
CS	5600
Computer	Systems

Lecture	8:	Free	Memory	
Management

Recap	of	Last	Week
• Last	week	focused	on	virtual	memory
– Gives	each	process	the	illusion	of	vast,	empty	memory
– Offers	protection	and	isolation

2

Physical
Memory

CR3
Register

Page
Directory

Page
Tables

31 24 23 16 15 8 7 0

PD	Index PT	Index Offset

Dynamic	Allocation	of	Pages
• Page	tables	allow	the	OS	to	
dynamically	assign	physical	frames	to	
processes	on-demand
– E.g.	if	the	stack	grows,	the	OS	can	map	in	
an	additional	page

• On	Linux,	processes	use	
sbrk()/brk()/mmap()	to	request	
additional	heap	pages
– But,	these	syscalls only	allocates	memory	
in	multiples	of	4KB	pages

3

Virtual
Memory

Code

Stack

Heap

ESP
Stack
Stack

Heap
Heap

What	About	malloc()	and	free()?
• The	OS	only	allocates	and	frees	memory	in	units	
of	4KB	pages
–What	if	you	want	to	allocate	<4KB	of	memory?
– E.g.	char *	string	=	(char *)	malloc(100);

• Each	process	manages	its	own	heap	memory
– On	Linux,	glibc implements	malloc()	and	free(),	
manages	objects	on	the	heap

– The	JVM	uses	a	garbage	collector	to	manage	the	heap
• There	are	many	different	strategies	for	managing	
free	memory

4

Free	Space	Management
• Todays	topic:	how	do	processes	manage	free	
memory?
1. Explicit	memory	management
• Languages	like	C,	C++;	programmers	control	memory	

allocation	and	deallocation

2. Implicit	memory	management
• Languages	like	Java,	Javascript,	Python;	runtime	takes	care	

of	freeing	useless	objects	from	memory

• In	both	cases,	software	must	keep	track	of	the	
memory	that	is	in	use	or	available

5

Why	Should	You	Care?
• Regardless	of	language,	all	of	our	code	uses	
dynamic	memory

• However,	there	is	a	performance	cost	associated	
with	using	dynamic	memory

• Understanding	how	the	heap	is	managed	leads	
to:
–More	performant	applications
– The	ability	to	diagnose	difficult	memory	related	errors	
and	performance	bottlenecks

6

Key	Challenges
• Maximizing	CPU	performance
– Keeping	track	of	memory	usage	requires	effort

• Maximize	parallelism
– Heap	memory	is	shared	across	threads
– Thus,	synchronization	may	be	necessary

• Minimizing	memory	overhead
– Metadata	is	needed	to	track	memory	usage
– This	metadata	adds	to	the	size	of	each	object

• Minimize	fragmentation
– Over	time,	deallocations create	useless	gaps	in	memory

7

• Free	Lists
– Basics
– Speeding	Up	malloc() and	free()
– Slab	Allocation
– Common	Bugs

• Garbage	Collectors
– Reference	Counting
– Mark	and	Sweep
– Generational/Ephemeral	GC
– Parallel	Garbage	Collection

8

Setting	the	Stage
• Many	languages	allow	programmers	to	explicitly
allocate	and	deallocate memory
– C,	C++
– malloc()	and	free()

• Programmers	can	malloc()	any	size	of	memory
– Not	limited	to	4KB	pages

• free()	takes	a	pointer,	but	not	a	size
– How	does	free()	know	how	many	bytes	to	deallocate?

• Pointers	to	allocated	memory	are	returned	to	the	
programmer
– As	opposed	to	Java	or	C#	where	pointers	are	“managed”
– Code	may	modify	these	pointers 9

Requirements	and	Goals
• Keep	track	of	memory	usage
–What	bytes	of	the	heap	are	currently	
allocated/unallocated?

• Store	the	size	of	each	allocation
– So	that	free()	will	work	with	just	a	pointer

• Minimize	fragmentation…
– …	without	doing	compaction	or	relocation
–More	on	this	later

• Maintain	higher	performance
– O(1)	operations	are	obviously	faster	than	O(n),	etc.

10

External	Fragmentation,	Revisited
• Problem:	variable	size	segments	can	
lead	to	external	fragmentation
–Memory	gets	broken	into	random	size,	
non-contiguous	pieces

• Example:	there	is	enough	free	
memory	to	start	a	new	process
– But	the	memory	is	fragmented	:(

• Compaction	can	fix	the	problem
– But	it	is	extremely	expensive

11

Kernel	
Memory

Physical	Memory

Code

Heap

Stack

Code

Heap

Stack

Heap

Stack

Code

Code

Heap
Stack

Code

Heap

Stack

Heap	Fragmentation
obj *	obj1,	*	obj2;
hash_tbl *	ht;
int array[];
char	*	str1,	*	str2;
…
free(obj2);
free(array);
…
str2	=	(char	*)	malloc(300);

• This	is	an	example	of	external fragmentation
– There	is	enough	empty	space	for	str2,	but	the	space	

isn’t	usable
• As	we	will	see,	internal	fragmentation	may	also	

be	an	issue
12

Heap	Memory

str1

str2

obj1

ht

array

obj2

The	Free	List
• A	free	list	is	a	simple	data	structure	for	managing	
heap	memory

• Three	key	components
1. A	linked-list	that	records	free	regions	of	memory
• Free	regions	get	split	when	memory	is	allocated
• Free	list	is	kept	in	sorted	order	by	memory	address

2. Each	allocated	block	of	memory	has	a	header	that	
records	the	size	of	the	block

3. An	algorithm	that	selects	which	free	region	of	
memory	to	use	for	each	allocation	request

13

Free	List	Data	Structures
• The	free	list	is	a	linked	list
• Stored	in	heap	memory,	
alongside	other	data

• For	malloc(n):
num_bytes = n	+ sizeof(header)	

14

Heap	Memory	(4KB)

node	*	head
next
4088

∅

typedef struct node_t {
int size;
struct node_t *	next;

}	node;

typedef struct header_t {
int size;

}	header;

• Linked	list	of	regions	of	
free	space

• size	=	bytes	of	free	space

• Header	for	each	block	
of	allocated	space

• size	=	bytes	of	
allocated	space

Code	to	Initialize	a	Heap
//	mmap()	returns	a	pointer	to	a	chunk	of	free	space
node	*	head	=	mmap(NULL,	4096,	

PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE,	-1,	0);

head->size	=	4096	– sizeof(node);
head->next	=	NULL;

15

Allocating	Memory	(Splitting)
char *	s1	=	(char *)	malloc(100);	//	104	bytes
char *	s2	=	(char *)	malloc(100);	//	104	bytes
char *	s3	=	(char *)	malloc(100);	//	104	bytes

16

Heap	Memory	(4KB)

node	*	head
next
4088

∅

next
3984

∅

100char	*	s1

node	*	head

next
3880

∅

100char	*	s2

node	*	head

next
3776

∅

100
char	*	s3

node	*	head
typedef struct node_t {

int size;
struct node_t *	next;

}	node;

typedef struct header_t {
int size;

}	header; Header

Free	region	is	“split”	
into	allocated	and	free	

regions

Freeing	Memory

17

Heap	Memory	(4KB)

node	*	head 100
char	*	s1

node	*	head 100char	*	s2

next
3776

∅

100
char	*	s3

node	*	head
typedef struct node_t {

int size;
struct node_t *	next;

}	node;

typedef struct header_t {
int size;

}	header;

• The	free	list	is	kept	in	sorted	order
– free()	is	an	O(n)	operation

free(s2);	//	returns	100	+	4	– 8	bytes
free(s1);	//	returns	100	+	4	- 8	bytes
free(s3);	//	returns	100	+	4	- 8	bytes

All	memory	is	free,	but	
the	free	list	divided	into	

four	regions

next
96

next
96

next
96

These	pointers	are	
“dangling”:	they	still	point	
to	heap	memory,	but	the	

pointers	are	invalid

Coalescing

• Free	regions	should	be	merged	with	their	
neighbors
– Helps	to	minimize	fragmentation
– This	would	be	O(n2)	if	the	list	was	not	sorted

18

typedef struct node_t {
int size;
struct node_t *	next;

}	node;

typedef struct header_t {
int size;

}	header;

Heap	Memory	(4KB)

node	*	head

next
3776

∅

next
96

next
96

next
96

∅
2003044088

Choosing	Free	Regions	(1)
int i[]	=	(int*)	malloc(8);
//	8	+	4	=	12	total	bytes

• Which	free	region	should	
be	chosen?

• Fastest	option	is	First-Fit
– Split	the	first	free	region	
with	>=8	bytes	available

• Problem	with	First-Fit?
– Leads	to	external	
fragmentation

Heap	Memory	(4KB)

node	*	head

char	*	s1

char	*	s2

next
3596

∅

next
50

next
16

next
38

int i[]

node	*	head

Choosing	Free	Regions	(2)
int i[]	=	(int*)	malloc(8);
//	8 +	4	=	12	total	bytes

• Second	option:	Best-Fit
– Locate	the	free	region	with	
size	closest	to	(and	>=)	8	bytes

• Less	external	fragmentation	
than	First-fit

• Problem	with	Best-Fit?
– Requires	O(n)	time

Heap	Memory	(4KB)

node	*	head

char	*	s1

char	*	s2

next
3596

∅

next
50

next
16

next
4

int i[]

Basic	Free	List	Review
• Singly-linked	free	list
• List	is	kept	in	sorted	order
– free() is	an	O(n)	operation
– Adjacent	free	regions	are	coalesced

• Various	strategies	for	selecting	which	free	region	to	
use	for	a	given	malloc(n)
– First-fit:	use	the	first	free	region	with	>=n bytes	available

• Worst-case	is	O(n),	but	typically	much	faster
• Tends	to	lead	to	external	fragmentation	at	the	head	of	the	list

– Best-fit:	use	the	region	with	size	closest	(and	>=)	to	n
• Less	external	fragments	than	first-fit,	but	O(n)	time

21

Improving	Performance
1. Use	a	circular	linked	list	and	Next-Fit
– Faster	than	Best-Fit,	less	fragmentation	than	First-fit

2. Use	a	doubly-linked	free	list	with	footers
– Good:	makes	free()	and	coalesce	O(1)	time
– Bad:	small	amount	of	memory	wasted	due	to	headers	and	
footers

3. Use	bins	to	quickly	locate	appropriately	sized	free	
regions
– Good:	much	less	external	fragmentation,	O(1)	time
– Bad:	much	more	complicated	implementation
– Bad:	some	memory	wasted	due	to	internal	

fragmentation
22

Circular	List	and	Next-Fit
int i[]	=	(int*)	malloc(8);

1. Change	a	singly-linked,	to	
circular	linked	list

2. Use	First-Fit,	but	move	
head	after	each	split
– Known	as	Next-Fit
– Helps	spread	allocations,	

reduce	fragmentation
– Faster	allocations	than	

Best-Fit

Heap	Memory	(4KB)

node	*	head

char	*	s1

char	*	s2

next
3596

next
50

next
16

next
38

int i[]

node	*	head

Towards	O(1)	free()
• free()	is	O(n)	because	the	
free	list	must	be	kept	in	
sorted	order

• Key	ideas:
–Move	to	a	doubly	linked	list
– Add	footers	to	each	block

• Enables	coalescing	without	
sorting	the	free	list
– Thus,	free()	becomes	O(1)

24

typedef struct node_t {
bool free;
int size;
struct node_t *	next;
struct node_t *	prev;

}	node;

typedef struct header_t {
bool free;
int size;

}	header;

typedef struct footer_t {
int size;

}	header;

Example	Blocks

25

typedef struct node_t {
bool free;
int size;
struct node_t *	next;
struct node_t *	prev;

}	node;

typedef struct header_t {
bool free;
int size;

}	header;

typedef struct footer_t {
int size;

}	header;

Free	Block

prev

next

Allocated	Block

Footer

Locating	Adjacent	Free	Blocks

26

Heap	Memory	(4KB)

int *	i

• Suppose	we	have	free(i)
• Locate	the	next	and	previous	
free	blocks

char *	p	=	(char *)	i;	//	for	convenience
//	header	of	the	current	block
header	*	h	=	(header	*)	(p	– sizeof(header));
//	header	of	the	next	block
header	*	hn =	(header	*)	(p	+	h->size	+	sizeof(footer));
//	previous	footer
footer	*	f	=	(footer	*)	(p	– sizeof(header)	– sizeof(footer));
//	previous	header
header	*	hp =	(header	*)
((char	*)	f	– f->size	– sizeof(header));

h

hn

hp

Coalescing	is	O(1)
node	*	n	=	(node	*)	h,	nn,	np;
n->free	=	true;
if (hn->free)	{		//	combine	with	the	next	free	block

nn =	(node	*)	hn;
n->next	=	nn->next;							n->prev =	nn->prev;
nn->next->prev =	n;							nn->prev->next	=	n;
n->size	+=	nn->size	+	sizeof(header)	+	sizeof(footer);
((footer	*)	((char	*)	n	+	n->size))->size	=	n->size;

}
if (hp->free)	{	//	combine	with	the	previous	free	block

np	=	(node	*)	hp;
np->size	+=	n->size	+	sizeof(header)	+	sizeof(footer);
((footer	*)	((char	*)	np	+	np->size))->size	=	np->size;

}
if (!hp->free	&&	!hn->free)	{

//	add	the	new	free	block	to	the	head	of	the	free	list
}

27

• Be	careful	of	corner	cases:
• The	first	free	block
• The	last	free	block

Speeding	Up	malloc()
• At	this	point,	free() is	O(1)
• But	malloc() still	has	problems
– Next-Fit:	O(1)	but	more	fragmentation
– Best-Fit:	O(n)	but	less	fragmentation

• Two	steps	to	speed	up	malloc()
1. Round	allocation	requests	to	powers	of	2
• Less	external	fragmentation,	some	internal	fragmentation

2. Divide	the	free	list	into	bins of	similar	size	blocks
• Locating	a	free	block	of	size	round(x) will	be	O(1)

28

Rounding	Allocations
• malloc(size)

size	+=	sizeof(header)	+	sizeof(footer);	//	will	always	be	>16	bytes
if (size	>	2048)	size	=	4096 *	((size	+	4095)	/	4096);
else	if	(size	<	128)	size	=	32 *	((size	+	31)	/	32);
else size	=	round_to_next_power_of_two(size);

• Examples:
– malloc(4)à 32	bytes
– malloc(45)à 64	bytes
– malloc(145)à 256	bytes

29

For	large	allocations,	
use	full	pages

Binning

32	bytes

64	bytes

96	bytes

128	bytes

256	bytes

512	bytes

1024	bytes

2048+	bytes 30

node	*	bins[];

• Divided	the	free	list	into	bins	of	exact	size	blocks
• Most	allocations	handled	in	O(1)	time	by	pulling	a	
free	block	from	the	appropriate	list

• If	no	block	is	
available,	locate	and	
split	a	larger	block

Next	Problem:	Parallelism
• Today’s	programs	are	often	parallel
• However,	our	current	memory	manager	has	poor	
performance	with	>1	threads

Thread	1 Thread	2

Free	List

The	free	list	is	shared,	thus	it	
must	be	protected	by	a	mutex

obj1 obj2

Thread	1 Thread	2

CPU	
1

CPU	
2

Cache	Line

• Allocations	are	filled	sequentially	in	memory
• Objects	for	different	threads	may	share	the	

same	cache	line
• This	causes	contention	between	CPU	cores

Per-Thread	Arenas
• To	reduce	lock	and	CPU	cache	contention,	divide	
the	heap	into	arenas
– Each	arena	has	its	own	free	list
– Each	thread	is	assigned	to	several	arenas

32

Thread	1 Thread	2 Thread	3

Arena	1

Arena	4

Arena	2

Arena	5

Arena	3

Arena	6

• No	(or	few)	shared	locks
• Cache	affinity	is	high	

unless	data	is	shared	
between	threads

Two	More	Things
• How	can	you	make	your	code	manage	memory	
more	quickly?
– Slab	allocation

• Common	memory	bugs
–Memory	leaks
– Dangling	pointers
– Double	free

33

Speeding	Up	Your	Code
• Typically,	the	memory	allocation	algorithm	is	not	
under	your	control
– You	don’t	choose	what	library	to	use	(e.g.	glibc)
– You	don’t	know	the	internal	implementation

• How	can	your	make	your	code	faster?
– Avoid	the	memory	allocator	altogether!
– Use	an	object	cache	plus	slab	allocation

34

template<class T>	class obj_cache {
private:

stack<T	*>	free_objs;

void allocate_slab()	{
T	*	objs =	(T	*)	malloc(sizeof(T)	*	10);
for (int x	=	0;	x	<	10;	++x)	free_objs.push(&objs[x]);

}

public:
obj_cache()	{	allocate_slab();	}	//	start	by	pre-allocating	some	objects

T	*	alloc()	{
if (free_objs.empty())	allocate_slab();	//	allocate	more	if	we	run	out
T	*	obj =	free_objs.top();
free_objs.pop();
return obj;		//	return	an	available	object

}

void free(T	*	obj)	{	free_objs.push(obj);	}	//	return	obj to	the	pool
}; 35

• Objects	are	allocated	in	bulk
• Less	space	wasted	on	

headers	and	footers

Two	More	Things
• How	can	you	make	your	code	manage	memory	
more	quickly?
– Slab	allocation

• Common	memory	bugs
–Memory	leaks
– Dangling	pointers
– Double	free

36

Memory	Management	Bugs	(1)
int search_file(char *	filename,	char *	search)	{
unsigned int size;
char *	data;
FILE	*	fp =	fopen(filename,	"r"); //	Open	the	file
fseek(fp,	0,	SEEK_END); //	Seek	to	the	end	of	the	file
size	=	ftell(fp); //	Tell	me	the	total	length	of	the	file
data	=	(char *)	malloc(size	*	sizeof(char)); //	Allocate	buffer
fseek(fp,	0,	SEEK_SET); //	Seek	back	to	the	beginning	of	the	file
fread(data,	1,	size,	fp); //	Read	the	whole	file	into	the	buffer
return strstr(data,	search)	>	0; //	Is	the	search	string	in	the	buffer?

}

void main(int argc,	char **	argv)	{
if (search_file(argv[1],	argv[2]))	printf("String	'%s'	found	in	file	'%s'\n",	argv[2],	argv[1]);
else printf("String	'%s'	NOT	found	in	file	'%s'\n",	argv[2],	argv[1]);

}
37

• We	forgot	to	free(data)!
• If	this	program	ran	for	a	long	

time,	eventually	it	would	exhaust	
all	available	virtual	memory

Memory	Management	Bugs	(2)
• Dangling	pointer

char *	s	=	(char *)	malloc(100);
…
free(s);
…
puts(s);

• Double	free
char *	s	=	(char *)	malloc(100);
…
free(s);
…
free(s);

38

• Behavior	is	nondeterministic
• If	the	memory	has	no	been	reused,	may	print	s
• If	the	memory	has	been	recycled,	may	print	garbage

• Typically,	this	corrupts	the	free	list
• However,	your	program	may	not	crash	(nondeterminism)
• In	some	cases,	double	free	bugs	are	exploitable

• Free	Lists
– Basics
– Speeding	Up	malloc() and	free()
– Slab	Allocation
– Common	Bugs

• Garbage	Collectors
– Reference	Counting
– Mark	and	Sweep
– Generational/Ephemeral	GC
– Parallel	Garbage	Collection

39

Brief	Recap
• At	this	point,	we	have	thoroughly	covered	how	
malloc()	and	free()	can	be	implemented
– Free	lists	of	varying	complexity
–Modern	implementations	are	optimized	for	low	
fragmentation,	high	parallelism

• What	about	languages	that	automatically	manage	
memory?
– Java,	Javascript,	C#,	Perl,	Python,	PHP,	Ruby,	etc…

40

Garbage	Collection
• Invented	in	1959
• Automatic	memory	management
– The	GC	reclaims	memory	occupied	by	objects	that	are	
no	longer	in	use

– Such	objects	are	called	garbage
• Conceptually	simple

1. Scan	objects	in	memory,	identify	objects	that	cannot	
be	accessed	(now,	or	in	the	future)

2. Reclaim	these	garbage	objects
• In	practice,	very	tricky	to	implement

41

Garbage	Collection	Concepts

42

Root	Nodes

Heap

StackGlobal	Variables

int *	p; struct linked_list *	head; What	objects	
are	reachable?

Garbage

Identifying	Pointers
• At	the	assembly	level,	anything	can	be	a	pointer

int x	=	0x80FCE42;
char *	c	=	(char *)	x;					//	this	is	legal

• Challenge:	how	can	the	GC	identify	pointers?
1. Conservative	approach:	assume	any	number	that	

might	be	a	pointer,	is	a	pointer
• Problem:	may	erroneously	determine	(due	to	false	

pointers)	that	some	blocks	of	memory	are	in	use

2. Deterministic	approach:	use	a	type-safe	language	
that	does	not	allow	the	programmer	to	use	unboxed	
values	as	pointers,	or	perform	pointer	arithmetic

43

Approaches	to	GC
• Reference	Counting
– Each	object	keeps	a	count	of	references
– If	an	objects	count	==	0,	it	is	garbage

• Mark	and	Sweep
– Starting	at	the	roots,	traverse	objects	and	“mark”	them
– Free	all	unmarked	objects	on	the	heap

• Copy	Collection
– Extends	mark	&	sweep	with	compaction
– Addresses	CPU	and	external	fragmentation	issues

• Generational	Collection
– Uses	heuristics	to	improve	the	runtime	of	mark	&	sweep

44

Reference	Counting
• Key	idea:	each	object	includes	a	ref_count
– Assume	obj *	p	=	NULL;
– p	=	obj1;	//	obj1->ref_count++
– p	=	obj2;	//	obj1->ref_count--,	obj2->ref_count++

• If	an	object’s	ref_count ==	0,	it	is	garbage
– No	pointers	target	that	object
– Thus,	it	can	be	safely	freed

45

0

Reference	Counting	Example

46

Root	Nodes

Heap

StackGlobal	Variables

int *	p; struct linked_list *	head;

1

1

1
1

1
1

1

These	objects	are	
garbage,	but	none	
have	ref_count ==	0

0

23
1

2

Pros	and	Cons	of	Reference	Counting

The	Good
• Relatively	easy	to	

implement
• Easy	to	conceptualize

The	Bad
• Not	guaranteed	to	free	all	

garbage	objects
• Additional	overhead	(int

ref_count)	on	all	objects
• Access	to	obj->ref_count

must	be	synchronized

47

Mark	and	Sweep
• Key	idea:	periodically	scan	all	objects	for	
reachability
– Start	at	the	roots
– Traverse	all	reachable	objects,	mark	them
– All	unmarked	objects	are	garbage

48

Mark	and	Sweep	Example

49

Root	Nodes

Heap

StackGlobal	Variables

int *	p; struct linked_list *	head;

Mark	and	Sweep	Example

50

Root	Nodes

Heap

StackGlobal	Variables

int *	p; struct linked_list *	head;

Correctly	identifies	
unreachable	cycles	as	

garbage

Pros	and	Cons	of	Mark	and	Sweep

The	Good
• Overcomes	the	weakness	of	

reference	counting
• Fairly	easy	to	implement	

and	conceptualize
• Guaranteed	to	free	all	

garbage	objects

The	Bad
• Mark	and	sweep	is	CPU	

intensive
– Traverses	all	objects	

reachable	from	the	root
– Scans	all	objects	in	memory	

freeing	unmarked	objects
• Naïve	implementations	

“stop	the	world”	before	
collecting
– Threads	cannot	run	in	parallel	

with	the	GC
– All	threads	get	stopped	while	

the	GC	runs
51

Be	careful:	if	you	forget	to	
set	a	reference	to	NULL,	it	
will	never	be	collected

(i.e.	Java	can	leak	memory)

Copy	Collection
• Problem	with	mark	and	sweep:
– After	marking,	all	objects	on	the	heap	must	be	
scanned	to	identify	and	free	unmarked	objects

• Key	idea:	use	compaction	(aka	relocation)
– Divide	the	heap	into	start	space	and	end	space
– Objects	are	allocated	in	start	space
– During	GC,	instead	of	marking,	copy	live	object	from	
start	space into	end	space

– Switch	the	space labels	and	continue

52

Compaction/Relocation
String	str2	=	new	String();

53

• One	way	to	deal	with	fragmentation	
is	compaction
– Copy	allocated	blocks	of	memory	into	a	
contiguous	region	of	memory

– Repeat	this	process	periodically
• This	only	works	if	pointers	are	
boxed,	i.e.	managed	by	the	runtime

0x0C00

Pointer Value Location
obj1 0x0C00 0x0C00

ht 0x0F20 0x0F20

str 0x1240 0x1240

str2 ??? ???

Heap	Memory

str

obj1

ht

0x0D90

0x0F20

0x10B0

0x1240
str2

0x0F20

0x0D90

0x10B00x10B0

0x0D90
0x0F20

Start	SpaceEnd	Space End	Space

Copy	Collection	Example

54

Root	NodesStackGlobal	Variables

int *	p; struct linked_list *	head;

Start	Space

Copies	are	
compacted	(no	
fragmentation)

All	data	can	be	
safely	overwritten

Pros	and	Cons	of	Copy	Collection

The	Good
• Improves	on	mark	and	

sweep
• No	need	to	scan	memory	

for	garbage	to	free
• After	compaction,	there	is	

no	fragmentation

The	Bad
• Copy	collection	is	slow

– Data	must	be	copied
– Pointers	must	be	updated

• Naïve	implementations	are	
not	parallelizable
– “Stop	the	world”	collector

55

Generational	Collection
• Problem:	mark	and	sweep	is	slow
– Expensive	full	traversals	of	live	objects
– Expensive	scan	of	heap	memory

• Problem:	copy	collection	is	also	slow
– Expensive	full	traversals	of	live	objects
– Periodically,	all	live	objects	get	copied

• Solution:	leverage	knowledge	about	object	creation	
patterns
– Object	lifetime	tends	to	be	inversely	correlated	with	
likelihood	of	becoming	garbage	(generational	hypothesis)

– Young	objects	die	quickly	– old	objects	continue	to	live
56

Garbage	Collection	in	Java
• By	default,	most	JVMs	use	a	generational	
collector

• GC	periodically	runs	two	different	collections:
1. Minor	collection	– occurs	frequently
2. Major	collection	– occurs	infrequently

• Divides	heap	into	4	regions
– Eden:	newly	allocated	objects
– Survivor	1	and	2:	objects	from	Eden	that	survive	minor	
collection

– Tenured:	objects	from	Survivor	that	survive	several	
minor	collections 57

Eden Tenured

Generational	Collection	Example

58

Survivor	1 Survivor	2

• Minor	collection	occurs	
whenever	Eden	gets	full

• Live	objects	are	copied	
to	Survivor

• Survivor	1	and	2	
rotate	as	
destinations	for	
a	copy	collector

• Objects	that	survive	
several	Minor	collections	
move	to	Tenured

• Tenured	objects	are	only	
scanned	during	Major	
collection

• Major	collections	occur	
infrequently

More	on	Generational	GC
• Separating	young	and	old	objects	improves	
performance
– Perform	frequent,	minor	collections	on	young	objects
– No	need	to	scan	old	objects	frequently

• Copy	collection	reduces	fragmentation
– Eden	and	Survivor	areas	are	relatively	small,	but	they	
are	frequently	erased

59

Parallel	and	Concurrent	GC
• Modern	JVMs	ship	with	multiple	generational	GC	
implementations,	including:
– The	Parallel	Collector
• Runs	several	GC	threads	in	parallel	with	user	threads
• Multiple	GC	threads	take	part	in	each	minor/major	collection
• Best	choice	if	your	app	is	intolerant	of	pauses

– The	Concurrent	Mark	and	Sweep	Collector
• Also	implements	multi-threaded	GC
• Pauses	the	app,	uses	all	CPU	cores	for	GC
• Overall	fastest	GC,	if	your	app	can	tolerate	pauses

• Selecting	and	tuning	Java	GCs	is	an	art
60

malloc()/free()	vs.	GC

Explicit	Alloc/Dealloc
• Advantages:

– Typically	faster	than	GC
– No	GC	“pauses”	in	execution
– More	efficient	use	of	memory

• Disadvantages:
– More	complex	for	programmers
– Tricky	memory	bugs

• Dangling	pointers
• Double-free
• Memory	leaks

– Bugs	may	lead	to	security	
vulnerabilities

Garbage	Collection
• Advantages:

– Much	easier	for	programmers

• Disadvantages
– Typically	slower	than	explicit	

alloc/dealloc
– Good	performance	requires	

careful	tuning	of	the	GC
– Less	efficient	use	of	memory
– Complex	runtimes	may	have	

security	vulnerabilities
• JVM	gets	exploited	all	the	time

61

Other	Considerations
• Garbage	collectors	are	available	for	C/C++
– Boehm	Garbage	Collector
– Beware:	this	GC	is	conservative

• It	tries	to	identify	pointers	using	heuristics
• Since	it	can’t	identify	pointers	with	100%	accuracy,	it	must	
conservatively	free	memory

• You	can	replace	the	default	malloc()	
implementation	if	you	want	to
– Example:	Google’s	high-performance	tcmalloc library
– http://goog-perftools.sourceforge.net/doc/tcmalloc.html

62

Sources
• Slides	by	Jennifer	Rexford
– http://www.cs.princeton.edu/~jrex

• Operating	Systems:	Three	Easy	Pieces,	Chapter	17	by	
Remzi and	Andrea	Arpaci-Dusseau
– http://pages.cs.wisc.edu/~remzi/OSTEP/vm-freespace.pdf

• Java	Platform,	Standard	Edition	HotSpot Virtual	Machine	
Garbage	Collection	Tuning	Guide	by	Oracle	(Java	SE	v.	8)
– http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gc
tuning/toc.html

63

