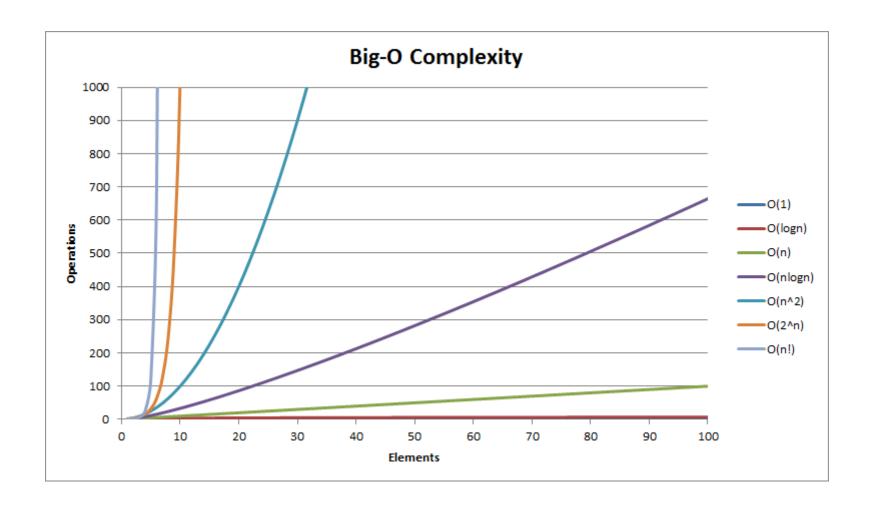
### Program Efficiency &

### Introduction to Complexity Theory

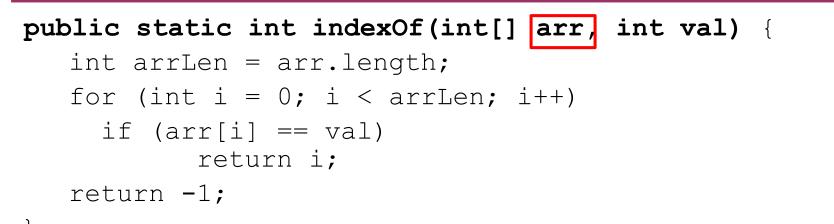


## When does implementation matter?

- There are SEVERAL algorithms that solve the SAME problem
- $\rightarrow$  Need to decide which one to choose

| Problem                                                                                             | Algorithms                                                                                                 |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| <u>Sort</u><br>Put elements in a certain order                                                      | <ol> <li>Bucket sort</li> <li>Bubble sort</li> <li>Merge sort</li> <li>Quick sort</li> </ol>               |
| <u>Search</u><br>Retrieve information stored<br>within some data structure                          | <ol> <li>Sequential Search</li> <li>Binary Search</li> </ol>                                               |
| Anagrams<br>One string is an anagram of<br>another if the second is a<br>rearrangement of the first | <ol> <li>Checking Off</li> <li>Sort and compare</li> <li>Brute Force</li> <li>Count and compare</li> </ol> |

## **Analysis of Execution Time**



In a sequential search of an array:

• worst-case:

 $4n+4 \rightarrow complexity$  is linear

• best-case:

7  $\rightarrow$  complexity is constant (independent of input size)

• average case:

•  $4n/2 + 4 = 2n + 4 \rightarrow complexity$  is linear



### Why do you need to evaluate an algorithm?

- Find most optimal algorithm for solving given problem, <u>considering various</u> factors and constraints:
  - Execution time
  - Execution space (choosing the correct data structure)
  - Network bandwidth
  - •...
- Goal: How fast or slow the particular algorithm performs
- $\rightarrow$  Calculate time *complexity* of the algorithm
- **Problem:** Several factors impact the actual time
  - Instruction set
  - CPU
  - Brand of compiler...

## **Asymptotic behavior**

### To determine **runtime complexity:**

- Calculate T(n) (number of fundamental steps vs. problem size)
- Disregard constants
- Look how running time is affected when input size is quite large.
- Drop the terms that grow slowly (or do not grow at all) and only keep the ones that grow fast as n becomes larger
- Examples:
  - •T(n) = 5n + 42
  - $\rightarrow$  the fastest growing term is  $n \rightarrow$  linear runtime complexity
  - $T(n) = 37n + 3n^2 + 120$
  - $\rightarrow$  the fastest growing term is  $n^2 \rightarrow$  quadratic runtime complexity

## **Cost of operations: Constant Time Ops**

- Each take one foundamental time "step":
  - Simple variable declaration/initialization (double sum = 0.0;)
  - Assignment of numeric or reference values (var = value;)
  - Arithmetic operation (+, -, \*, /, %)
  - Array subscripting (a[index])
  - Simple conditional tests (x < y, p != null)
  - Operator new (NOT including constructor cost)

Note: new takes significantly longer than simple arithmetic or assignment, but its cost is <u>independent</u> of the problem size

• CAUTION: watch out for method calls or constructor invocations that look simple, but might be expensive

### **Costs of Statements**

• Sequential: S1; S2; ... Sn

 $\rightarrow$  sum the costs of S1 + S2 + ... + Sn

• Conditional: how long it *might* take to execute the code

if (condition) {S1;}

else {S2;}

 $\rightarrow$  max cost (S1, S2) + cost of evaluating the condition

• Loop:

Calculate cost of each iteration

Calculate number of iterations

ightarrow Total cost is the product of these

## Costs of Statements Method Calls

- Cost for f(a, b, c) is
  - Cost of actually calling the method (constant overhead)
  - + cost of **evaluating** the arguments
  - + cost of **parameter passing** (normally constant time in Java for both numeric and reference values)

+ cost of executing the method body

### **Analysis of Execution Time**

```
public static int indexOf(int[] arr, int val) {
```

```
int arrLen = arr.length;
for (int i = 0; i < arrLen; i++)
    if (arr[i] == val)
        return i;
return -1;
```

The fundamental instructions:

- Assigning a value to a variable: 2 'step' (int arrLen=arr.length)
- Return statement :
- for loop: ?
  Accessing array: 1
  Comparing two values: +1
  Inside () of for: +2

```
+1 'step' (int i = 0)
+1 'step' (either i or -1)
?
1 'step' (arr[i])
+1 'step' (arr[i] == val)
+2 'steps' (i < arrLen; i++)</pre>
```

### **Different types of complexities**

- The *worst-case runtime complexity* is the maximum number of steps taken on any instance of size *n*.
- The *best-case runtime complexity* is the **minimum number of steps** taken on any instance of size *n*.
- The *average case runtime complexity* is an **average number of steps** taken on any instance of size *n*.

### **Analysis of Execution Time**

In a sequential search of an array:

- worst-case: 4n+4
- $\rightarrow$  complexity is linear
- best-case: 7

+
 (Inside for loop: 4 steps
 \*
 (Inside for loop: 4 steps
 \*
 Number of iterations: ?)

→ *complexity* is constant (independent of input size)

• average case:  $4n/2 + 4 = 2n + 4 \rightarrow complexity$  is linear

### What about nested loop?

int m=0; //executed in constant time c1
// Outer loop - executed n times
for (int i = 0; i < n; i++)
// Inner loop - be executed n times
for(int j = 0; j < n; j++)
 sum += i \* j; //executed in constant time c2</pre>

### →Runtime complexity is **<u>quadratic</u>**

**Rule of thumb**: Simple programs can be analyzed by counting the nested loops of the program: A single loop over n items  $\rightarrow$  linear complexity A loop within a loop  $\rightarrow$  quadratic complexity A loop within a loop within a loop yields  $\rightarrow$  cubic complexity

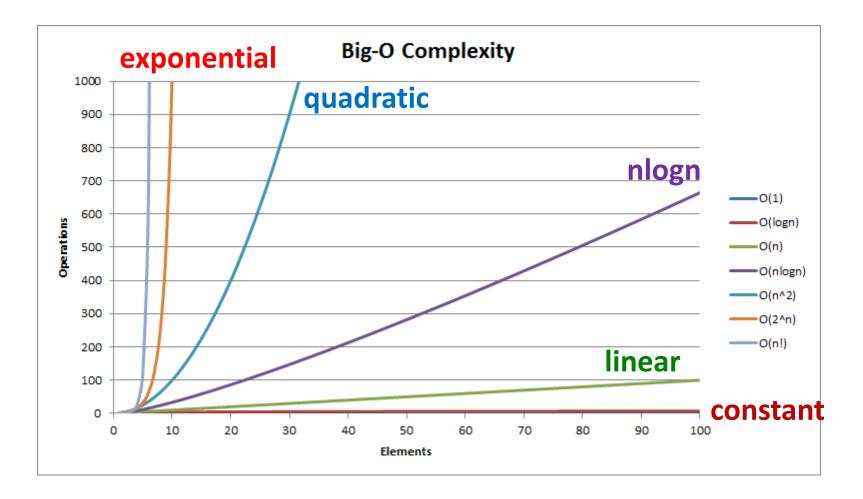
## What if number of iterations of one loop depends on the counter of the other?

 $\rightarrow$  Analyze inner and outer loops together :

0 + 1 + 2 + ... + (n-1) = n(n-1)/2

 $\rightarrow$  Quadratic complexity

## "big-O"



## **Complexity Classes**

- Several common complexity classes (problem size n)
  - Constant time: O(k) or O(1)
  - Logarithmic time: O(log n) [Base doesn't matter. Why?]
  - Linear time: O(n)
  - "n log n" time: O(n log n)
  - Quadratic time: O(n<sup>2</sup>)
  - Cubic time: O(n<sup>3</sup>)
  - Exponential time: O(k<sup>n</sup>)

### • O(n<sup>k</sup>) is often called *polynomial time*

## **Sequential search**

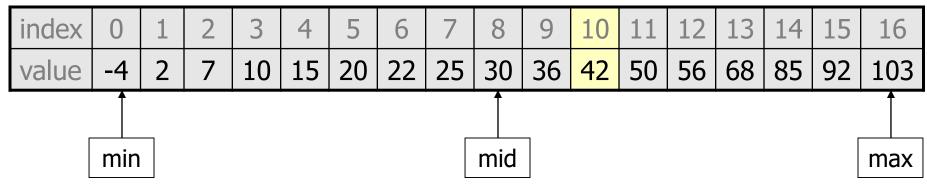
- Locates a target value in an array/list by examining each element from start to finish.
  - On Average O(n)
  - Example: Searching the array below for the value **42**:

| index | 0  | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16  |
|-------|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| value | -4 | 2 | 7 | 10 | 15 | 20 | 22 | 25 | 30 | 36 | 42 | 50 | 56 | 68 | 85 | 92 | 103 |
|       |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |     |
|       | i  |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |     |

Notice that the array is sorted. Could we take advantage of this?

### **Binary search**

- Locates a target value in a *sorted* array/list
- *Algorithm:* Examine the middle element of the array.
- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
  - Else it is the value we are searching for, so stop
- Example: Searching the array below for the value **42**:



• How many elements will it need to examine?

# What does this function do and what is its complexity ?

int mystery (int x) {
 if (x <= 0) throw new IllegalArgumentException();</pre>

if (x == 1) return 0;

}

```
return 1 + mystery (x / 2);
```

```
Try it with arguments of 4, 8 and 2.
```

### **Binary search runtime**

- For an array of size N, it eliminates ½ until 1 element remains: N, N/2, N/4, N/8, ..., 4, 2, 1
  - How many divisions does it take?
- Think of it from the other direction:
  - How many times do I have to multiply by 2 to reach N?

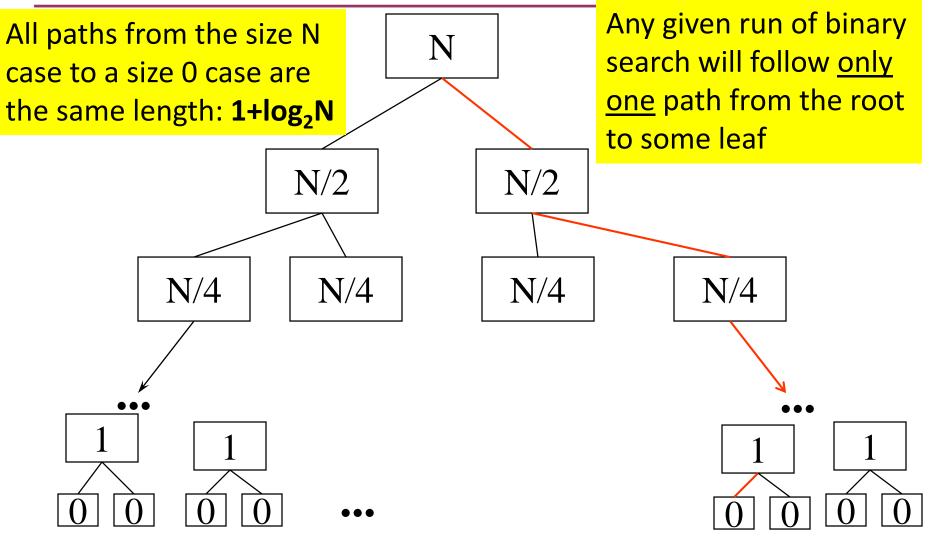
1, 2, 4, 8, ..., N/4, N/2, N

- Call this number of multiplications "x".
  - 2<sup>×</sup> = N

 $x = \log_2 N$ 

→ Binary search has **logarithmic** complexity - O(logN)

### **Picture the Execution**



### ArrayList vs. LinkedList\* in Java

|                                                            | ArrayList<br>(dynamic array)                          | LinkedList*                               |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|--|--|--|
| get(int index)<br>Indexing                                 | O (1) (main benefit)                                  | O(n)                                      |  |  |  |
| add (E element)<br>Inserting<br>at the end                 | O(n) (dynamically growing)<br>O(1) (on average input) | O(1)                                      |  |  |  |
| add (int index,<br>E element)<br>Inserting<br>at the index | O(n)<br>Unless at the end                             | O(1) (index ==0,<br>main benefit)<br>O(n) |  |  |  |

### \* with head, tail, and size

### **ArrayList vs. LinkedList\* in Java**

|                                                | ArrayList<br>(dynamic array) | LinkedList*                                         |
|------------------------------------------------|------------------------------|-----------------------------------------------------|
| <pre>remove(int index) Delete from index</pre> | <i>0</i> (1)(index)          | O(1) (index ==0,<br>index ==size ,<br>main benefit) |
|                                                | O(n)                         | O(n)                                                |

#### \* with head, tail, and size