CS5600 -PC H/W & Assembly

Overview

- Hardware basics
- PC Bootup Sequence
- x86 basics
- Intro to OS

Hardware Basics

- PC compatible, "Wintel"
 - alternatives: Amiga, PowePC, DEC Alpha, SPARC, etc.
- 1981 IBM PC (compete with Apple)
- 1982 Compaq IBM-compatible PC
- 1985 IBM clones everywhere!
- 1986 Compaq 80386-based PC
- 1990s Wintel
 - x86, Pemtium I, II, III ...
 - x86_64 AMD ... tomorrow?

Motherboard

CPU I/O Memory BIOS South-Bridge

- I/O between CPU, devices and MM
 North-Bridge
- Coordinates access to MM
 Storage
 Connectore
- Connectors
- (S)ATA

Conceptually

Simplified CPU Layout

Registers

- Storage build into the CPU
 - Can hold valued or pointer
 - Instructions operate directly on registers
 - Load from memory
 - Load to memory

Registers

- Some registers are special
 - point to the current instruction in memory
 - point to top of the stack
 - configure low-level CPU features
 - •

Memory Hierarchy

x86 Registers

- EIP
 - Points to currently executing instruction
- EFLAGS
 - Think of it as scratch register, e.g., results after comparison, carry after addition.
 - Sometimes referred to as the *machine status* word register

x86 instructions

Instruction	Description	Exam	ple
mov	Move data src -> dst		eax,7 edx,[0xF0FF]
add/sub	Add/subtract vals in reg.	add	eax,eab
inc/dec	Increment/decrement value in reg.	inc	eax
call	Push EIP onto stack & jump to func	call	0x80FEAC
ret	Pop the stack into EIP	ret	
push/pop	Push/pop onto stack	push	eax
int	Execute interrupt handler	int	0×70
jmp	Load value into EIP	jmp	0×80FEAC
cmp	Compare 2 regs, put result in flags register	cmp	ebx,edx
jz/jnz/jXXX	Load value in EIP if zero or non-zero in flags register	jnz	0x80FEAC

Example x86 assembly

for (i = 0; i < a; i++)
 sum += i;</pre>

```
xorl %edx,%edx # i = 0 (more compact than movl)
cmpl %ecx,%edx # test (i - a)
jge .L4 # >= 0 ? jump to end
movl sum,%eax # cache value of sum in register
.L6:
   addl %edx,%eax # sum += i
   incl %edx # i++
   cmpl %ecx,%edx # test (i - a)
   jl .L6 # < 0 ? go to top of loop
   movl %eax,sum # store value of sum back in memory
.L4
```


CPU and Device Communication

- CPU and devices execute concurrently
- Communication happens
 - 1. I/O ports
 - Specific addresses on I/O Bus
 - 2. Memory mapping
 - RAM region shared by device and CPU
 - 3. Direct Memory Map
 - Device writes directly to share region in RAM
 - 4. Interrupts
 - Signal from device to CPU. OS has to switch to handler code

Examples

Device, CPU communication

- I/O Ports
 - virtual memory shared between them
 - Synchronous + CPU has to copy data over
 - SLOW!
- Memory Mapped
 - RAM shared between them, CPU involved in all memory transactions
- Direct Memory Acces (DMA)
 - device reads/writes to memory without involving the CPU

Interrupts

- Interrupt Vector
 - Maps interrupts to handler's address
 - Interrupt causes context switch

PC Bootup Process

Power On

- Start the BIOS (Basic Input/Output System)
 - code from BIOS gets copied to RAM
 - load EIP register with starting address
- Load setting from CMOS
- Initialize devices
 - CPU, MEM, Keyboard, Video
 - Install Interrupt Vector Table
- Run POST (Power On Self Test)
- Initiate the bootstrap sequence (configurable, HD, CD, net)

MBR

N-sector disk drive. E ach sector has 512 bytes.

MBR

- Special 512 byte file in sector 1 address 0
- Too small for a full OS
 - points to another section of your drive
 - starts chain loading

The Kernel

- The program that always runs on your machine
- Started by the boot loader
- Features
 - Device management
 - loading and executing your programs
 - System calls and APIs
 - Protection
 - Fault tolerance
 - Security

Kernel Architectures

• Monolithic

- one big code base, one big binary
- Code Runs in privileged Kernel-space
- Microkernels
 - Only core components in the kernel
 - Rest of kernel components run in user space
- Hybrid kernels
 - Most components run in the kernel
 - Some loaded dynamically

Monolithic

Microkernel

Hybrid

Examples

Microkernels	Hybrid	Monolithic
Mach	Windows	DOS
L4	iOS	SunOS
GNU Hurd	OS/2	Linux
QNX	BeOS	OpenVMS