
CS	5600
Computer	Systems

Lecture	6:	Process	Scheduling



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel

2



Setting	the	Stage

• Suppose	we	have:
– A computer	with	N CPUs
– P process/threads	that	are	ready	to	run

• Questions	we	need	to	address:
– In	what	order	should	the	processes	be	run?
– On	what	CPU	should	each	process	run?

3



Factors	Influencing	Scheduling
• Characteristics	of	the	processes
– Are	they	I/O	bound	or	CPU	bound?
– Do	we	have	metadata	about	the	processes?

• Example:	deadlines
– Is	their	behavior	predictable?

• Characteristics	of	the	machine
– How	many	CPUs?
– Can	we	preempt	processes?
– How	is	memory	shared	by	the	CPUs?

• Characteristics	of	the	user
– Are	the	processes	interactive	(e.g.	desktop	apps)…
– Or	are	the	processes	background	jobs?

4



Basic	Scheduler	Architecture
• Scheduler selects	from	the	ready processes,	and	
assigns	them	to	a	CPU
– System	may	have	>1	CPU
– Various	different	approaches	for	selecting	processes

• Scheduling	decisions	are	made	when	a	process:
1. Switches	from	running to	waiting
2. Terminates
3. Switches	from	running to	ready
4. Switches	from	waiting to	ready

• Scheduler	may	have	access	to	additional	information
– Process	deadlines,	data	in	shared	memory,	etc.

5

No	preemption

Preemption



Dispatch	Latency
• The	dispatcher gives	control	of	the	CPU	to	the	
process	selected	by	the	scheduler
– Switches	context
– Switching	to/from	kernel	mode/user	mode
– Saving	the	old	EIP,	loading	the	new	EIP

• Warning:	dispatching	incurs	a	cost
– Context	switching	and	mode	switch	are	expensive
– Adds	latency to	processing	times

• It	is	advantageous	to	minimize	process	
switching 6



A	Note	on	Processes	&	Threads

• Let’s	assume	that	processes	and	threads	are	
equivalent	for	scheduling	purposes
– Kernel	supports	threads
• System-contention	scope	(SCS)

– Each	process	has	>=1	thread
• If	kernel	does	not	support	threads
– Each	process	handles	it’s	own	thread	scheduling
– Process	contention	scope	(PCS)

7



Basic	Process	Behavior
• Processes	alternate	
between	doing	work	
and	waiting
– Work	à CPU	Burst

• Process	behavior	varies
– I/O	bound
– CPU	bound

• Expected	CPU	burst	
distribution	is	
important	for	scheduler	
design
– Do	you	expect	more	CPU	
or	I/O	bound	processes?

8

Process	1 Process	2

Execute	
Code

Execute	
Code

Execute	
Code

Execute	
Code

Execute	
Code

Waiting	
on	I/O

Waiting	
for	mutex

sleep(1)

CPU	
Burst

Wait

Waiting	
on	I/O

Waiting	
on	I/O



Scheduling	Optimization	Criteria
• Max	CPU	utilization – keep	the	CPU	as	busy	as	possible
• Max	throughput	– #	of	processes	that	finish	over	time
– Min	turnaround	time	– amount	of	time	to	finish	a	process
– Min	waiting	time	– amount	of	time	a	ready process	has	
been	waiting	to	execute

• Min	response	time	– amount	time	between	submitting	
a	request	and	receiving	a	response
– E.g.	time	between	clicking	a	button	and	seeing	a	response

• Fairness – all	processes	receive	min/max	fair	CPU	
resources

9

• No	scheduler	can	meet	all	these	criteria
• Which	criteria	are	most	important	depend	on	types	of	processes	

and	expectations	of	the	system
• E.g.	response	time	is	key	on	the	desktop
• Throughput	is	more	important	for	MapReduce



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel

10



First	Come,	First	Serve	(FCFS)
• Simple	scheduler
– Processes	stored	in	a	FIFO	queue
– Served	in	order	of	arrival

11

Process Burst	
Time

Arrival	
Time

P1 24 0.000

P2 3 0.001

P3 3 0.002

P1 P2 P3
Time:	0 24 27 30

• Turnaround	time	=	completion	time	- arrival	time	
– P1	=	24;	P2	=	27;	P3	=	30
– Average	turnaround	time:	(24	+	27	+	30)	/	3	=	27



The	Convoy	Effect
• FCFS	scheduler,	but	the	arrival	order	has	changed

12

P1P2 P3
Time:	0 3 6 30

• Turnaround	time:	P1	=	30;	P2	=3;	P3	=	6
– Average	turnaround	time:	(30	+	3	+	6)	/	3	=	13
–Much	better	than	the	previous	arrival	order!

• Convoy	effect	(a.k.a.	head-of-line	blocking)
– Long	process	can	impede	short	processes
– E.g.:	CPU	bound	process	followed	by	I/O	bound	process

Process Burst	
Time

Arrival	
Time

P1 24 0.002

P2 3 0.000

P3 3 0.001



Shortest	Job	First	(SJF)
• Schedule	processes	based	on	the	length	of	
their	next	CPU	burst	time
– Shortest	processes	go	first

13

Process Burst	
Time

Arrival	
Time

P1 6 0

P2 8 0

P3 7 0

P4 3 0

P3P4 P1
Time:	0 3 9 16

P2
24

• Average	turnaround	time:	(3	+	16	+	9	+	24)	/	4	=	
13

• SJF	is	optimal:	guarantees	minimum	average	wait	
time



Predicting	Next	CPU	Burst	Length
• Problem:	future	CPU	burst	times	may	be	unknown
• Solution:	estimate	the	next	burst	time	based	on	
previous	burst	lengths
– Assumes	process	behavior	is	not	highly	variable
– Use	exponential	averaging

• tn – measured	length	of	the	nth CPU	burst
• τn+1 – predicted	value	for	n+1th CPU	burst
• α	– weight	of	current	and	previous	measurements	(0	≤ α	≤ 1)
• τn+1 =	αtn +	(1	– α) τn

– Typically,	α	=	0.5
14



15

6

4

6

4

13 13 13

10

8

6 6

5

9

11

12

0

2

4

6

8

10

12

14

Bu
rs
t	L
en

gt
h

Time

Actual	and	Estimated	CPU	Burst	Times

True	CPU	Burst	Length Estimated	Burst	Length



What	About	Arrival	Time?

• SJF	scheduler,	CPU	burst	lengths	are	known

16

Process Burst	
Time

Arrival	
Time

P1 24 0

P2 3 2

P3 3 3

P1 P2 P3
Time:	0 24 27 30

• Scheduler	must	choose	from	available	
processes
– Can	lead	to	head-of-line	blocking
– Average	turnaround	time:	(24	+	25	+	27)	/	3	=	25.3



Shortest	Time-To-Completion	First	(STCF)
• Also	known	as	Preemptive	SJF	(PSJF)
– Processes	with	long	bursts	can	be	context	
switched	out	in	favor	or	short	processes	

17

Process Burst	
Time

Arrival	
Time

P1 24 0

P2 3 2

P3 3 3

P1 P2 P3
Time:	0 2 5 8

P1
30

• Turnaround	time:	P1	=	30;	P2	=	3;	P3	=	5
– Average	turnaround	time:	(30	+	3	+	5)	/	3	=	12.7

• STCF	is	also	optimal
– Assuming	you	know	future	CPU	burst	times	



Interactive	Systems

• Imagine	you	are	typing/clicking	in	a	desktop	app
– You	don’t	care	about	turnaround	time
–What	you	care	about	is	responsiveness
• E.g.	if	you	start	typing	but	the	app	doesn’t	show	the	text	for	
10	seconds,	you’ll	become	frustrated	

• Response	time	=	first	run	time	– arrival	time

18



Response	vs.	Turnaround

• Assume	an	STCF	scheduler

19

Process Burst	
Time

Arrival	
Time

P1 6 0

P2 8 0

P3 10 0

P1
Time:	0 6 24

P2 P3
14

• Avg.	turnaround	time:	(6	+	14	+	24)	/	3	=	14.7
• Avg.	response	time:	(0	+	6	+	14)	/	3	=	6.7



Round	Robin	(RR)

• Round	robin	(a.k.a time	slicing)	scheduler	is	
designed	to	reduce	response	times
– RR	runs	jobs	for	a	time	slice	(a.k.a.	scheduling	
quantum)

– Size	of	time	slice	is	some	multiple	of	the	timer-
interrupt	period

20



RR	vs.	STCF

21

Process Burst	
Time

Arrival	
Time

P1 6 0

P2 8 0

P3 10 0

P1
Time:	0 6 24

P2 P3
14

• Avg.	turnaround	time:	(6	+	14	+	24)	/	3	=	14.7
• Avg.	response	time:	(0	+	6	+	14)	/	3	=	6.7

P1

Time:	0 2

• 2	second	time	slices
• Avg.	turnaround	time:	(14	+	20	+	24)	/	3	=	19.3
• Avg.	response	time:	(0	+	2	+	4)	/	3	=	2

P2 P3 P1 P2 P3 P1 P2 P3 P2 P3

4 6 8 10 12 14 16 18 20 24

STCF

RR



Tradeoffs
RR

+ Excellent	response	times
+ With	N process	and	time	slice	of	Q…
+ No	process	waits	more	than	(N-1)/Q	

time	slices

+ Achieves	fairness
+ Each	process	receives	1/N CPU	time

- Worst	possible	turnaround	times
- If	Q is	large	à FIFO	behavior

STCF
+ Achieves	optimal,	low	

turnaround	times
- Bad	response	times
- Inherently	unfair

- Short	jobs	finish	first

22

• Optimizing	for	turnaround	or	response	time	is	a	trade-off
• Achieving	both	requires	more	sophisticated	algorithms



Selecting	the	Time	Slice

• Smaller	time	slices	=	faster	response	times
• So	why	not	select	a	very	tiny	time	slice?
– E.g.	1µs

• Context	switching	overhead
– Each	context	switch	wastes	CPU	time	(~10µs)
– If	time	slice	is	too	short,	context	switch	overhead	
will	dominate	overall	performance

• This	results	in	another	tradeoff
– Typical	time	slices	are	between	1ms	and	100ms

23



Incorporating	I/O

• How	do	you	incorporate	I/O	waits	into	the	scheduler?
– Treat	time	in-between	I/O	waits	as	CPU	burst	time

24

Process Total	
Time

Burst	
Time

Wait
Time

Arrival	
Time

P1 22 5 5 0

P2 20 20 0 0

P1

Time:	0 5

P2

10 15 20 25 30 35 40

P1 P2 P1 P2 P1 P2

P1

CPU

Disk P1 P1 P1

P1

42

STCF	
Scheduler



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel

25



Status	Check

• Introduced	two	different	types	of	schedulers
– SJF/STCF:	optimal	turnaround	time
– RR:	fast	response	time

• Open	problems:
– Ideally,	we	want	fast	response	time	and	turnaround
• E.g.	a	desktop	computer	can	run	interactive	and	CPU	
bound	processes	at	the	same	time

– SJF/STCF	require	knowledge	about	burst	times
• Both	problems	can	be	solved	by	using	
prioritization

26



Priority	Scheduling

• We	have	already	seen	examples	of	priority	
schedulers
– SJF,	STCF	are	both	priority	schedulers
– Priority	=	CPU	burst	time

• Problem	with	priority	scheduling
– Starvation:	high	priority	tasks	can	dominate	the	CPU

• Possible	solution:	dynamically	vary	priorities
– Vary	based	on	process	behavior
– Vary	based	on	wait	time	(i.e.	length	of	time	spent	in	
the	ready	queue)

27



Simple	Priority	Scheduler

28

Process Burst	Time Arrival	Time Priority

P1 10 0 3

P2 2 0 1

P3 3 0 4

P4 2 0 5

P5 5 0 2

P2
Time:	0 2 22

P5 P1
17

• Avg.	turnaround	time:	(17	+	2	+	20	+	22	+	7)	/	5	=	13.6
• Avg.	response	time:	(7	+	0	+	17	+	20	+	2)	/	5	=	9.2

P3 P4
7 20

• Associate	a	priority	with	each	process
– Schedule	high	priority	tasks	first
– Lower	numbers	=	high	priority
– No	preemption

• Cannot	automatically	balance	response	vs.	turnaround	time
• Prone	to	starvation



Earliest	Deadline	First	(EDF)
• Each	process	has	a	deadline it	must	finish	by
• Priorities	are	assigned	according	to	deadlines
– Tighter	deadlines	are	given	higher	priority

29

• EDF	is	optimal	(assuming	preemption)
• But,	it’s	only	useful	if	processes	have	known	deadlines
– Typically	used	in	real-time OSes

Process Burst	
Time

Arrival	
Time

Deadline

P1 15 0 40

P2 3 4 10

P3 6 10 20

P4 4 13 18

P1
0 4 17

P2 P1
10

P3 P4
7 13

P3
20

P1
28



Multilevel	Queue	(MLQ)

• Key	idea:	divide	the	ready	queue	in	two
1. High	priority	queue	for	interactive	processes
• RR	scheduling

2. Low	priority	queue	for	CPU	bound	processes
• FCFS	scheduling

• Simple,	static	configuration
– Each	process	is	assigned	a	priority	on	startup
– Each	queue	is	given	a	fixed	amount	of	CPU	time
• 80%	to	processes	in	the	high	priority	queue
• 20%	to	processes	in	the	low	priority	queue

30



MLQ	Example

31

Process Arrival	Time Priority

P1 0 1

P2 0 1

P3 0 1

P4 0 2

P5 1 2

P1 P4P2 P3 P1 P2 P3 P1 P2
Time:	0 2 4 6 8 10 12 14 16 20

P3 P4P1 P2 P3 P1 P2 P3 P1
Time:	20 22 24 26 28 30 32 34 36 40

P2 P4P3 P1 P2 P3 P1 P2 P3
Time:	40 42 44 46 48 50 52 54 56 60

P5

80%	High	priority,	RR 20%	low	priority,	FCFS



Problems	with	MLQ

• Assumes	you	can	classify	processes	into	high	
and	low	priority
– How	could	you	actually	do	this	at	run	time?
–What	of	a	processes’	behavior	changes	over	time?
• i.e.	CPU	bound	portion,	followed	by	interactive	portion

• Highly	biased	use	of	CPU	time
– Potentially	too	much	time	dedicated	to	interactive	
processes

– Convoy	problems	for	low	priority	tasks

32



Multilevel	Feedback	Queue	(MLFQ)

• Goals
–Minimize	response	time	and	turnaround	time
– Dynamically	adjust	process	priorities	over	time
• No	assumptions	or	prior	knowledge	about	burst	times	
or	process	behavior

• High	level	design:	generalized	MLQ
– Several	priority	queues
–Move	processes	between	queue	based	on	
observed	behavior	(i.e.	their	history)

33



First	4	Rules	of	MFLQ

• Rule	1:	If	Priority(A)	>	Priority(B),	A	runs,	B	doesn’t
• Rule	2:	If	Priority(A)	=	Priority(B),	A	&	B	run	in	RR
• Rule	3:	Processes	start	at	the	highest	priority
• Rule	4:	
– Rule	4a:	If	a	process	uses	an	entire	time	slice	while	
running,	its	priority	is	reduced

– Rule	4b:	If	a	process	gives	up	the	CPU	before	its	time	
slice	is	up,	it	remains	at	the	same priority	level

34



MLFQ	Examples
CPU	Bound	Process Interactive	Process

35

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Hits	Time	
Limit	

Finished

I/O	Bound	and	
CPU	Bound	
Processes

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Blocked	
on	I/O

Hits	Time	
Limit	

Hits	Time	
Limit	



Problems	With	MLFQ	So	Far…

• Starvation

36

High	priority	
processes	
always	take	
precedence	
over	low	
priority

• Cheating

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Unscrupulous	
process	never	
gets	demoted,	
monopolizes	
CPU	time

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

sleep(1ms)	just	before	
time	slice	expires



MLFQ	Rule	5:	Priority	Boost

• Rule	5:	After	some	time	period	S,	move	all	
processes	to	the	highest	priority	queue

• Solves	two	problems:
– Starvation:	low	priority	processes	will	eventually	
become	high	priority,	acquire	CPU	time

– Dynamic	behavior:	a	CPU	bound	process	that	has	
become	interactive	will	now	be	high	priority

37



Priority	Boost	Example

Without	Priority	Boost With	Priority	Boost

38

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Priority	Boost

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14 16 18

Starvation	:(



Revised	Rule	4:	Cheat	Prevention

• Rule	4a	and	4b let	a	process	game	the	scheduler
– Repeatedly	yield	just	before	the	time	limit	expires

• Solution:	better	accounting
– Rule	4:	Once	a	process	uses	up	its	time	allotment	at	a	
given	priority	(regardless	of	whether	it	gave	up	the	
CPU),	demote	its	priority

– Basically,	keep	track	of	total	CPU	time	used	by	each	
process	during	each	time	interval	S
• Instead	of	just	looking	at	continuous	CPU	time

39



Preventing	Cheating

Without	Cheat	Prevention With	Cheat	Prevention

40

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14

Q0

Q1

Q2

Time:	0 2 4 6 8 10 12 14 16

sleep(1ms)	just	before	
time	slice	expires

Time	allotment	
exhausted

Time	allotment	
exhausted

Round	robin



MLFQ	Rule	Review

• Rule	1:	If	Priority(A)	>	Priority(B),	A	runs,	B	
doesn’t

• Rule	2:	If	Priority(A)	=	Priority(B),	A	&	B	run	in	RR
• Rule	3:	Processes	start	at	the	highest	priority
• Rule	4:	Once	a	process	uses	up	its	time	allotment	
at	a	given	priority,	demote	it

• Rule	5:	After	some	time	period	S,	move	all	
processes	to	the	highest	priority	queue

41



Parameterizing	MLFQ
• MLFQ	meets	our	goals
– Balances	response	time	and	turnaround	time
– Does	not	require	prior	knowledge	about	processes

• But,	it	has	many	knobs	to	tune
– Number	of	queues?
– How	to	divide	CPU	time	between	the	queues?
– For	each	queue:
• Which	scheduling	regime	to	use?
• Time	slice/quantum?

–Method	for	demoting	priorities?
–Method	for	boosting	priorities?	

42



MLFQ	In	Practice

• Many	OSes use	MLFQ-like	schedulers
– Example:	Windows	NT/2000/XP/Vista,	Solaris,	FreeBSD

• OSes ship	with	“reasonable”	MLFQ	parameters
– Variable	length	time	slices
• High	priority	queues	– short	time	slices
• Low	priority	queues	– long	time	slices

– Priority	0	sometimes	reserved	for	OS	processes

43



Giving	Advice

• Some	OSes allow	users/processes	to	give	the	
scheduler	“hints”	about	priorities

• Example:	nice command	on	Linux
$	nice	<options>	<command	[args …]>
– Run	the	command	at	the	specified	priority
– Priorities	range	from	-20	(high)	to	19	(low)

44



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel

45



Status	Check

• Thus	far,	we	have	examined	schedulers	
designed	to	optimize	performance
–Minimum	response	times
–Minimum	turnaround	times

• MLFQ	achieves	these	goals,	but	it’s	complicated
– Non-trivial	to	implement
– Challenging	to	parameterize	and	tune

• What	about	a	simple	algorithm	that	achieves	
fairness?

46



Lottery	Scheduling
• Key	idea:	give	each	process	a	bunch	of	tickets
– Each	time	slice,	scheduler	holds	a	lottery
– Process	holding	the	winning	ticket	gets	to	run

47

• Probabilistic	scheduling
– Over	time,	run	time	for	each	process	converges	to	the	
correct	value	(i.e.	the	#	of	tickets	it	holds)

Process Arrival	Time Ticket Range

P1 0 0-74	(75	total)

P2 0 75-99 (25	total)

P1 P2 P1 P1 P1 P2 P2 P1
Time:	0 2 4 6 8 10 12 14 16 20

P1 P1 P1
18 22

• P1	ran	8	of	11	slices	– 72%
• P2	ran	3	of	11	slices	– 27%



Implementation	Advantages
• Very	fast	scheduler	execution
– All	the	scheduler	needs	to	do	is	run	random()
– No	need	to	manage	O(log	N) priority	queues

• No	need	to	store	lots	of	state
– Scheduler	needs	to	know	the	total	number	of	tickets
– No	need	to	track	process	behavior	or	history

• Automatically	balances	CPU	time	across	processes
– New	processes	get	some	tickets,	adjust	the	overall	size	of	
the	ticket	pool

• Easy	to	prioritize	processes
– Give	high	priority	processes	many	tickets
– Give	low	priority	processes	a	few	tickets
– Priorities	can	change	via	ticket	inflation	(i.e.	minting	tickets)



Is	Lottery	Scheduling	Fair?

• Does	lottery	scheduling	
achieve	fairness?
– Assume	two	processes	
with	equal	tickets

– Runtime	of	processes	
varies

– Unfairness	ratio	=	1	if	
both	processes	finish	at	
the	same	time

49

Unfair	to	short	job
due	to	randomness

Randomness	is	
amortized	over	long	

time	scales



Stride	Scheduling

• Randomness	lets	us	build	a	simple	and	
approximately	fair	scheduler
– But	fairness	is	not	guaranteed

• Why	not	build	a	deterministic,	fair	scheduler?
• Stride	scheduling
– Each	process	is	given	some	tickets
– Each	process	has	a	stride =	a	big	#	/	#	of	tickets
– Each	time	a	process	runs,	its	pass +=	stride
– Scheduler	chooses	process	with	the	lowest	pass	to	
run	next 50



Stride	Scheduling	Example

51

Process Arrival	
Time

Tickets Stride
(K =	10000)

P1 0 100 100

P2 0 50 200

P3 0 250 40

P1	
pass

P2	
pass

P3	
pass

Who	
runs?

0 0 0 P1

100 0 0 P2

100 200 0 P3

100 200 40 P3

100 200 80 P3

100 200 120 P1

200 200 120 P3

200 200 160 P3

200 200 200 …
• P1	ran	2	of	8 slices	– 25%
• P2	ran	1	of	8 slices	– 12.5%
• P3	ran	5	of	8	slices	– 62.5%

• P1:	100	of	400	tickets	– 25%
• P2:	50	of	400	tickets	– 12.5%
• P3:	250	of	400	tickets	– 62.5%



Lingering	Issues

• Why	choose	lottery	over	stride	scheduling?
– Stride	schedulers	need	to	store	a	lot	more	state
– How	does	a	stride	scheduler	deal	with	new	processes?
• Pass	=	0,	will	dominate	CPU	until	it	catches	up

• Both	schedulers	require	tickets	assignment
– How	do	you	know	how	many	tickets	to	assign	to	each	
process?

– This	is	an	open	problem

52



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel

53



Status	Check

• Thus	far,	all	of	our	schedulers	have	assumed	a	
single	CPU	core

• What	about	systems	with	multiple	CPUs?
– Things	get	a	lot	more	complicated	when	the	
number	of	CPUs	>	1

54



Symmetric	Multiprocessing	(SMP)
• ≥2	homogeneous	processors
–May	be	in	separate	physical	packages

• Shared	main	memory	and	system	bus
• Single	OS	that	treats	all	processors	equally

55

Main	
Memory

System	Bus

L1	Cache

Core

L1	Cache

Core

CPU	1

L2	Cache

L1	Cache

Core

L1	Cache

Core

CPU	2

L2	Cache



Hyperthreading

• Two	threads	on	a	single	CPU	core

56

Non-
Hyperthreaded
Core

Hyperthreaded
Core

Thread	1 CPU	Busy Memory	
Stall CPU	Busy Memory	

Stall

Thread	2 CPU	BusyCPU	Busy Memory	
Stall

Thread	1 CPU	Busy Memory	
Stall CPU	Busy Memory	

Stall



Brief	Intro	to	CPU	Caches

57

Main	
Memory

System	Bus

L1	Cache

Core

L1	Cache

Core

CPU	1

L2	Cache

L1	Cache

Core

L1	Cache

Core

CPU	2

L2	Cache

P1	Data

P2	Data

P3	Data

P1

P1

P1

P2

P2

P2

P3

P3

P3

P1

P1

Memory	fetches	
are	slow	:(

Cache	hits	
are	fast	:)

P1	has	fast	access	
to	P2’s	data

…	but	access	to	
P3’s	data	is	slow

• Process	performance	is	linked	to	locality
– Ideally,	a	process	should	be	placed	close	to	its	data

• Shared	data	is	problematic	due	to	cache	coherency
– P3	writes	variable	x,	new	value	is	cached	in	CPU	2
– P2	in	CPU	1	reads	x,	but	value	in	main	memory	is	stale



NUMA	and	Affinity
• Non-Uniform	Memory	Access	(NUMA)	architecture
– Memory	access	time	depends	on	the	location	of	the	data	
relative	to	the	requesting	process

• Leads	to	cache	affinity
– Ideally,	processes	want	to	stay	close	to	their	cached	data

58

CPU	1 P1

P2

P3

CPU	2



CPU	0

CPU	1

CPU	2

CPU	3

Single	Queue	Scheduling
• Single	Queue	Multiprocessor	Scheduling	(SQMS)
–Most	basic	design:	all	processes	go	into	a	single	queue
– CPUs	pull	tasks	from	the	queue	as	needed
– Good	for	load	balancing	(CPUs	pull	processes	on	
demand)

59

Process	Queue P1 P2 P3 P4 P5

P1

P2

P3

P4

P1 P2 P3 P4



Problems	with	SQMS

• The	process	queue	is	a	shared	data	structure
– Necessitates	locking,	or	careful	lock-free	design

• SQMS	does	not	respect	cache	affinity

60

CPU	0

CPU	1

CPU	2

CPU	3

Process	Queue P1 P2 P3 P4 P5

P1

P2

P3

P4

P1 P2 P3 P4

P5

P1

P2

P3

P5 P1 P2 P3

P4

P5

P1

P2

Time

P4 P5 P1 P2

P3

P4

P5

P1

Worst	case	scenario:	
processes	rarely	run	
on	the	same	CPU



Multi-Queue	Scheduling

• SQMS	can	be	modified	to	preserve	affinity
• Multiple	Queue	Multiprocessor	Scheduling	(MQMS)
– Each	CPU	maintains	it’s	own	queue	of	processes
– CPUs	schedule	their	processes	independently

61

CPU	0

CPU	1

Queue	0 P1

P2

P3

P4

P1

P2

P3

P4

P1

P2Queue	1



CPU	0

CPU	1

Queue	0

Queue	1

Advantages	of	MQMS

• Very	little	shared	data
– Queues	are	(mostly)	independent

• Respects	cache	affinity

62

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2
Time

P3

P4

P1

P2



Shortcoming	of	MQMS

• MQMS	is	prone	to	load	imbalance due	to:
– Different	number	of	processes	per	CPU
– Variable	behavior	across	processes

• Must	be	dealt	with	through	process	migration
63

Queue	0

Queue	1

P1

P4P2

CPU	0

CPU	1

P1

P2 P4

Time

P1

P2

…

Idle	the	CPU?

CPU	0

CPU	1

P1

P2 P4

Time

P2

Unfair	CPU	Usage?



Strategies	for	Process	Migration
• Push	migration

64

• Pull	migration,	a.k.a.	work	stealing

CPU	0	/	Queue	0

CPU	1	/	Queue	1

P1

P2 P4 P3
“I	have	too	many	

processes,	take	one”

CPU	0	/	Queue	0

CPU	1	/	Queue	1

P1

P2 P4 P3

“I	don’t	have	enough	
processes,	give	me	one”



• Scheduling	Basics
• Simple	Schedulers
• Priority	Schedulers
• Fair	Share	Schedulers
• Multi-CPU	Scheduling
• Case	Study:	The	Linux	Kernel

65



Final	Status	Check
• At	this	point,	we	have	looked	at	many:
– Scheduling	algorithms
– Types	of	processes	(CPU	vs.	I/O	bound)
– Hardware	configurations	(SMP)

• What	do	real	OSes do?
• Case	study	on	the	Linux	kernel
– Old	scheduler:	O(1)
– Current	scheduler:	Completely	Fair	Scheduler	(CFS)
– Alternative	scheduler:	BF	Scheduler	(BFS)

66



O(1)	Scheduler

• Replaced	the	very	old	O(n)	scheduler
– Designed	to	reduce	the	cost	of	context	switching
– Used	in	kernels	prior	to	2.6.23

• Implements	MLFQ
– 140	priority	levels,	2	queues	per	priority
• Active	and	inactive	queue
• Process	are	scheduled	from	the	active	queue
• When	the	active	queue	is	empty,	refill	from	inactive	queue

– RR	within	each	priority	level

67



Priority	Assignment

• Static	priorities	– nice values	[-20,19]
– Default	=	0
– Used	for	time	slice	calculation

• Dynamic	priorities	[0,	139]
– Used	to	demote	CPU	bound	processes
–Maintain	high	priorities	for	interactive	processes
– sleep()	time	for	each	process	is	measured
• High	sleep	time	à interactive	or	I/O	boundà high	priority

68



SNP	/	NUMA	Support

• Processes	are	placed	into	a	virtual	hierarchy
– Groups	are	scheduled	onto	a	physical	CPU
– Processes	are	preferentially	pinned	to	individual	
cores

• Work	stealing	used	for	load	balancing

69



Completely	Fair	Scheduler	(CFS)
• Replaced	the	O(1)	scheduler
– In	use	since	2.6.23,	has	O(log	N)	runtime

• Moves	from	MLFQ	to	Weighted	Fair	Queuing
– First	major	OS	to	use	a	fair	scheduling	algorithm
– Very	similar	to	stride	scheduling
– Processes	ordered	by	the	amount	of	CPU	time	they	use

• Gets	rid	of	active/inactive	run	queues	in	favor	of	a	
red-black	tree	of	processes

• CFS	isn’t	actually	“completely	fair”
– Unfairness	is	bounded	O(N)

70



Red-Black	Process	Tree
• Tree	organized	according	to	amount	of	CPU	
time	used	by	each	process
–Measured	in	nanoseconds,	obviates	the	need	for	
time	slices

71

17

15 25

22 27

• Left-most	
process	
has	always	
used	the	
least	time

• Scheduled	
next

38

• Add	the	
process	back	
to	the	tree

• Rebalance	
the	tree



BF	Scheduler
• What	does	BF	stand	for?
– Look	it	up	yourself

• Alternative	to	CFS,	introduced	in	2009
– O(n)	runtime,	single	run	queue
– Dead	simple	implementation

• Goal:	a	simple	scheduling	algorithm	with	
fewer	parameters	that	need	manual	tuning
– Designed	for	light	NUMA	workloads
– Doesn’t	scale	to	cores	>	16

• For	the	adventurous:	download	the	BFS	
patches	and	build	yourself	a	custom	kernel

72


