int64_t	ticks)	{
//int64_t	start	=	timer_ticks ();
//	while	(timer_elapsed (start)	<	ticks)
//							thread_yield ();
thread_sleep(ticks);	//	New	function!

}

26

Modifying	struct thread
• threads/thread.h

enum thread_status {
THREAD_RUNNING,					/*	Running	thread.	*/
THREAD_READY,							/*	Not	running	but	ready	to	run.	*/
THREAD_SLEEPING,			/*	New	state	for	sleeping	threads	*/
THREAD_BLOCKED,					/*	Waiting	for	an	event	to	trigger.	*/
THREAD_DYING								/*	About	to	be	destroyed.	*/
};

struct thread	{
…
int64_t	wake_time;

}
27

thread_sleep()

• threads/thread.c

static struct list	sleeping_list;

void thread_sleep (int64_t	ticks)	{
struct thread	*cur	=	thread_current();
enum intr_level old_level;

old_level =	intr_disable ();
if (cur	!=	idle_thread)	{
list_push_back (&sleeping_list,	&cur->elem);
cur->status	=	THREAD_SLEEPING;
cur->wake_time =	timer_ticks()	+	ticks;
schedule	();				

}
intr_set_level (old_level);

}
28

Modifying	schedule	()
• threads/thread.c

struct list_elem *temp,	*e	=	list_begin (&sleeping_list);
int64_t	cur_ticks =	timer_ticks();

while (e	!=	list_end (&sleeping_list))	{
struct thread	*t	=	list_entry (e,	struct thread,	allelem);

if	(cur_ticks >=	t->wake_time)	{
list_push_back (&ready_list,	&t->elem);	/*	Wake	this	thread	up!	*/
t->status	=	THREAD_READY;
temp	=	e;
e	=	list_next (e);
list_remove(temp);	/*	Remove	this	thread	from	sleeping_list */

}
else e	=	list_next (e);

}

29

Better	Implementation?

• I	just	(partially)	solved	part	of	Project	1	for	you
– You’re	welcome	:)

• But,	my	implementation	still	isn’t	efficient	
enough

• How	could	you	improve	it?
• Build	your	own	improved	timer_sleep()	
implementation	and	answer	6	questions	
about	it	in	your	DESIGNDOC

30

Goal	2:	Thread	Priority

• Modify	the	Pintos	thread	scheduler	to	support	
priorities
– Each	thread	has	a	priority
– High	priority	threads	execute	before	low	priority	
threads

• Why	is	this	challenging?
– Priority	inversion

• Implement	priority	scheduling	and	answer	7	
questions	about	it	in	your	DESIGNDOC	

31

Priority	Scheduling	Examples

32

Read

Add

Store

Read

Add

Store

Thread	1
Priority	0

Thread	2
Priority	63

LOCK

UNLOCK

LOCK

Read

Add

Store

Thread	1
Priority	0

LOCK
Read

Thread	2
Priority	63

Working	Example Problematic	Example

Priority	
Inversion

Priority	Donation

33

UNLOCK

LOCKAdd

Store

Thread	1
Priority	0

LOCK
Read

Thread	2
Priority	63

Donate	priority
63

UNLOCK

Add

Store

Read

Return	to	
original	priority

• Challenges:
–What	if	a	thread	
holds	multiple	locks?

–What	if	thread	A	
depends	on	B,	and	B	
depends	on	C?

Overall	File	Modifications

• What	files	will	you	be	modifying	in	project	1?
– devices/timer.c
– threads/synch.c ßMost	edits	will	be	here…
– threads/thread.c ß …	and	here
– threads/thread.h
– threads/DESIGNDOC	ß Text	file	that	you	will	write

34

Advanced	Scheduler?	MLFQ?

• Project	1	originally	included	more	work
– Asked	student	to	build	an	advanced	scheduler	that	
implements	MLFQ

• We	have	removed	this	from	the	assignment
– We	will	study	scheduling	later	in	the	course

• If	you	see	references	in	the	docs	to	“advanced	
scheduler”	or	references	in	the	code	to	“mlfq”	
ignore	them
– Might	be	a	good	idea	to	remove	the	mlfq tests	
to	save	time	when	running	the	full	test	suite.	

35

QUESTIONS?

DUE:	October	3
11:59:59PM	PST

36

