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PC H/W & Assembly



Overview

• Hardware basics 

• PC Bootup Sequence 

• x86 basics  

• Intro to OS 



Hardware Basics
• PC compatible, “Wintel"  

• alternatives: Amiga, PowePC, DEC Alpha, SPARC, etc.  

• 1981 IBM PC (compete with Apple) 

• 1982  Compaq IBM-compatible PC  

• 1985 IBM clones everywhere! 

• 1986 Compaq 80386-based PC  

• 1990s Wintel  

• x86, Pemtium I, II, III …  

• x86_64 AMD … tomorrow? 
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Registers
• Storage build into the CPU 

• Can hold valued or pointer 

• Instructions operate directly on registers 

• Load from memory 

• Load to memory



Registers
• Some registers are special 

• point to the current instruction in memory 

• point to top of the stack  

• configure low-level CPU features 

• …



Memory Hierarchy



x86_32 Registers



x86 Registers
• EIP  

• Points to currently executing instruction 

• EFLAGS  

• Think of it as scratch register, e.g., results after 
comparison, carry after addition.  

• Sometimes referred to as the machine status 
word register



x86 instructions 
Instruction Description Example

mov Move data src -> dst mov eax,7  
mov edx,[0xF0FF]

add/sub Add/subtract vals in reg. add eax,eab

inc/dec Increment/decrement value in reg. inc eax

call Push EIP onto stack & jump to func call 0x80FEAC

ret Pop the stack into EIP ret

push/pop Push/pop onto stack push eax

int Execute interrupt handler int 0x70

jmp Load value into EIP jmp 0x80FEAC

cmp Compare 2 regs, put result in flags register cmp ebx,edx

jz/jnz/jXXX Load value in EIP if zero or non-zero in 
flags register jnz 0x80FEAC



Example x86 assembly

    xorl %edx,%edx   # i = 0 (more compact than movl) 
    cmpl %ecx,%edx   # test (i - a) 
    jge .L4          # >= 0 ? jump to end 
    movl sum,%eax    # cache value of sum in register 

.L6: 
    addl %edx,%eax   # sum += i 
    incl %edx        # i++ 
    cmpl %ecx,%edx   # test (i - a) 
    jl .L6           # < 0 ? go to top of loop 
    movl %eax,sum    # store value of sum back in memory 
.L4

for (i = 0; i < a; i++) 
  sum += i;
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CPU and Device 
Communication

• CPU and devices execute concurrently 

• Communication happens 

1. I/O ports 

• Specific addresses on I/O Bus  

2. Memory mapping 

• RAM region shared by device and CPU 

3. Direct Memory Map 

• Device writes directly to share region in RAM  

4. Interrupts 

• Signal from device to CPU. OS has to switch to handler code
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Device, CPU communication
• I/O Ports 

• virtual memory shared between them  

• Synchronous + CPU has to copy data over 

• SLOW! 

• Memory Mapped 

•  RAM shared between them, CPU involved in all memory transactions 

• Direct Memory Acces (DMA)  

• device reads/writes to memory without involving the CPU 



Interrupts
• Interrupt Vector 

• Maps interrupts to handler’s address 

• Interrupt causes context switch 

Interrupt  
Vector

Handler (0x01)

Number Handler

0x01 0xAAA1

0x02 0xBBB1

0xAAA1

0x0000



PC Bootup Process



Power On
• Start the BIOS (Basic Input/Output System) 

• code from BIOS gets copied to RAM  

• load EIP register with starting address  

• Load setting from CMOS  

• Initialize devices  

• CPU, MEM, Keyboard, Video 

• Install Interrupt Vector Table 

• Run POST (Power On Self Test) 

• Initiate the bootstrap sequence (configurable, HD, CD, net)



MBR



MBR

• Special 512 byte file in sector 1 address 0 

• Too small for a full OS  

• points to another section of your drive 

• starts chain loading 



The Kernel
• The program that always runs on your machine  

• Started by the boot loader 

• Features 

• Device management 

• loading and executing your programs 

• System calls and APIs 

• Protection  

• Fault tolerance 

• Security



Kernel Architectures
• Monolithic 

• one big code base, one big binary 

• Code Runs in privileged Kernel-space 

• Microkernels 

• Only core components in the kernel 

• Rest of kernel components run in user space 

• Hybrid kernels 

• Most components run in the kernel 

• Some loaded dynamically
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Examples
Microkernels Hybrid Monolithic

Mach Windows DOS

L4 iOS SunOS

GNU Hurd OS/2 Linux

QNX BeOS OpenVMS


