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• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel
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Setting	the	Stage

• Suppose	we	have:
– A computer	with	N CPUs
– P process/threads	that	are	ready	to	run

• Questions	we	need	to	address:
– In	what	order	should	the	processes	be	run?
– On	what	CPU	should	each	process	run?
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Factors	Influencing	Scheduling
• Characteristics	of	the	processes
– Are	they	I/O	bound	or	CPU	bound?
– Do	we	have	metadata	about	the	processes?

• Example:	deadlines
– Is	their	behavior	predictable?

• Characteristics	of	the	machine
– How	many	CPUs?
– Can	we	preempt	processes?
– How	is	memory	shared	by	the	CPUs?

• Characteristics	of	the	user
– Are	the	processes	interactive	(e.g.	desktop	apps)…
– Or	are	the	processes	background	jobs?
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Basic	Scheduler	Architecture
• Scheduler selects	from	the	ready processes,	and	
assigns	them	to	a	CPU
– System	may	have	>1	CPU
– Various	different	approaches	for	selecting	processes

• Scheduling	decisions	are	made	when	a	process:
1. Switches	from	running to	waiting
2. Terminates
3. Switches	from	running to	ready
4. Switches	from	waiting to	ready

• Scheduler	may	have	access	to	additional	information
– Process	deadlines,	data	in	shared	memory,	etc.
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Dispatch	Latency
• The	dispatcher gives	control	of	the	CPU	to	the	
process	selected	by	the	scheduler
– Switches	context
– Switching	to/from	kernel	mode/user	mode
– Saving	the	old	EIP,	loading	the	new	EIP

• Warning:	dispatching	incurs	a	cost
– Context	switching	and	mode	switch	are	expensive
– Adds	latency to	processing	times

• It	is	advantageous	to	minimize	process	
switching 6



A	Note	on	Processes	&	Threads

• Let’s	assume	that	processes	and	threads	are	
equivalent	for	scheduling	purposes
– Kernel	supports	threads
• System-contention	scope	(SCS)

– Each	process	has	>=1	thread
• If	kernel	does	not	support	threads
– Each	process	handles	it’s	own	thread	scheduling
– Process	contention	scope	(PCS)
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Basic	Process	Behavior
• Processes	alternate	
between	doing	work	
and	waiting
– Work	à CPU	Burst

• Process	behavior	varies
– I/O	bound
– CPU	bound

• Expected	CPU	burst	
distribution	is	
important	for	scheduler	
design
– Do	you	expect	more	CPU	
or	I/O	bound	processes?
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Scheduling	Optimization	Criteria
• Max	CPU	utilization – keep	the	CPU	as	busy	as	possible
• Max	throughput	– #	of	processes	that	finish	over	time
– Min	turnaround	time	– amount	of	time	to	finish	a	process
– Min	waiting	time	– amount	of	time	a	ready process	has	
been	waiting	to	execute

• Min	response	time	– amount	time	between	submitting	
a	request	and	receiving	a	response
– E.g.	time	between	clicking	a	button	and	seeing	a	response

• Fairness – all	processes	receive	min/max	fair	CPU	
resources
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• No	scheduler	can	meet	all	these	criteria
• Which	criteria	are	most	important	depend	on	types	of	processes	

and	expectations	of	the	system
• E.g.	response	time	is	key	on	the	desktop
• Throughput	is	more	important	for	MapReduce



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel
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First	Come,	First	Serve	(FCFS)
• Simple	scheduler
– Processes	stored	in	a	FIFO	queue
– Served	in	order	of	arrival
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Process Burst	
Time

Arrival	
Time

P1 24 0.000

P2 3 0.001

P3 3 0.002

P1 P2 P3
Time:	0 24 27 30

• Turnaround	time	=	completion	time	- arrival	time	
– P1	=	24;	P2	=	27;	P3	=	30
– Average	turnaround	time:	(24	+	27	+	30)	/	3	=	27



The	Convoy	Effect
• FCFS	scheduler,	but	the	arrival	order	has	changed
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P1P2 P3
Time:	0 3 6 30

• Turnaround	time:	P1	=	30;	P2	=3;	P3	=	6
– Average	turnaround	time:	(30	+	3	+	6)	/	3	=	13
–Much	better	than	the	previous	arrival	order!

• Convoy	effect	(a.k.a.	head-of-line	blocking)
– Long	process	can	impede	short	processes
– E.g.:	CPU	bound	process	followed	by	I/O	bound	process

Process Burst	
Time

Arrival	
Time

P1 24 0.002

P2 3 0.000

P3 3 0.001



Shortest	Job	First	(SJF)
• Schedule	processes	based	on	the	length	of	
their	next	CPU	burst	time
– Shortest	processes	go	first
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Process Burst	
Time

Arrival	
Time

P1 6 0

P2 8 0

P3 7 0

P4 3 0

P3P4 P1
Time:	0 3 9 16

P2
24

• Average	turnaround	time:	(3	+	16	+	9	+	24)	/	4	=	
13

• SJF	is	optimal:	guarantees	minimum	average	wait	
time



Predicting	Next	CPU	Burst	Length
• Problem:	future	CPU	burst	times	may	be	unknown
• Solution:	estimate	the	next	burst	time	based	on	
previous	burst	lengths
– Assumes	process	behavior	is	not	highly	variable
– Use	exponential	averaging

• tn – measured	length	of	the	nth CPU	burst
• τn+1 – predicted	value	for	n+1th CPU	burst
• α	– weight	of	current	and	previous	measurements	(0	≤ α	≤ 1)
• τn+1 =	αtn +	(1	– α) τn

– Typically,	α	=	0.5
14
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What	About	Arrival	Time?

• SJF	scheduler,	CPU	burst	lengths	are	known
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Process Burst	
Time

Arrival	
Time

P1 24 0

P2 3 2

P3 3 3

P1 P2 P3
Time:	0 24 27 30

• Scheduler	must	choose	from	available	
processes
– Can	lead	to	head-of-line	blocking
– Average	turnaround	time:	(24	+	25	+	27)	/	3	=	25.3



Shortest	Time-To-Completion	First	(STCF)
• Also	known	as	Preemptive	SJF	(PSJF)
– Processes	with	long	bursts	can	be	context	
switched	out	in	favor	or	short	processes	
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Process Burst	
Time

Arrival	
Time

P1 24 0

P2 3 2

P3 3 3

P1 P2 P3
Time:	0 2 5 8

P1
30

• Turnaround	time:	P1	=	30;	P2	=	3;	P3	=	5
– Average	turnaround	time:	(30	+	3	+	5)	/	3	=	12.7

• STCF	is	also	optimal
– Assuming	you	know	future	CPU	burst	times	



Interactive	Systems

• Imagine	you	are	typing/clicking	in	a	desktop	app
– You	don’t	care	about	turnaround	time
–What	you	care	about	is	responsiveness
• E.g.	if	you	start	typing	but	the	app	doesn’t	show	the	text	for	
10	seconds,	you’ll	become	frustrated	

• Response	time	=	first	run	time	– arrival	time
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Response	vs.	Turnaround

• Assume	an	STCF	scheduler
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Process Burst	
Time

Arrival	
Time

P1 6 0

P2 8 0

P3 10 0

P1
Time:	0 6 24

P2 P3
14

• Avg.	turnaround	time:	(6	+	14	+	24)	/	3	=	14.7
• Avg.	response	time:	(0	+	6	+	14)	/	3	=	6.7



Round	Robin	(RR)

• Round	robin	(a.k.a time	slicing)	scheduler	is	
designed	to	reduce	response	times
– RR	runs	jobs	for	a	time	slice	(a.k.a.	scheduling	
quantum)

– Size	of	time	slice	is	some	multiple	of	the	timer-
interrupt	period
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RR	vs.	STCF
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Process Burst	
Time

Arrival	
Time

P1 6 0

P2 8 0

P3 10 0

P1
Time:	0 6 24

P2 P3
14

• Avg.	turnaround	time:	(6	+	14	+	24)	/	3	=	14.7
• Avg.	response	time:	(0	+	6	+	14)	/	3	=	6.7

P1

Time:	0 2

• 2	second	time	slices
• Avg.	turnaround	time:	(14	+	20	+	24)	/	3	=	19.3
• Avg.	response	time:	(0	+	2	+	4)	/	3	=	2

P2 P3 P1 P2 P3 P1 P2 P3 P2 P3

4 6 8 10 12 14 16 18 20 24

STCF

RR



Tradeoffs
RR

+ Excellent	response	times
+ With	N process	and	time	slice	of	Q…
+ No	process	waits	more	than	(N-1)/Q	

time	slices

+ Achieves	fairness
+ Each	process	receives	1/N CPU	time

- Worst	possible	turnaround	times
- If	Q is	large	à FIFO	behavior

STCF
+ Achieves	optimal,	low	

turnaround	times
- Bad	response	times
- Inherently	unfair

- Short	jobs	finish	first
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• Optimizing	for	turnaround	or	response	time	is	a	trade-off
• Achieving	both	requires	more	sophisticated	algorithms



Selecting	the	Time	Slice

• Smaller	time	slices	=	faster	response	times
• So	why	not	select	a	very	tiny	time	slice?
– E.g.	1µs

• Context	switching	overhead
– Each	context	switch	wastes	CPU	time	(~10µs)
– If	time	slice	is	too	short,	context	switch	overhead	
will	dominate	overall	performance

• This	results	in	another	tradeoff
– Typical	time	slices	are	between	1ms	and	100ms
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Incorporating	I/O

• How	do	you	incorporate	I/O	waits	into	the	scheduler?
– Treat	time	in-between	I/O	waits	as	CPU	burst	time
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Process Total	
Time

Burst	
Time

Wait
Time

Arrival	
Time

P1 22 5 5 0

P2 20 20 0 0

P1

Time:	0 5

P2

10 15 20 25 30 35 40

P1 P2 P1 P2 P1 P2

P1

CPU

Disk P1 P1 P1

P1

42

STCF	
Scheduler



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel
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Status	Check

• Introduced	two	different	types	of	schedulers
– SJF/STCF:	optimal	turnaround	time
– RR:	fast	response	time

• Open	problems:
– Ideally,	we	want	fast	response	time	and	turnaround
• E.g.	a	desktop	computer	can	run	interactive	and	CPU	
bound	processes	at	the	same	time

– SJF/STCF	require	knowledge	about	burst	times
• Both	problems	can	be	solved	by	using	
prioritization
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Priority	Scheduling

• We	have	already	seen	examples	of	priority	
schedulers
– SJF,	STCF	are	both	priority	schedulers
– Priority	=	CPU	burst	time

• Problem	with	priority	scheduling
– Starvation:	high	priority	tasks	can	dominate	the	CPU

• Possible	solution:	dynamically	vary	priorities
– Vary	based	on	process	behavior
– Vary	based	on	wait	time	(i.e.	length	of	time	spent	in	
the	ready	queue)
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Simple	Priority	Scheduler

28

Process Burst	Time Arrival	Time Priority

P1 10 0 3

P2 2 0 1

P3 3 0 4

P4 2 0 5

P5 5 0 2

P2
Time:	0 2 22

P5 P1
17

• Avg.	turnaround	time:	(17	+	2	+	20	+	22	+	7)	/	5	=	13.6
• Avg.	response	time:	(7	+	0	+	17	+	20	+	2)	/	5	=	9.2

P3 P4
7 20

• Associate	a	priority	with	each	process
– Schedule	high	priority	tasks	first
– Lower	numbers	=	high	priority
– No	preemption

• Cannot	automatically	balance	response	vs.	turnaround	time
• Prone	to	starvation



Earliest	Deadline	First	(EDF)
• Each	process	has	a	deadline it	must	finish	by
• Priorities	are	assigned	according	to	deadlines
– Tighter	deadlines	are	given	higher	priority
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• EDF	is	optimal	(assuming	preemption)
• But,	it’s	only	useful	if	processes	have	known	deadlines
– Typically	used	in	real-time OSes

Process Burst	
Time

Arrival	
Time

Deadline

P1 15 0 40

P2 3 4 10

P3 6 10 20

P4 4 13 18

P1
0 4 17

P2 P1
10

P3 P4
7 13

P3
20

P1
28



Multilevel	Queue	(MLQ)

• Key	idea:	divide	the	ready	queue	in	two
1. High	priority	queue	for	interactive	processes
• RR	scheduling

2. Low	priority	queue	for	CPU	bound	processes
• FCFS	scheduling

• Simple,	static	configuration
– Each	process	is	assigned	a	priority	on	startup
– Each	queue	is	given	a	fixed	amount	of	CPU	time
• 80%	to	processes	in	the	high	priority	queue
• 20%	to	processes	in	the	low	priority	queue
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MLQ	Example

31

Process Arrival	Time Priority

P1 0 1

P2 0 1

P3 0 1

P4 0 2

P5 1 2

P1 P4P2 P3 P1 P2 P3 P1 P2
Time:	0 2 4 6 8 10 12 14 16 20

P3 P4P1 P2 P3 P1 P2 P3 P1
Time:	20 22 24 26 28 30 32 34 36 40

P2 P4P3 P1 P2 P3 P1 P2 P3
Time:	40 42 44 46 48 50 52 54 56 60

P5

80%	High	priority,	RR 20%	low	priority,	FCFS



Problems	with	MLQ

• Assumes	you	can	classify	processes	into	high	
and	low	priority
– How	could	you	actually	do	this	at	run	time?
–What	of	a	processes’	behavior	changes	over	time?
• i.e.	CPU	bound	portion,	followed	by	interactive	portion

• Highly	biased	use	of	CPU	time
– Potentially	too	much	time	dedicated	to	interactive	
processes

– Convoy	problems	for	low	priority	tasks
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Multilevel	Feedback	Queue	(MLFQ)

• Goals
–Minimize	response	time	and	turnaround	time
– Dynamically	adjust	process	priorities	over	time
• No	assumptions	or	prior	knowledge	about	burst	times	
or	process	behavior

• High	level	design:	generalized	MLQ
– Several	priority	queues
–Move	processes	between	queue	based	on	
observed	behavior	(i.e.	their	history)
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First	4	Rules	of	MFLQ

• Rule	1:	If	Priority(A)	>	Priority(B),	A	runs,	B	doesn’t
• Rule	2:	If	Priority(A)	=	Priority(B),	A	&	B	run	in	RR
• Rule	3:	Processes	start	at	the	highest	priority
• Rule	4:	
– Rule	4a:	If	a	process	uses	an	entire	time	slice	while	
running,	its	priority	is	reduced

– Rule	4b:	If	a	process	gives	up	the	CPU	before	its	time	
slice	is	up,	it	remains	at	the	same priority	level
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MLFQ	Examples
CPU	Bound	Process Interactive	Process
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Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Hits	Time	
Limit	

Finished

I/O	Bound	and	
CPU	Bound	
Processes

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Blocked	
on	I/O

Hits	Time	
Limit	

Hits	Time	
Limit	



Problems	With	MLFQ	So	Far…

• Starvation
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High	priority	
processes	
always	take	
precedence	
over	low	
priority

• Cheating

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Unscrupulous	
process	never	
gets	demoted,	
monopolizes	
CPU	time

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

sleep(1ms)	just	before	
time	slice	expires



MLFQ	Rule	5:	Priority	Boost

• Rule	5:	After	some	time	period	S,	move	all	
processes	to	the	highest	priority	queue

• Solves	two	problems:
– Starvation:	low	priority	processes	will	eventually	
become	high	priority,	acquire	CPU	time

– Dynamic	behavior:	a	CPU	bound	process	that	has	
become	interactive	will	now	be	high	priority
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Priority	Boost	Example

Without	Priority	Boost With	Priority	Boost
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Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Priority	Boost

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14 16 18

Starvation	:(



Revised	Rule	4:	Cheat	Prevention

• Rule	4a	and	4b let	a	process	game	the	scheduler
– Repeatedly	yield	just	before	the	time	limit	expires

• Solution:	better	accounting
– Rule	4:	Once	a	process	uses	up	its	time	allotment	at	a	
given	priority	(regardless	of	whether	it	gave	up	the	
CPU),	demote	its	priority

– Basically,	keep	track	of	total	CPU	time	used	by	each	
process	during	each	time	interval	S
• Instead	of	just	looking	at	continuous	CPU	time
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Preventing	Cheating

Without	Cheat	Prevention With	Cheat	Prevention
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Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14 16

sleep(1ms)	just	before	
time	slice	expires

Time	allotment	
exhausted

Time	allotment	
exhausted

Round	robin



MLFQ	Rule	Review

• Rule	1:	If	Priority(A)	>	Priority(B),	A	runs,	B	
doesn’t

• Rule	2:	If	Priority(A)	=	Priority(B),	A	&	B	run	in	RR
• Rule	3:	Processes	start	at	the	highest	priority
• Rule	4:	Once	a	process	uses	up	its	time	allotment	
at	a	given	priority,	demote	it

• Rule	5:	After	some	time	period	S,	move	all	
processes	to	the	highest	priority	queue
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Parameterizing	MLFQ
• MLFQ	meets	our	goals
– Balances	response	time	and	turnaround	time
– Does	not	require	prior	knowledge	about	processes

• But,	it	has	many	knobs	to	tune
– Number	of	queues?
– How	to	divide	CPU	time	between	the	queues?
– For	each	queue:
• Which	scheduling	regime	to	use?
• Time	slice/quantum?

–Method	for	demoting	priorities?
–Method	for	boosting	priorities?	
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MLFQ	In	Practice

• Many	OSes use	MLFQ-like	schedulers
– Example:	Windows	NT/2000/XP/Vista,	Solaris,	FreeBSD

• OSes ship	with	“reasonable”	MLFQ	parameters
– Variable	length	time	slices
• High	priority	queues	– short	time	slices
• Low	priority	queues	– long	time	slices

– Priority	0	sometimes	reserved	for	OS	processes

43



Giving	Advice

• Some	OSes allow	users/processes	to	give	the	
scheduler	“hints”	about	priorities

• Example:	nice command	on	Linux
$	nice	<options>	<command	[args …]>
– Run	the	command	at	the	specified	priority
– Priorities	range	from	-20	(high)	to	19	(low)
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• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel
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Status	Check

• Thus	far,	we	have	examined	schedulers	
designed	to	optimize	performance
–Minimum	response	times
–Minimum	turnaround	times

• MLFQ	achieves	these	goals,	but	it’s	complicated
– Non-trivial	to	implement
– Challenging	to	parameterize	and	tune

• What	about	a	simple	algorithm	that	achieves	
fairness?
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Lottery	Scheduling
• Key	idea:	give	each	process	a	bunch	of	tickets
– Each	time	slice,	scheduler	holds	a	lottery
– Process	holding	the	winning	ticket	gets	to	run

47

• Probabilistic	scheduling
– Over	time,	run	time	for	each	process	converges	to	the	
correct	value	(i.e.	the	#	of	tickets	it	holds)

Process Arrival	Time Ticket Range

P1 0 0-74	(75	total)

P2 0 75-99 (25	total)

P1 P2 P1 P1 P1 P2 P2 P1
Time:	0 2 4 6 8 10 12 14 16 20

P1 P1 P1
18 22

• P1	ran	8	of	11	slices	– 72%
• P2	ran	3	of	11	slices	– 27%



Implementation	Advantages
• Very	fast	scheduler	execution
– All	the	scheduler	needs	to	do	is	run	random()
– No	need	to	manage	O(log	N) priority	queues

• No	need	to	store	lots	of	state
– Scheduler	needs	to	know	the	total	number	of	tickets
– No	need	to	track	process	behavior	or	history

• Automatically	balances	CPU	time	across	processes
– New	processes	get	some	tickets,	adjust	the	overall	size	of	
the	ticket	pool

• Easy	to	prioritize	processes
– Give	high	priority	processes	many	tickets
– Give	low	priority	processes	a	few	tickets
– Priorities	can	change	via	ticket	inflation	(i.e.	minting	tickets)



Is	Lottery	Scheduling	Fair?

• Does	lottery	scheduling	
achieve	fairness?
– Assume	two	processes	
with	equal	tickets

– Runtime	of	processes	
varies

– Unfairness	ratio	=	1	if	
both	processes	finish	at	
the	same	time

49

Unfair	to	short	job
due	to	randomness

Randomness	is	
amortized	over	long	

time	scales



Stride	Scheduling

• Randomness	lets	us	build	a	simple	and	
approximately	fair	scheduler
– But	fairness	is	not	guaranteed

• Why	not	build	a	deterministic,	fair	scheduler?
• Stride	scheduling
– Each	process	is	given	some	tickets
– Each	process	has	a	stride =	a	big	#	/	#	of	tickets
– Each	time	a	process	runs,	its	pass +=	stride
– Scheduler	chooses	process	with	the	lowest	pass	to	
run	next 50



Stride	Scheduling	Example
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Process Arrival	
Time

Tickets Stride
(K =	10000)

P1 0 100 100

P2 0 50 200

P3 0 250 40

P1	
pass

P2	
pass

P3	
pass

Who	
runs?

0 0 0 P1

100 0 0 P2

100 200 0 P3

100 200 40 P3

100 200 80 P3

100 200 120 P1

200 200 120 P3

200 200 160 P3

200 200 200 …
• P1	ran	2	of	8 slices	– 25%
• P2	ran	1	of	8 slices	– 12.5%
• P3	ran	5	of	8	slices	– 62.5%

• P1:	100	of	400	tickets	– 25%
• P2:	50	of	400	tickets	– 12.5%
• P3:	250	of	400	tickets	– 62.5%



Lingering	Issues

• Why	choose	lottery	over	stride	scheduling?
– Stride	schedulers	need	to	store	a	lot	more	state
– How	does	a	stride	scheduler	deal	with	new	processes?
• Pass	=	0,	will	dominate	CPU	until	it	catches	up

• Both	schedulers	require	tickets	assignment
– How	do	you	know	how	many	tickets	to	assign	to	each	
process?

– This	is	an	open	problem
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• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel

53



Status	Check

• Thus	far,	all	of	our	schedulers	have	assumed	a	
single	CPU	core

• What	about	systems	with	multiple	CPUs?
– Things	get	a	lot	more	complicated	when	the	
number	of	CPUs	>	1
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Symmetric	Multiprocessing	(SMP)
• ≥2	homogeneous	processors
–May	be	in	separate	physical	packages

• Shared	main	memory	and	system	bus
• Single	OS	that	treats	all	processors	equally
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Hyperthreading

• Two	threads	on	a	single	CPU	core
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Brief	Intro	to	CPU	Caches
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• Process	performance	is	linked	to	locality
– Ideally,	a	process	should	be	placed	close	to	its	data

• Shared	data	is	problematic	due	to	cache	coherency
– P3	writes	variable	x,	new	value	is	cached	in	CPU	2
– P2	in	CPU	1	reads	x,	but	value	in	main	memory	is	stale



NUMA	and	Affinity
• Non-Uniform	Memory	Access	(NUMA)	architecture
– Memory	access	time	depends	on	the	location	of	the	data	
relative	to	the	requesting	process

• Leads	to	cache	affinity
– Ideally,	processes	want	to	stay	close	to	their	cached	data
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CPU	0

CPU	1

CPU	2

CPU	3

Single	Queue	Scheduling
• Single	Queue	Multiprocessor	Scheduling	(SQMS)
–Most	basic	design:	all	processes	go	into	a	single	queue
– CPUs	pull	tasks	from	the	queue	as	needed
– Good	for	load	balancing	(CPUs	pull	processes	on	
demand)
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Problems	with	SQMS

• The	process	queue	is	a	shared	data	structure
– Necessitates	locking,	or	careful	lock-free	design

• SQMS	does	not	respect	cache	affinity
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Multi-Queue	Scheduling

• SQMS	can	be	modified	to	preserve	affinity
• Multiple	Queue	Multiprocessor	Scheduling	(MQMS)
– Each	CPU	maintains	it’s	own	queue	of	processes
– CPUs	schedule	their	processes	independently
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CPU	0

CPU	1

Queue	0

Queue	1

Advantages	of	MQMS

• Very	little	shared	data
– Queues	are	(mostly)	independent

• Respects	cache	affinity
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Shortcoming	of	MQMS

• MQMS	is	prone	to	load	imbalance due	to:
– Different	number	of	processes	per	CPU
– Variable	behavior	across	processes

• Must	be	dealt	with	through	process	migration
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Strategies	for	Process	Migration
• Push	migration
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• Pull	migration,	a.k.a.	work	stealing

CPU	0	/	Queue	0

CPU	1	/	Queue	1

P1

P2 P4 P3
“I	have	too	many	

processes,	take	one”

CPU	0	/	Queue	0

CPU	1	/	Queue	1

P1

P2 P4 P3

“I	don’t	have	enough	
processes,	give	me	one”



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel
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Final	Status	Check
• At	this	point,	we	have	looked	at	many:
– Scheduling	algorithms
– Types	of	processes	(CPU	vs.	I/O	bound)
– Hardware	configurations	(SMP)

• What	do	real	OSes do?
• Case	study	on	the	Linux	kernel
– Old	scheduler:	O(1)
– Current	scheduler:	Completely	Fair	Scheduler	(CFS)
– Alternative	scheduler:	BF	Scheduler	(BFS)

66



O(1)	Scheduler

• Replaced	the	very	old	O(n)	scheduler
– Designed	to	reduce	the	cost	of	context	switching
– Used	in	kernels	prior	to	2.6.23

• Implements	MLFQ
– 140	priority	levels,	2	queues	per	priority
• Active	and	inactive	queue
• Process	are	scheduled	from	the	active	queue
• When	the	active	queue	is	empty,	refill	from	inactive	queue

– RR	within	each	priority	level
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Priority	Assignment

• Static	priorities	– nice values	[-20,19]
– Default	=	0
– Used	for	time	slice	calculation

• Dynamic	priorities	[0,	139]
– Used	to	demote	CPU	bound	processes
–Maintain	high	priorities	for	interactive	processes
– sleep()	time	for	each	process	is	measured
• High	sleep	time	à interactive	or	I/O	boundà high	priority
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SNP	/	NUMA	Support

• Processes	are	placed	into	a	virtual	hierarchy
– Groups	are	scheduled	onto	a	physical	CPU
– Processes	are	preferentially	pinned	to	individual	
cores

• Work	stealing	used	for	load	balancing
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Completely	Fair	Scheduler	(CFS)
• Replaced	the	O(1)	scheduler
– In	use	since	2.6.23,	has	O(log	N)	runtime

• Moves	from	MLFQ	to	Weighted	Fair	Queuing
– First	major	OS	to	use	a	fair	scheduling	algorithm
– Very	similar	to	stride	scheduling
– Processes	ordered	by	the	amount	of	CPU	time	they	use

• Gets	rid	of	active/inactive	run	queues	in	favor	of	a	
red-black	tree	of	processes

• CFS	isn’t	actually	“completely	fair”
– Unfairness	is	bounded	O(N)
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Red-Black	Process	Tree
• Tree	organized	according	to	amount	of	CPU	
time	used	by	each	process
–Measured	in	nanoseconds,	obviates	the	need	for	
time	slices
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BF	Scheduler
• What	does	BF	stand	for?
– Look	it	up	yourself

• Alternative	to	CFS,	introduced	in	2009
– O(n)	runtime,	single	run	queue
– Dead	simple	implementation

• Goal:	a	simple	scheduling	algorithm	with	
fewer	parameters	that	need	manual	tuning
– Designed	for	light	NUMA	workloads
– Doesn’t	scale	to	cores	>	16

• For	the	adventurous:	download	the	BFS	
patches	and	build	yourself	a	custom	kernel
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