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Computer Systems

Lecture 4: Programs, Processes, 
and Threads



• Programs 
• Processes 
• Context Switching 
• Protected Mode Execution 
• Inter-process Communication 
• Threads
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Running Dynamic Code
• One basic function of an OS is to execute 

and manage code dynamically, e.g.: 
– A command issued at a command line 

terminal 
– An icon double clicked from the desktop 
– Jobs/tasks run as part of a batch system 

(MapReduce) 
• A process is the basic unit of a program 

in execution
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Programs and Processes
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Program 
An executable 

file in long-term 
storage

Process 
The running 

instantiation of a 
program, stored in 

RAM

One-to-many 
relationship 

between program 
and processes



How to Run a Program?
• When you double-click on an .exe, 

how does the OS turn the file on disk 
into a process? 

• What information must the .exe file 
contain in order to run as a program?
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Program Formats
• Programs obey specific file formats 

– CP/M and DOS: COM executables (*.com) 
– DOS: MZ executables (*.exe) 

• Named after Mark Zbikowski, a DOS developer 
– Windows Portable Executable (PE, PE32+) (*.exe) 

• Modified version of Unix COFF executable format 
• PE files start with an MZ header. 

– Mac OSX: Mach object file format (Mach-O) 
– Unix/Linux: Executable and Linkable Format (ELF) 

• designed to be flexible and extensible 
• all you need to know to load and start execution 

regardless of architecture 
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ABI - Application Binary Interface

• interface between 2 programs at the binary 
(machine code) level 
– informally, similar to API but on bits and bytes 

• Calling conventions 
– where are args and results stored  

• Binary format info to be passed from one 
program to another 

• Compiler and OS take care of this 
– binaries created from different compiler-OS pair 

will not always run on your machine! 
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test.c
#include <stdio.h> 

int big_big_array[10 * 1024 * 1024]; 
char *a_string = "Hello, World!"; 
int a_var_with_value = 100; 

int main(void) { 
big_big_array[0] = 100; 
printf("%s\n", a_string); 
a_var_with_value += 20; 

printf("main is : %p\n", &main); 
return 0; 

}
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ELF File Format
• ELF Header 
– Contains compatibility info 
– Entry point of the executable 

code 
• Program header table 
– Lists all the segments in the file 
– Used to load and execute the 

program 
• Section header table 
– Used by the linker
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ELF Header Format
typedef struct { 
 unsigned char e_ident[EI_NIDENT]; 
 Elf32_Half e_type; 
 Elf32_Half e_machine; 
 Elf32_Word e_version; 
 Elf32_Addr e_entry; 
 Elf32_Off e_phoff; 
 Elf32_Off e_shoff; 
 Elf32_Word e_flags; 
 Elf32_Half e_ehsize; 
 Elf32_Half e_phentsize; 
 Elf32_Half e_phnum; 
 Elf32_Half e_shentsize; 
 Elf32_Half e_shnum; 
 Elf32_Half e_shstrndx; 
} Elf32_Ehdr;
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ISA of executable code 

Offset of program 
headers

Offset of section headers

# of program headers

# of section headers

• Entry point of 
executable code 

• What should EIP be 
set to initially?



ELF Header Example
$ gcc –g –o test test.c 
$ readelf --header test 
ELF Header: 
 Magic:    7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
  Class:                              ELF64 
  Data:                               2's complement, little endian 
  Version:                            1 (current) 
  OS/ABI:                             UNIX - System V 
  ABI Version:                        0 
  Type:                               EXEC (Executable file) 
  Machine:                            Advanced Micro Devices X86-64 
  Version:                            0x1 
  Entry point address:                0x400460 
  Start of program headers:           64 (bytes into file) 
  Start of section headers:           5216 (bytes into file) 
  Flags:                              0x0 
  Size of this header:                64 (bytes) 
  Size of program headers:            56 (bytes) 
  Number of program headers:          9 
  Size of section headers:            64 (bytes) 
  Number of section headers:          36 
  Section header string table index:  33
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Investigating the Entry Point
int main(void) { 
 … 
            printf("main is : %p\n", &main); 
            return 0; 
}
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$ gcc -g -o test test.c 
$ readelf --headers ./test | grep Entry point' 
      Entry point address:               0x400460 
$ ./test 
    Hello World! 
    main is : 0x400544



Entry point != &main

13

$ ./test 
    Hello World! 
    main is : 0x400544 
$ readelf --headers ./test | grep Entry point' 
      Entry point address:               0x400460 
$ objdump --disassemble –M intel ./test 
… 
0000000000400460 <_start>: 
  400460: 31 ed                    xor    ebp,ebp 
  400462: 49 89 d1                 mov    r9,rdx 
  400465: 5e                       pop    rsi 
  400466: 48 89 e2                 mov    rdx,rsp 
  400469: 48 83 e4 f0              and    rsp,0xfffffffffffffff0 
  40046d: 50                       push   rax 
  40046e: 54                       push   rsp 
  40046f: 49 c7 c0 20 06 40 00    mov    r8,0x400620 
  400476: 48 c7 c1 90 05 40 00    mov    rcx,0x400590 
  40047d: 48 c7 c7 44 05 40 00    mov    rdi,0x400544 
  400484: e8 c7 ff ff ff           call   400450 <__libc_start_main@plt> 
…

• Most compilers insert extra 
code into compiled 
programs 

• This code typically runs 
before and after main()



Sections and Segments
• Sections are the various 

pieces of code and data 
that get linked together 
by the compiler 

• Each segment contains 
one or more sections 
– Each segment contains 

sections that are related 
• E.g. all code sections 

– Segments are the basic 
units for the loader
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Segments

Multiple sections 
in one segments



Common Sections
• Sections are the various pieces of code 

and data that compose a program 
• Key sections: 
–  .text – Executable code 
–  .bss – Global variables initialized to zero 
–  .data, .rodata – Initialized data and strings 
–  .strtab – Names of functions and variables 
–  .symtab – Debug symbols
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Section Example
int big_big_array[10*1024*1024]; 
char *a_string = "Hello, World!"; 
int a_var_with_value = 0x100; 

int main(void) { 
     big_big_array[0] = 100; 
     printf("%s\n", a_string); 
     a_var_with_value += 20; 
 … 
}

16Code ! .text

Empty 10 MB 
array ! .bss 

String variable ! .data 

String constant ! .rodata 

Initialized global 
variable ! .data 



$ readelf --headers ./test 
… 
 Section to Segment mapping: 
  Segment Sections... 
   00 
   01     .interp 
   02     .interp .note.ABI-tag .note.gnu.build-
id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini  
.rodata .eh_frame_hdr .eh_frame 
   03     .ctors .dtors .jcr .dynamic .got .got.plt .data .bss 
   04     .dynamic 
   05     .note.ABI-tag .note.gnu.build-id 
   06     .eh_frame_hdr 
   07 
   08     .ctors .dtors .jcr .dynamic .got 
… 
There are 36 section headers, starting at offset 0x1460: 
Section Headers: 
[Nr] Name Type Address Offset Size ES Flags Link Info Align 
[ 0]  NULL 00000000 00000000 00000000 00  0 0 0 
[ 1] .interp PROGBITS 00400238 00000238 0000001c 00 A 0 0 1 
[ 2] .note.ABI-tag NOTE 00400254 00000254 00000020 00 A 0 0 4 
[ 3] .note.gnu.build-I NOTE 00400274 00000274 00000024 00 A 0 0
 4 
[ 4] .gnu.hash GNU_HASH 00400298 00000298 0000001c  00 A 5 0 8 
[ 5] .dynsym DYNSYM 004002b8 000002b8 00000078 18 A 6 1 8 
[ 6] .dynstr STRTAB 00400330 00000330 00000044 00 A 0 0 1 
[ 7] .gnu.version VERSYM 00400374 00000374 0000000a 02 A 5 0 2 
…



$ readelf --sections ./test 
... 
Section Headers: 
… 
[Nr] Name Type Address Offset Size ES Flags   Link  
Info Align 
[13] .text     PROGBITS 00400460 00000460 00000218 00 AX 0 0 16 
…

.text Example Header
typedef struct { 
              Elf32_Word p_type;  
              Elf32_Off  p_offset; 
              Elf32_Addr p_vaddr; 
              Elf32_Addr p_paddr; 
              Elf32_Word p_filesz; 
              Elf32_Word p_memsz; 
              Elf32_Word p_flags; 
              Elf32_Word p_align; 
 }

Address to load 
section in 
memory

Data for the 
program

Offset of data in the 
file

Executable

How many bytes (in 
hex) are in the section



$ readelf --sections ./test 
... 
Section Headers: 
… 
[Nr] Name       Type Address Offset Size ES Flags   Link  Info Align 
[25] .bss NOBITS 00601040 00001034 02800020  00 WA  0  0  32 
[26] .comment PROGBITS 00000000  00001034 000002a 01 MS 0 0 1 
…

.bss Example Header
int big_big_array[10*1024*1024]; typedef struct { 

              Elf32_Word p_type;  
              Elf32_Off  p_offset; 
              Elf32_Addr p_vaddr; 
              Elf32_Addr p_paddr; 
              Elf32_Word p_filesz; 
              Elf32_Word p_memsz; 
              Elf32_Word p_flags; 
              Elf32_Word p_align; 
 }

Address to load 
section in 
memory

Contains 
no data

Offset of data in the 
file

Writable

hex(4*10*1024*1024) = 
0x2800020



Segments
• Each segment contains one or more sections 
– All of the sections in a segment are related, e.g.: 

• All sections contain compiled code 
• Or, all sections contain initialized data 
• Or, all sections contain debug information 
• … etc… 

• Segments are used by the loader to: 
– Place data and code in memory 
– Determine memory permissions (read/write/

execute)
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Segment Header
 typedef struct { 
              Elf32_Word p_type  
              Elf32_Off  p_offset; 
              Elf32_Addr p_vaddr; 
              Elf32_Addr p_paddr; 
              Elf32_Word p_filesz; 
              Elf32_Word p_memsz; 
              Elf32_Word p_flags; 
              Elf32_Word p_align; 
 } 
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Type of segment

Offset within the ELF 
file for the segment data

Size of the segment 
data on disk

Location to load the 
segment into memory

Size of the segment in 
memory

• Flags describing the 
section data 

• Examples: executable, 
read-only



$ readelf --segments ./test 
Elf file type is EXEC (Executable file) 
Entry point 0x400460 
There are 9 program headers, starting at offset 64 

Program Headers: 
  Type            Offset           VirtAddr     PhysAddr FileSiz        MemSiz      Flags Align 
  PHDR            0x00000040 0x00400040  0x00400040 0x000001f8  0x000001f8   R E     8 
  INTERP          0x00000238  0x00400238  0x00400238 0x0000001c  0x0000001c   R       1 
  LOAD            0x00000000  0x00400000  0x00400000 0x0000077c  0x0000077c   R E     200000 
  LOAD            0x00000e28  0x00600e28  0x00600e28 0x0000020c  0x02800238   RW      200000 
  DYNAMIC         0x00000e50  0x00600e50  0x00600e50 0x00000190  0x00000190   RW      8 
  NOTE            0x00000254  0x00400254  0x00400254 0x00000044  0x00000044   R       4 
  GNU_EH_FRAME  0x000006a8  0x004006a8  0x004006a8 0x0000002c  0x0000002c   R       4 
  GNU_STACK       0x00000000  0x00000000  0x00000000 0x00000000  0x00000000   RW      8 
  GNU_RELRO       0x00000e28  0x00600e28  0x00600e28 0x000001d8  0x000001d8   R       1 

 Section to Segment mapping: 
  Segment Sections... 
   00 
   01     .interp 
   02     .interp .note.ABI-tag .note.gnu.build-
id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .e
h_frame 
   03     .ctors .dtors .jcr .dynamic .got .got.plt .data .bss 
   04     .dynamic 
…

Executable



#include <stdio.h> 

int big_big_array[10 * 1024 * 1024]; 
char *a_string = "Hello, World!"; 
int a_var_with_value = 100; 

int main(void) { 
big_big_array[0] = 100; 
printf("%s\n", a_string); 
a_var_with_value += 20; 

printf("main is : %p\n", &main); 
return 0; 

}

What About Static Data?
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$ strings –t d ./test 
    568  /lib64/ld-linux-
x86-64.so.2 
    817  __gmon_start__ 
    832  libc.so.6 
    842  puts 
    847  printf 
    854  __libc_start_main 
    872  GLIBC_2.2.5 
   1300  fff. 
   1314  = 
   1559  l$ L 
   1564  t$(L 
   1569  |$0H 
   1676  Hello, World! 
   1690  main is : %p 
   1807  ;*3$"



The Program Loader
• OS functionality that 

loads programs into 
memory, creates 
processes 
– Places segments into 

memory 
• Expands segments like .bss 

– Loads necessary dynamic 
libraries 

– Performs relocation 
– Allocates the initial stack 

frame 
– Sets EIP to the programs 

entry point
24

ELF Header

.text

.data

.rodata

.bss

ELF Program

Memory

.text
.data

.rodata

.bss

Heap

Stack
ESP

EIP



Single-Process Address Apace
• The stack is used for local variables 

and function calls 
– Grows downwards 

• Heap is allocated dynamically 
(malloc/new) 
– Grows upwards 

• When the stack and heap meet, 
there is no more memory left in the 
process 
– Process will probably crash 

• Static data and global variables are 
fixed at compile time
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Memory

.text
.data

.rodata

.bss

Heap

Stack



Problem: Pointers in Programs
• Consider the following code: 
 int foo(int a, int b) { return a * b – a / b; } 
 int main(void) { return foo(10, 12); } 

• Compiled, it might look like this: 
 000FE4D8 <foo>: 
 000FE4D8: mov eax, [esp+4] 
 000FE4DB: mov ebx, [esp+8] 
 000FE4DF: mul eax, ebx 
 … 
 000FE21A: push eax 
 000FE21D: push ebx 
 000FE21F: call 0x000FE4D8 
• … but this assembly assumes foo() is at address 

0x000FE4D8



Program Load Addresses

• Loader must place each 
process in memory 

• Program may not be 
placed at the correct 
location! 
– Example: two copies of 

the same program
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0xFFFFFFFF

0x00000000

Code

Heap

Stack

Process 1

Code

Heap

Stack

Process 2

Addr of foo(): 
0x000FE4D8

Addr of foo(): 
0x0DEB49A3



Address Spaces for Multiple 
Processes

• Many features of processes 
depend on pointers 
– Addresses of functions 
– Addresses of strings, data 
– Etc. 

• For multiple processes to 
run together, they all have 
to fit into memory together 

• However, a process may 
not always be loaded into 
the same memory location
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0xFFFFFFFF

0x00000000

Code

Heap

Stack

Process 2

Code

Heap

Stack

Process 1

Code

Heap

Stack

Process 3



Address Spaces for Multiple 
Processes

• There are several methods for 
configuring address spaces for 
multiple processes 
1. Fixed address compilation 
2. Load-time fixup 
3. Position independent code 
4. Hardware support
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Fixed-Address Compilation

Single Copy of Each Program
• Compile each program 

once, with fixed 
addresses 

• OS may only load program 
at the specified offset in 
memory 

• Typically, only one 
process may be run at any 
time 

• Example: MS-DOS 1.0

Multiple Copies of Each Program
• Compile each program 

multiple times 
• Once for each possible 

starting address 
• Load the appropriate 

compiled program when 
the user starts the 
program 

• Bad idea 
– Multiple copies of the same 

program
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Load-Time Fixup
• Calculate addresses at load-time instead 

of compile-time 
• The program contains a list of locations 

that must be modified at startup 
– All relative to some starting address 

• Used in some OSes that run on low-end 
microcontrollers without virtual memory 
hardware

Program
0x000 CALL xxx 

 ... 
0x300 ...

000:  xxx=+300  
 

Fix-up  
information

After 
loading

0x200 CALL 0x500 
 ... 

0x500 ...
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Position-Independent Code
• Compiles programs in a way that is 

independent of their starting address 
– PC-relative address 

• Slightly less efficient than absolute 
addresses 

• Commonly used today for security 
reasons PC-relative 

addressing
Absolute 

addressing
0x200 CALL 0x500
 ... 
0x500  ...

0x200 CALL PC+0x300 
 ... 

0x500 ...
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Hardware Support
• Hardware address translation 
• Most popular way of sharing memory 

between multiple processes 
– Linux 
– OS X 
– Windows 

• Program is compiled to run at a fixed 
location in virtual memory 

• The OS uses the MMU to map these 
locations to physical memory
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MMU and Virtual Memory
• The Memory Management Unit (MMU) 

translates between virtual addresses 
and physical addresses 
– Process uses virtual address for calls and 

data load/store 
– MMU translates virtual addresses to 

physical addresses 
– The physical addresses are the true 

locations of code and data in RAM
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Advantages of Virtual Memory

• Flexible memory sharing 
– Simplifies the OS’s job of allocating memory to 

different programs 
• Simplifies program writing and 

compilations 
– Each program gets access to 4GB of RAM (on 

a 32-bit CPU) 
• Security 
– Can be used to prevent one process from 

accessing the address of another process 
• Robustness 
– Can be used to prevent writing to addresses 

belonging to the OS (which may cause the OS 
to crash) 35



Virtual Memory - 
Base and Bounds Registers

• A simple mechanism for address translation 
• Maps a contiguous virtual address region to 

a contiguous physical address region

36
0x0000

0xFFFF
Kernel 

Memory

Process 1

Physical Memory

0x00FF

0x10FF
Process 1

Process’ View of 
Virtual Memory

0x0001

0x1001

Register Value

EIP 0x0023

ESP 0x0F76

BASE 0x00FF

BOUND 0x1000



Base and Bounds Example
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0x0000

0xFFFF
Kernel 

Memory

Process 1

Physical Memory

0x00FF

0x10FF
Process 1

Process’ View of 
Virtual Memory

0x0001

0x1001

Register Value

EIP 0x0023

ESP 0x0F76

BASE 0x00FF

BOUND 0x1000

0x0023 mov eax, [esp] 

1) Fetch instruction 
0x0023 + 0x00FF = 
0x0122 

2) Translate memory 
access 
0x0F76 + 0x00FF = 
0x1075 

3) Move value to register 
[0x1075] ! eax

1
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Confused About Virtual Memory?

• For now, focus on the goal that Virtual 
Memory’s goal 

• We will discuss virtual memory at 
great length later in the semester 

• In project 3, you will implement 
virtual memory in Pintos
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• Programs 
• Processes 
• Context Switching 
• Protected Mode Execution 
• Inter-process 
Communication 
• Threads

39



From the Loader to the Kernel

• Once a program is loaded, the kernel 
must manage this new process 

• Program Control Block (PCB): kernel 
data structure representing a process 
– Has at least one thread (possibly more…) 
– Keeps track of the memory used by the 

process 
• Code segments 
• Data segments (stack and heap) 

– Keeps runtime state of the process 
• CPU register values 
• EIP 40



Program Control Block (PCB)
• OS structure that represents a process in memory 
• Created for each process by the loader 
• Managed by the kernel 

struct task_struct {   // Typical Unix PCB 
 pid t_pid;   // process identifier  
 long state;   // state of the process  
 unsigned int time_slice;  //scheduling information  
 struct task_struct *parent; // this process’s parent  
 struct list_head children; // this process’s children  
 struct files_struct *files;  // list of open files 
 struct mm_struct *mm; // address space of this 
process 
};

41



Process States
• As a process, P, executes, it changes state 
– new:  P is being created 
– running:  P’s instructions are being executed 
– waiting: P is waiting for some event to occur 
– ready:  P is waiting to be assigned to a processor 
– terminated:  P has finished execution
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Parents and Children
• On Unix/Linux, all processes have parents 
– i.e. which process executed this new 

process? 
• If a process spawns other processes, they 

become it’s children 
– This creates a tree of processes 

• If a parent exits before its children, the 
children become orphans 

• If a child exits before the parent calls 
wait(), the child becomes a zombie
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Process Tree
• init is a special process started by the 

kernel 
– Always roots the process tree
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Additional Execution Context
• File descriptors 
– stdin, stdout, 

stderr 
– Files on disck 
– Sockets 
– Pipes 

• Permissions 
– User and group 
– Access to specific 

APIs 
– Memory protection 45

• Environment 
– $PATH 

• Shared Resources 
– Locks 
– Mutexes 
– Shared Memory



UNIX Process Management
•  fork() – system call to create a copy of 

the current process, and start it running 
– No arguments! 

•  exec() – system call to change the 
program being run by the current 
process 

•  wait() – system call to wait for a 
process to finish 

•  signal() – system call to send a 
notification to another process

46



UNIX Process Management

pid = fork(); 
if (pid == 0) 
        exec(…); 
else 
        
wait(pid);

pid = fork(); 
if (pid == 0) 
        exec(…); 
else 
        
wait(pid);

pid = fork(); 
if (pid == 0) 
        exec(…); 
else 
        
wait(pid);

main() { 
         … 
}

pid = 0

pid = 9418

Original Process

Child Process

47



Question: What does this code 
print?

int child_pid = fork(); 
if (child_pid == 0) {   // I'm the child process 
    printf("I am process #%d\n", getpid()); 
    return 0; 
} else {                     // I'm the parent process 
    printf("I am parent of process #%d\n", 

child_pid); 
    return 0; 
}
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Questions
• Can UNIX fork() return an error?  

Why? 

• Can UNIX exec() return an error?  
Why? 

• Can UNIX wait() ever return 
immediately?  Why?
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Implementing UNIX fork()
• Steps to implement UNIX fork() 

1. Create and initialize the process control block 
(PCB) in the kernel 

2. Create a new address space 
3. Initialize the address space with a copy of the 

entire contents of the address space of the 
parent 

4. Inherit the execution context of the parent 
(e.g., any open files) 

5. Inform the scheduler that the new process is 
ready to run
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Implementing UNIX exec()
• Steps to implement UNIX exec() 

1. Load the new program into the current 
address space 

2. Copy command line arguments into 
memory in the address space 

3. Initialize the hardware context to start 
execution 
• EIP = Entry point in the ELF header 
• ESP = A newly allocated stack
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Process Termination
• Typically, a process will wait(pid) until 

its child process(es) complete 
• abort(pid) can be used to 

immediately end a child process
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• Programs 
• Processes 
• Context Switching 
• Protected Mode Execution 
• Inter-process 
Communication 
• Threads
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The Story So Far…
• At this point, we have gone over how the 

OS: 
– Turns programs into processes 
– Represents and manages running process 

• Next step: context switching 
– How does a process access OS APIs? 

• i.e. System calls 
– How does the OS share the CPU between 

several programs? 
• Multiprocessing
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Context Switching
• Context switching 
– Saves state of a process before a 

switching to another process 
– Restores original process state when 

switching back 
• Simple concept, but: 
– How do you save the state of a process? 
– How do you stop execution of a process? 
– How do you restart the execution of 

process that has been switched out?
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The Process Stack
• Each process has a stack in memory that 

stores: 
– Local variables 
– Arguments to functions 
– Return addresses from functions 

• On x86: 
– The stack grows downwards 
– ESP (Stack Pointer register) points to the 

bottom of the stack (i.e. the newest data) 
• EBP (Base Pointer) points to the base of the 

current frame 
– Instructions like push, pop, call, ret, int, and 

iret all modify the stack
56



foo()’s 
Frame

$ gcc -g -fno-stack-protector -m32 -o stack_exam 
stack_exam.c 
$ objdump --disassemble –M intel ./stack_exam 
… 
 804842a: e8 c0 ff ff ff  call   80483ef <foo> 
 804842f: b8 00 00 00 00 mov    eax,0x0 
… 
080483ef <foo>: 
 80483ef: 55          push   ebp 
 80483f0: 89 e5       mov    ebp, esp 
 80483f2: 83 ec 28     sub    esp, 0x28 
 80483f5: 8b 45 08     mov    eax, [ebp+0x8] 
 80483f8: 01 c0      add    eax, eax 
 80483fa: 89 45 f4     mov    [ebp-0xc], eax 
 80483fd: 8b 45 08     mov    eax, [ebp+0x8] 
 8048400: 83 e8 07     sub    eax, 0x7 
 8048403: 89 45 f0     mov    [ebp-0x10],eax 
 8048406: 8b 45 f0     mov    eax, [ebp-0x10] 
 8048409: 89 44 24 04     mov    [esp+0x4],eax 
 804840d: 8b 45 f4       mov    eax, [ebp-0xc] 
 8048410: 89 04 24       mov    [esp], eax 
 8048413: e8 bc ff ff ff   call   80483d4 <bar> 
 8048418: c9             leave 
 8048419: c3           ret 
…

main()’s local variables

12 Argument to foo()

0x804842f Return addr to 
main()

Saved EBP

24 x = a * 2

5 y = a - 7

5 2nd arg for bar()

24 1st arg for bar()

0x8048418 Return addr to foo()

Memory
EBP

ESP

main()’s 
FrameEIP
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… 
080483d4 <bar>: 
 80483d4:  55         push   ebp 
 80483d5:   89 e5     mov    ebp, esp 
 80483d7:   83 ec 18    sub    esp, 0x18 
 80483da:  e8 31 ff ff ff call   8048310 <rand@plt> 
 80483df:   89 45 f4   mov    [ebp-0xc], eax 
 80483e2:   8b 45 0c    mov    eax, [ebp+0xc] 
 80483e5:  8b 55 08  mov    edx, [ebp+0x8] 
 80483e8:   01 d0     add    eax,edx 
 80483ea:  2b 45 f4 sub    eax, [ebp-0xc] 
 80483ed:   c9  leave 
 80483ee:   c3     ret 
… 

bar()’s 
Frame

foo()’s local variables

5 2nd arg for bar()

24 1st arg for bar()

0x8048418 Return addr to 
foo()

Saved EBP

Some # Result of rand()

Memory

foo()’s 
FrameEIP

EBP

ESP

•  leave ! mov esp, ebp; pop ebp; 
•  Return value is placed in EAX



Stack Switching
• We’ve seen that the stack holds 
– Local variables 
– Arguments to functions 
– Return addresses 
– … basically, the state of a running program 

• Crucially, a process’ control flow is 
stored on the stack 

• If you modify the stack, you also modify 
control flow 
– Stack switching is effectively process 

switching
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Switching Between Processes

1. Process 1 calls into switch() routine
2. CPU registers are pushed onto the stack
3. The stack pointer is saved into memory
4. The stack pointer for process 2 is loaded
5. CPU registers are restored
6. switch() returns back to process 2
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Top Frame

Return addr

Saved EAX

…

Saved EDX

Process 1’s Stack

Top Frame

Return addr

Saved EAX

…

Saved EDX

Process 2’s Stack

<switch>: 
 push   eax 
 push   ebx 
 … 
 push   edx 
 mov    [cur_esp], esp 
 mov    esp, [saved_esp] 
 pop     edx 
 … 
 pop     ebx 
 pop     eax 
 ret

Saved ESP of Process 1

Saved ESP of Process 2

OS Memory

a = b + 1; 
switch(); 
b--;

Process 1’s Code

puts(my_str); 
switch(); 
my_str[0] = ‘\n’; 
i = strlen(my_str); 
switch();

Process 2’s Code

ESP
EIP

OS Code



Abusing Call and Return
• Context switching uses function call 

and return mechanisms 
– Switches into a process by returning from a 

function 
– Switches out of a process by calling into a 

function
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What About New Processes?
• But how do you start a process in the 

first place? 
– A new process doesn’t have a stack… 
– … and it never called into switch() 

• Pretend that there was a previous call 
– Build a fake initial stack frame 
– This frame looks exactly like the 

instruction just before main() called into 
switch() 

– When switch() returns, it’ll allow main() 
to run from the beginning
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argv[…]

argc

0 (null return addr)

Address of main()

0 (null EDX)

…

0 (null EAX)

Initial Stack Frame

<switch>: 
 push   eax 
 push   ebx 
 … 
 push   edx 
 mov    [cur_esp], esp 
 mov    esp, [saved_esp] 
 pop     edx 
 … 
 pop     ebx 
 pop     eax 
 iret

Saved ESP of Process 1

Address of New Stack

OS Memory

a = b + 1; 
switch(); 
b--;

Process 1’s Code

main() { 
 … 
}

New Process ESP

EIP

OS Code



When Do You Switch Processes?

• To share CPU between multiple 
processes, control must eventually 
return to the OS 
– When should this happen? 
– What mechanisms implements the 

switch from user process back to the OS? 
• Four approaches: 

1. Voluntary yielding 
2. Switch during API calls to the OS 
3. Switch on I/O 
4. Switch based on a timer interrupt
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Voluntary Yielding
• Idea: processes must voluntary give up 

control by calling an OS API, e.g. 
thread_yield() 

• Problems: 
– Misbehaving or buggy apps may never 

yield 
– No guarantee that apps will yield in a 

reasonable amount of time 
– Wasteful of CPU resources, i.e. what if a 

process is idle-waiting on I/O?
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Interjection on OS APIs
• Idea: whenever a process calls an OS API, 

this gives the OS an opportunity to context 
switch 
– E.g. printf(), fopen(), socket(), etc… 

• The original Apple Macintosh used this 
approach 
– Cooperative multi-tasking 

• Problems: 
– Misbehaving or buggy apps may never yield 
– Some normal apps don’t use OS APIs for long 

periods of time 
• E.g. a long, CPU intensive matrix calculation
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I/O Context Switch Example
• What’s happening here? 

struct terminal { 
queue<char> keystrokes;  /* buffered keystrokes - array or list */  
process *waiting;        /* process waiting for input */ 
... 

}; 
process *current;             /* the currently running process */ 
queue<process *> active;      /* linked list of other processes ready to run */ 
char get_char(terminal *term) { 

if (term->keystrokes.empty()) { 
term->waiting = current;       /* sleep waiting for input */ 
switch_to(active.pop_head());  /* and switch to next active process */ 

} 
return term->keystrokes.pop_head(); 

} 

void interrupt(terminal *term, char key) { 
term->keystrokes.push_tail(key);      /* add keystroke to buffer */ 
if (term->waiting) { 

active.push_tail(term->waiting); /* and wake up sleeping process */ 
term->waiting = NULL; 

} 
}

68



Context Switching on I/O
• Idea: when one process is waiting on 

I/O, switch to another process 
– I/O APIs already go through the OS, so 

context switching is easy 
• Problems: 
– Some apps don’t have any I/O for long 

periods of time
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Preemptive Context Switching
• So far, our processes will not switch to 

another process until some action is taken 
– e.g. an API call or an I/O interrupt 

• Idea: use a timer interrupt to force context 
switching at set intervals 
– Interrupt handler runs at a fixed frequency to 

measure how long a process has been running 
– If it’s been running for some max duration 

(scheduling quantum), the handler switches to 
the next process 

• Problems: 
– Requires hardware support (a programmable 

timer) 
• Thankfully, this is built-in to most modern CPUs
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• Programs 
• Processes 
• Context Switching 
• Protected Mode Execution 
• Inter-process 
Communication 
• Threads
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Process Isolation
• At this point, we can execute multiple 

processes concurrently 
• Problem: how do you stop processes 

from behaving badly? 
– Overwriting kernel memory 
– Reading/writing data from other 

processes 
– Disabling interrupts 
– Crashing the whole computer 
– Etc. 72



Thought Experiment
• How can we implement execution with 

limited privilege? 
– Use an interpreter or a simulator 

• Execute each program instruction in a simulator 
• If the instruction is permitted, do the instruction 
• Otherwise, stop the process 
• Basic model in Javascript, Java, … 

• However, interpreters and simulators are 
slow 

• How do we go faster? 
– Run the unprivileged code directly on the CPU
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• Most modern CPUs support protected mode

Protected Mode

Ring 0 
Kernel

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

• x86 CPUs support three 
rings with different 
privileges 
– Ring 0: OS kernel 
– Ring 1, 2: device drivers 
– Ring 3: userland 

• Most OSes only use rings 0 
and 3 

• What about hypervisors? 74



Real vs. Protected
• On startup, the CPU starts in 16-bit 

real mode 
– Protected mode is disabled 
– Assumes segment:offset addressing 

• Typically, bootloader switches CPU to 
protected mode 

mov eax, cr0 
or eax, 1  ; set bit 1 of CR0 to 1  
                ; enables pmode 
mov cr0, eax
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Dual-Mode Operation
• Ring 0: kernel/supervisor mode 
– Execution with the full privileges of the 

hardware 
– Read/write to any memory, access any I/O 

device, read/write any disk sector, send/
read any packet 

• Ring 3: user mode or “userland” 
– Limited privileges 
– Only those granted by the operating 

system kernel
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Protected Features
• What system features are impacted by 

protection? 
– Privileged instructions 

• Only available to the kernel 
– Limits on memory accesses 

• Prevents user code from overwriting the kernel 
– Access to hardware 

• Only the kernel may directly interact with peripherals 
– Programmable Timer Interrupt 

• May only be set by the kernel 
• Used to force context switches between processes
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Privileged Instructions
• Examples? 

– sti/cli – Enable and disable interrupts 
– Any instruction that modifies the CR0 register 

• Controls whether protected mode is enabled 
– hlt – Halts the CPU 

• What should happen if a user program 
attempts to execute a privileged instruction? 
– General protection (GP) exception gets thrown 

by the CPU 
– Control is transferred to the OS’s exception 

handler
78



Changing Modes
• Applications often need to access the OS 
– i.e. system calls 
– Writing files, displaying on the screen, 

receiving data from the network, etc… 
• But the OS is ring 0, and apps are ring 3 
• How do apps get access to the OS? 
– Apps invoke system calls with an interrupt 

• E.g. int 0x80 
–  int causes a mode transfer from ring 3 to 

ring 0
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Mode Transfer
1. Application executes trap (int) instruction 

– EIP, CS, and EFLAGS get pushed onto the stack 
– Mode switches from ring 3 to ring 0 

2. Save the state of the current process 
– Push EAX, EBX, …, etc. onto the stack 

3. Locate and execute the correct syscall 
handler 

4. Restore the state of process 
– Pop EAX, EBX, … etc. 

5. Place the return value in EAX 
6. Use iret to return to the process 

– Switches back to the original mode (typically 3)
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System Call Example

81

IVT

Main Memory

0x80 Handler

User Program

1. Software executes int 0x80 
– Pushes EIP, CS, and EFLAGS 

2. CPU transfers execution to the OS 
handler 
– Look up the handler in the IVT 
– Switch from ring 3 to 0 

3. OS executes the system call 
– Save the processes state 
– Use EAX to locate the system call 
– Execute the system call 
– Restore the processes state 
– Put the return value in EAX 

4. Return to the process with iret 
– Pops EIP, CS, and EFLAGS 
– Switches from ring 0 to 3

Syscall Table

printf()

OS Code

EIP



Alternative Syscall Mechanisms

• Thus far, all examples have used int/iret 
• However, there are other syscall 

mechanisms on x86 
– sysenter/sysexit 
– syscall/sysret 

• The sys* instructions are much faster 
than int/iret 
– Jump directly to OS code, rather than 

looking up handlers in the IVT 
– Used by modern OSes, including the Linux 

kernel
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• Programs 
• Processes 
• Context Switching 
• Protected Mode Execution 
• Inter-process 
Communication (IPC) 
• Threads
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Processes are not Islands
• Thus far: 
– We can load programs as processes 
– We can context switch between 

processes 
– Processes are protected from each other 

• What if one or more processes want to 
communicate with each other?
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Browser core is 
a process

Each tab is a process Each extension is a 
process



Mechanisms for IPC
• Typcially, two ways of 

implementing IPC 
– Shared memory 
• A region of memory that many 

processes can all read/write 
– Message passing 
• Various OS-specific APIs 
• Pipes 
• Sockets 
• Signals
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0x0000

0xFFFF

Process 1

Process 2

Message 
Queue

Kernel 
Memory

IPC Examples
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Message PassingShared Memory

0x0000

0xFFFF
Kernel 

Memory

Process 1

Process 2

Shared 
Memory

Write

Read

Write

Read



Posix Shared Memory API
•  shm_open() – create and/or open a shared 

memory page 
– Returns a file descriptor for the shared page  

•  ltrunc() or ftruncate() – limit the size of 
the shared memory page 

•  mmap() – map the memory page into the 
processes address space 
– Now you can read/write the page using a 

pointer 
•  close() – close a file descriptor 
•  shm_unlink() – remove a shared page 
– Processes with open references may still 

access the page 87



/* Program to write some data in shared memory */ 
int main() { 
 const int SIZE = 4096; /* size of the shared page */ 
  /* name of the shared page */ 
 const char * NAME = “MY_PAGE”;  
 const char * msg = “Hello World!”; 
 int shm_fd; 
 char * ptr; 
  
 shm_fd = shm_open(name, O_CREAT | O_RDRW, 0666); 
 ftruncate(shm_fd, SIZE); 
 ptr = (char *) mmap(0, SIZE, PROT_WRITE, 
                         MAP_SHARED, shm_fd, 0); 
 sprintf(ptr, “%s”, msg); 
 close(shm_fd); 
 return 0; 
}

88



/* Program to read some data from shared memory */ 
int main() { 
 const int SIZE = 4096; /* size of the shared page */ 
  /* name of the shared page */ 
 const char * NAME = “MY_PAGE”;  
 int shm_fd; 
 char * ptr; 
  
 shm_fd = shm_open(name, O_RDONLY, 0666); 
 ptr = (char *) mmap(0, SIZE, PROT_READ, 
                         MAP_SHARED, shm_fd, 0); 
 printf(“%s\n”, ptr); 
 shm_unlink(shm_fd); 
 return 0; 
}

89



POSIX Message Queues
• Implementation of message passing 
– Producers add messages to shared FIFO 

queue 
– Consumer(s) remove messages 
– OS takes care of memory management, 

synchronization 
• Posix API: 
–  msgget() – creates a new message queue 
–  msgsnd() – pushes a message onto the 

queue 
–  msgrcv() – pops a message from the queue
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Pipes

• File-like abstraction for sending data between 
processes 
– Can be read or written to, just like a file 
– Permissions controlled by the creating process 

• Two types of pipes 
– Named pipe: any process can attach as long as it 

knows the name 
• Typically used for long lived IPC 

– Unnamed/anonymous pipe: only exists between a 
parent and its children 

• Full or half-duplex 
– Can one or both ends of the pipe be read? 
– Can one or both ends of the pipe be written? 91

Process 1

fd[0] write(fd[0])

fd[1] read(fd[1])

Pipe

Process 2

fd[0] write(fd[0])

fd[1] read(fd[1])



You’ve All Used Pipes

$  ps x | grep ssh 
 3299 ?        S      0:00 sshd: cbw@pts/0

92

Pipe the output from one process 
to the input of another process



int main() {  /* Program that passes a string to a child process through a pipe */ 
 int fd[2], nbytes; 
 pid_t childpid; 
 char string[] = "Hello, world!\n"; 
 char readbuffer[80]; 

 pipe(fd); 
 if ((childpid = fork()) == -1) { perror("fork"); exit(1); } 
 if (childpid == 0) { 
  /* Child process closes up input side of pipe */ 
  close(fd[0]);  
  /* Send "string" through the output side of pipe */ 
  write(fd[1], string, strlen(string) + 1); 
 } else {  
  /* Parent process closes up output side of pipe */   
  close(fd[1]); 
  /* Read in a string from the pipe */ 
  nbytes = read(fd[0], readbuffer, sizeof(readbuffer));   
  printf("Received string: %s", readbuffer); 
 } 
 return(0); 
}

93



Sockets for IPC
• Yes, the same sockets you use for 

networking 
• Server opens a listen socket, as usual 
• Clients connect to this socket 
– The server can check the clients IP and 

drop connections from anyone other 
than 127.0.0.1 

• Send and receive packets as usual
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Implementation Questions
• How are links established? 
• Can a link be associated with more than 

two processes? 
• What is the capacity of each link? 
• Are messages fixed size or variable size? 
• Is the link unidirectional or bidirectional? 
• Is the link synchronous or asynchronous? 
• Does the API guarantee atomicity? 
• What is the overhead of the API?
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• Programs 
• Processes 
• Context Switching 
• Protected Mode Execution 
• Inter-process 
Communication 
• Threads
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Are Processes Enough?
• At this point, we have the ability to 

run processes 
– And processes can communicate with 

each other 
• Is this enough functionality? 
• Possible scenarios: 
– A large server with many clients 
– A powerful computer with many CPU 

cores
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Problems with Processes
• Process creation is heavyweight (i.e. 

slow) 
– Space must be allocated for the new process 
– fork() copies all state of the parent to the 

child 
• IPC mechanisms are cumbersome 
– Difficult to use fine-grained synchronization 
– Message passing is slow 

• Each message may have to go through the 
kernel
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Threads
• Light-weight processes that share the 

same memory and state space 
• Every process has at least one thread 
• Benefits: 
– Resource sharing, no need for IPC 
– Economy: faster to create, faster to 

context switch 
– Scalability: simple to take advantage of 

multi-core CPUs
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Process-Level Shared Data

Code
Global 
Data

File 
Descriptors

Registers

Stack

Registers

Stack

Registers

Stack

Thread 1 Thread 2 Thread 3

Process-Level Shared Data

Code
Global 
Data

File 
Descriptors

Registers Stack

Thread 1

Single-Threaded Process Multi-Threaded Process 



Thread Implementations
• Threads can be implemented in two 

ways: 
1. User threads 
• User-level library manages threads within a 

single process 
2. Kernel threads 
• Kernel manages threads for all processes
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POSIX Pthreads
• POSIX standard API for thread 

creation 
– IEEE 1003.1c 
– Specification, not implementation 
• Defines the API and the expected behavior 
• … but not how it should be implemented 

• Implementation is system dependent 
– On some platforms, user-level threads 
– On others, maps to kernel-level threads

102



Pthread API
•  pthread_attr_init() – initialize the 

threading library  
•  pthread_create() – create a new 

thread 
•  pthread_exit() – exit the current 

thread 
•  pthread_join() – wait for another 

thread to exit 
• Pthreads also contains a full range of 

synchronization primitives
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Pthread Example
      pthread_t tid; // id of the child thread 
      pthread_attr_t attr; // initialization data 
      pthread_attr_init(&attr); 
      pthread_create(&tid, &attr, runner, 0); 
      pthread_join(tid, 0); 

void * runner(void * params) { 
 … 
 pthread_exit(0); 
}
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Linux Threads
• In the kernel, threads are just tasks 
– Remember the task_struct from earlier? 

• New threads created using the clone() 
API 
– Sort of like fork() 
– Creates a new child task that copies the 

address space of the parent 
• Same code, same environment, etc. 
• New stack is allocated 
• No memory needs to be copied (unlike fork())
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Thread Oddities
• What happens if you fork() a process 

that has multiple threads? 
– You get a child process with exactly one 

thread 
– Whichever thread called fork() survives 

• What happens if you run exec() in a 
multi-threaded process? 
– All but one threads are killed 
–  exec() gets run normally

106



Advanced Threading
• Thread pools: 
– Create many threads in advance 
– Dynamically give work to threads from 

the pool as it becomes available 
• Advantages: 
– Cost of creating threads is handled up-

front 
– Bounds the maximum number of threads 

in the process
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Thread Local Storage
• Sometimes, you want 

each thread to have its 
own “global” data 
– Not global to all threads 
– Not local storage on the 

stack 
• Thread local storage 

(TLS) allows each thread 
to have its own space 
for “global” variables 
– Similar to static variables
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Registers
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Registers
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OpenMP
• Compiler extensions 

for C, C++ that adds 
native support for 
parallel programming 

• Controlled with 
parallel regions 
– Automatically creates 

as many threads as 
there are cores
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#include <omp.h> 

int main() { 
     int i, N = 20; 
     #pragma omp parallel 
     { 
           printf(“I am a parallel region\n”); 
     } 

     # pragma omp parallel for 
     for (i = 0; i < N; i++) 
           printf(“This is a parallel for loop
\n”); 

     return 0; 
}



Processes vs. Threads
• Threads are better if: 
– You need to create new ones quickly, on-

the-fly 
– You need to share lots of state 

• Processes are better if: 
– You want protection 

• One process that crashes or freezes doesn’t 
impact the others 

– You need high security 
• Only way to move state is through well-

defined, sanitized message passing interface
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