
CS5600 -
PC H/W & Assembly

Overview

• Hardware basics

• PC Bootup Sequence

• x86 basics

• Intro to OS

Hardware Basics
• PC compatible, “Wintel"

• alternatives: Amiga, PowePC, DEC Alpha, SPARC, etc.

• 1981 IBM PC (compete with Apple)

• 1982 Compaq IBM-compatible PC

• 1985 IBM clones everywhere!

• 1986 Compaq 80386-based PC

• 1990s Wintel

• x86, Pemtium I, II, III …

• x86_64 AMD … tomorrow?

Motherboard
CPU
I/O
Memory
BIOS
South-Bridge
• I/O between CPU,

devices and MM
North-Bridge
• Coordinates access

to MM
Storage
Connectors
• (S)ATA

Conceptually

16

North/South+
BridgeGraphics

Graphics+
Memory

I/O I/O I/O…

Memory

CPU(s)L1,+L2,+L3+
Cache All+devices+

compete+for+
access+to+memory

Simplified CPU Layout
Control Unit

ALU ALU FPU Registers

System Bus

Cache L1, L2, L3

Instruction 
Decode

Instruction 
Fetch

Registers
• Storage build into the CPU

• Can hold valued or pointer

• Instructions operate directly on registers

• Load from memory

• Load to memory

Registers
• Some registers are special

• point to the current instruction in memory

• point to top of the stack

• configure low-level CPU features

• …

Memory Hierarchy

x86_32 Registers

x86 Registers
• EIP

• Points to currently executing instruction

• EFLAGS

• Think of it as scratch register, e.g., results after
comparison, carry after addition.

• Sometimes referred to as the machine status
word register

x86 instructions
Instruction Description Example

mov Move data src -> dst mov eax,7  
mov edx,[0xF0FF]

add/sub Add/subtract vals in reg. add eax,eab

inc/dec Increment/decrement value in reg. inc eax

call Push EIP onto stack & jump to func call 0x80FEAC

ret Pop the stack into EIP ret

push/pop Push/pop onto stack push eax

int Execute interrupt handler int 0x70

jmp Load value into EIP jmp 0x80FEAC

cmp Compare 2 regs, put result in flags register cmp ebx,edx

jz/jnz/jXXX Load value in EIP if zero or non-zero in
flags register jnz 0x80FEAC

Example x86 assembly

 xorl %edx,%edx # i = 0 (more compact than movl)
 cmpl %ecx,%edx # test (i - a)
 jge .L4 # >= 0 ? jump to end
 movl sum,%eax # cache value of sum in register

.L6:
 addl %edx,%eax # sum += i
 incl %edx # i++
 cmpl %ecx,%edx # test (i - a)
 jl .L6 # < 0 ? go to top of loop
 movl %eax,sum # store value of sum back in memory
.L4

for (i = 0; i < a; i++)
 sum += i;

Memory Layout
Memory'
mapped'
devices

Free'
Memory

BIOS'Code

Interrupt'
Vector

0x0000

0x00FF

0x0DFF

0xF000

0xFFFFTop

CPU and Device
Communication

• CPU and devices execute concurrently

• Communication happens

1. I/O ports

• Specific addresses on I/O Bus

2. Memory mapping

• RAM region shared by device and CPU

3. Direct Memory Map

• Device writes directly to share region in RAM

4. Interrupts

• Signal from device to CPU. OS has to switch to handler code

Examples
Shared 
Memory

Interrupt

I/O Ports

Device, CPU communication
• I/O Ports

• virtual memory shared between them

• Synchronous + CPU has to copy data over

• SLOW!

• Memory Mapped

• RAM shared between them, CPU involved in all memory transactions

• Direct Memory Acces (DMA)

• device reads/writes to memory without involving the CPU

Interrupts
• Interrupt Vector

• Maps interrupts to handler’s address

• Interrupt causes context switch

Interrupt  
Vector

Handler (0x01)

Number Handler

0x01 0xAAA1

0x02 0xBBB1

0xAAA1

0x0000

PC Bootup Process

Power On
• Start the BIOS (Basic Input/Output System)

• code from BIOS gets copied to RAM

• load EIP register with starting address

• Load setting from CMOS

• Initialize devices

• CPU, MEM, Keyboard, Video

• Install Interrupt Vector Table

• Run POST (Power On Self Test)

• Initiate the bootstrap sequence (configurable, HD, CD, net)

MBR

MBR

• Special 512 byte file in sector 1 address 0

• Too small for a full OS

• points to another section of your drive

• starts chain loading

The Kernel
• The program that always runs on your machine

• Started by the boot loader

• Features

• Device management

• loading and executing your programs

• System calls and APIs

• Protection

• Fault tolerance

• Security

Kernel Architectures
• Monolithic

• one big code base, one big binary

• Code Runs in privileged Kernel-space

• Microkernels

• Only core components in the kernel

• Rest of kernel components run in user space

• Hybrid kernels

• Most components run in the kernel

• Some loaded dynamically

Monolithic
Kernel Space User Space

MMM Program 
Loader

Device  
Drivers

File 
Systems

Security  
Policies Scheduler

System 
APIs

User 
Program

Microkernel
Kernel Space User Space

MMM Program 
Loader

Device 
Drivers

File 
Systems

Security 
PoliciesScheduler

Interprocess 
Communication

User 
Program

Hybrid
Kernel Space User Space

MMM Program 
Loader

Device  
Drivers

File 
Systems

Security 
Policies Scheduler

System 
APIs User 

Program

Kernel Code

3rd-Party  
Code

Examples
Microkernels Hybrid Monolithic

Mach Windows DOS

L4 iOS SunOS

GNU Hurd OS/2 Linux

QNX BeOS OpenVMS

