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Abstract

Regular-tree expressions are to semi-structured data, such as XML
and Lisp s-expressions, what standard regular expressions are to
strings: a powerful “chainsaw” for describing, searching and trans-
forming structure in large data sets. We have designed and imple-
mented a little language, trx, for defining regular-tree patterns. We
discuss the design of trx, its underlying mathematical formalisation
with various kinds of tree automata, and its implementation tech-
nology. One of the attractions of trx is that, rather than being a
complete, ad hoc language for computing with trees, it is instead
embedded within Scheme by means of the Scheme macro system.
The features of the design are demonstrated with multiple motivat-
ing examples. The resulting system is of general use to program-
mers who wish to operate on tree-structured data in Scheme.

1 LCD data representations

Semi-structured and tree-structured data has become an important
topic in the world of software engineering in the past few years, due
to the widespread adoption of XML as a generic representation for-
mat for data. While this may be news to rest of the world, it is a very
familiar picture to programmers in the Lisp family of languages.
The Scheme and Lisp community has long been aware of the ben-
efits of fixing on a general-purpose data structure for representing
trees, and specifying a standard concrete character representation
for these trees. Lisp s-expressions are essentially XML trees; the
Lisp community has worked within the s-expression framework for
representing data since the inception of the language in the 1960’s.

Part of the power of the Lisp family of languages comes from this
focus on s-expressions as the central data structure of the language.
A Perlis aphorism [16] captures the benefit well: “It is better to have
100 functions operate on one data structure than 10 functions on 10
data structures.” S-expressions are the “least common denomina-
tor” (LCD) representation for data in the Lisp family of program-
ming languages, in the same sense that strings are the LCD repre-
sentation in the world of Unix tools: the multitude of functions that
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operate upon and produce results in this form can therefore easily
be connected together to construct larger computations, providing
for a large degree of code reuse. In the world of Scheme program-
ming, s-expressions are the universal interchange format.

The charm of s-expressions as an LCD representation is that, un-
like strings, they come with some degree of existing structure. This
eliminates much of the parsing/unparsing overhead that is typically
required when computational agents interact using string interme-
diate representations (parsing that, in the Unix-tools setting, is fre-
quently done by means of heuristic, incomplete, error-prone hand-
written parsers). Another Perlis aphorism makes clear the down-
sides of using strings as an LCD form: “The string is a stark data
structure and everywhere it is passed there is much duplication of
process. It is a perfect vehicle for hiding information.” The prob-
lem with strings as a least-common denominator is that they are too
“least,” that is, too low level. We operate upon strings a character at
a time—a level where it is all too easy to break the invariants of the
associated grammar that typically imposes structure and meaning
on the strings.

Even when s-expressions may not be the appropriate representation
for the core data structures of an application, they still frequently
find use around the application’s “fringe,” being converted to and
from the internal, more highly-engineered core structures as they
move across the application’s boundary—with the associated ben-
efit that it is much simpler and more robust to parse a tree than a
string.

2 Regular trees, little languages and Scheme

Given that Lisp and Scheme programmers have been working with
“semi-structured” tree data roughly three and half decades longer
than XML has even existed, it is surprising that this community
has never bothered to adopt one of the great, expressive tools for
manipulating such data: regular trees and their associated patterns.
Just as traditional regular expressions are an expressive tool for de-
scribing structure occurring within strings, regular trees can serve a
similar role when dealing with recursively defined patterns occur-
ring within trees—trees such as ones we frequently represent using
Scheme s-expressions.

We have long grumbled about the lack of such tools. Each time
we write a low-level Scheme macro, for example, and we find our-
selves writing an incomplete and awkward syntax-checker/parser
for our new form directly in Scheme (Is the form exactly four el-
ements long? Is the second element a list of identifier/expression
pairs? Etc.), we pause to wish for a better way. When the XML
world began wisely to exploit the extensive theoretical machinery
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developed to describe regular trees and their recognisers, we were
finally pushed to carry out the design and implementation exercise
we had put off so long.

The result is trx, a language for describing regular-tree patterns.
Embedding our “little language” within Scheme provides for sev-
eral benefits, which we’ve described elsewhere in detail [17]. On
one hand, it made our task as designers and implementors easier.
We only needed to design and implement tree patterns; we didn’t
need to implement the machinery already provided by Scheme:
floating-point numbers, first-class functions, variables, loops, etc.
On the other hand, for our programmer clients, the result was a tool
that allowed regular-tree pattern matching to be tightly integrated
with Scheme programs, instead of forcing this kind of operation
out into a separate, distinct program written in some distinct, ad
hoc, self-contained domain-specific language.

The rest of this paper traces out the following arc. First, we will
survey the basic elements of tree automata, the underlying math-
ematical formalism that connects the static, declarative world of
regular-tree patterns to the computational or algorithmic paradigm
of their recognisers. Then we will consider the particular needs
of tree pattern matching that arise when working in the setting of
Scheme s-expressions. This exploration of design requirements and
design rationale, plus the useful constraints imposed by the compu-
tational power of tree automata, allow us to proceed to a design
for regular-tree patterns that integrates with Scheme s-expressions.
The syntax and semantics of trx are provided in the next section,
followed by examples of trx patterns in use. Then we will examine
some details the current implementation, before concluding with a
description of related and future work.

3 Overview of tree automata

Every interesting programming language is just a cover for an in-
teresting model of computation: regular expressions and finite au-
tomata; context-free grammars and push-down automata; SQL and
the relational calculus; Smalltalk and message-passing; APL and
SIMD array processing; and, of course, Scheme and the λ calculus.
The interesting formal model of computation underlying the design
of trx is finite tree automata. The short overview that follows will
spell out some of the fundamental concepts of these formal ma-
chines.

In the following sections we differentiate between traditional tree
automata and simplified tree automata. This paper uses the “sim-
plified” and “traditional” qualifiers for differentiation only; they are
not part of the established nomenclature. Elsewhere in the litera-
ture, both classes of automata are referred to as tree automata inter-
changeably.

3.1 Traditional tree automata

Tree automata operate on labelled, finite trees: trees where every
node is assigned a label f drawn from some alphabetF . Traditional
automata also require the label alphabet to be ranked, that is, each
label has an associated natural number. Each tree node must have
exactly as many children as the rank assigned its label; thus, leaf
nodes are marked with rank-zero labels. We write Fn for the set of
rank-n labels in alphabet F .

A traditional finite tree automaton (FTA) over a ranked alphabet
F is a tuple A = (Q ,F ,Q f ,∆), where Q is a set of states, Qf ⊆ Q

is a set of final states, and ∆ is a set of transition rules of the form:

f (q1, . . . ,qn)→ q,
where n≥ 0, f ∈ Fn, and q,q1, . . . ,qn ∈ Q. The symbols q1, . . . ,qn
and q are called the initial and final states of the transition, respec-
tively.

The operation of a tree automaton involves propagating state infor-
mation up (or down) through the tree. Transition rules determine
how this propagation takes place. Whenever a label f is seen at a
tree node and that label has the states q1, . . . ,qn “bubbled-up” to its
children, and a rule f (q1, . . . ,qn) → q exists in ∆, state q is prop-
agated to the f -labelled node. In turn, the bubbled-up state then
feeds into its parent node. The propagation continues until some
state is bubbled up to the root node of the tree. If this state is in Q f ,
then the tree term is accepted. If no final state bubbles up to the top,
the tree is rejected.

In addition to the type of transition rule described above, tradi-
tional tree automata allow for ε-move transitions q→ q′, that oc-
cur spontaneously, changing the state assigned to a node from q to
q′. Equivalence of tree automata with and without ε rules is a well-
established result [6]; establishing the equivalence involves work-
ing with the ε-closure of states, i.e., the set of states reachable from
a state via ε-rules.

Fundamentally, every tree automaton A is a machine corresponding
to some tree language. The tree language L(A) recognized by A is
the set of all trees accepted by A .

We’ve described the operation of an FTA in a bottom-up manner,
but it can also be operated in a top-down manner, starting with an
accept state for the root, and running the transition rules “back-
wards” to find the labels assigned to children, etc.

3.2 Simplified tree automata

A simplified finite tree automaton (SFTA) over an unranked al-
phabet F is a tuple As = (Q ,F ,Qi,∆), where Q is a set of states,
Qi ⊆ Q is a set of initial states, and ∆ is a set of transition rules.
Transition rules can be either be labelled or empty:

f (qin),qout→ q or ()→ q.
In order to understand the way a simplified tree automaton com-
putes, we must change our mental model of how individual nodes
are “wired” together in the tree. Each node now includes a ref-
erence to its closest sibling to the right, and its leftmost child (if
any, in both cases). This setup implies that at any given point in
an automaton’s operation, state-directed control can flow along two
pathways—down to children and right to siblings. This is in con-
trast to traditional tree automata where state information is propa-
gated to/from all children simultaneously.

A simplified automaton begins at the root of the tree, nondetermin-
istically selecting a start state from Qi. If the automaton is visit-
ing an f -labelled node n while in state q, the machine selects an
f (qin),qout → q transition. (If there is no such transition, the ma-
chine halts, reporting failure.) If n has children, the machine at-
tempts to recursively accept them, starting in state qin with n’s left-
most child; if this succeeds, it then proceeds to n’s siblings. If n is
a leaf node, the machine checks for an empty transition ()→ qout,
then proceeds to n’s siblings. If the children-match attempt fails,
or there is no empty rule handling the leaf node, the machine halts,
reporting failure.
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Figure 1
Nondeterministic simplified finite tree automaton

matchnode(n,q) {
f := n.label

/* Fail if no rule selectable. */
Select f (qin),qout→ q from ∆

if n is leaf
then matchempty(qin)
else matchnode(n.leftchild, qin)

if n has closest right sibling s
then matchnode(s,qout)
else matchempty(qout)
}

matchempty(q) {
if () → q ∈ ∆ then return
else fail
}

To proceed to n’s siblings, the machine jumps to n’s closest right
sibling and changes state to qout. If n has no right sibling, the ma-
chine accepts iff there is an empty transition qout→ (). Thus empty
transition rules are needed to terminate an automaton’s recursive
descent over a tree. Pseudocode for an SFTA is shown in figure 1.

As a trivial example, consider a regular-tree language consisting of
a single term: a root node labelled with a and three child nodes
labelled with b, c, d. A simplified tree automaton for recognizing
such a language would have transitions

a(q1),q2→ q0 b(q2),q4→ q1
c(q2),q6→ q4 d(q2),q2→ q6

() → q2
with Qi = {q0}.

Note that the label alphabet F is unranked in the sense that when a
node labelled f is processed, the automaton is only concerned with
the presence of the node’s leftmost child and closest right sibling.
Nothing in the rule format enforces how many children or siblings
a given node is allowed to have. A simplified automaton can fix
the number of children permitted a tree node by encoding this in
the states traversed as it scans across the siblings, but it may also
permit a child to have an arbitrary number of children, a degree
of power not available with traditional automata. Thus simplified
automata are strictly more powerful than traditional automata. This
power is useful for the kinds of s-expression and XML trees we
process in the real world.

3.3 Converting between models

A traditional tree automaton can be converted to an equivalent sim-
plified tree automaton in the following way. Starting from each
state q of the initial states, the algorithm selects all the rules that
have q as their final state. For each rule f (q1, . . . ,qn) → q, a la-
belled rule f (q1),q′ → q and an empty rule () → q′ are added to
the simplified automaton, for fresh state q′. Then a new state q′′
and empty rule () → q′′ are added to the automaton, for fresh state
q′′. The children states are processed similarly, except that instead

of generating a fresh “out” state as we did for the rules starting in
q, the rules starting in qn are processed recursively with their “out”
state as their right sibling’s final state qn+1. The “out” state for the
rightmost sibling is the newly-generated q′′.

A simplified tree automaton resulting from the conversion recog-
nizes the same language as its traditional equivalent. However, the
arity information is now encoded directly in the rules; symbols no
longer have an intrinsic arity attached to them.

A conversion of a simplified tree automaton to an equivalent tradi-
tional tree automaton is not possible in the general case: as we’ve
seen, traditional tree automata cannot handle symbols with un-
bounded arity, and thus are strictly less powerful.

3.4 Nondeterminism in tree automata

Both of the above definitions describe non-deterministic automata,
i.e., automata that can “fork” in a number of directions if multiple
transitions can be applied in a given machine configuration. As with
regular-string languages, a deterministic variant of tree automata
can be defined as a subset of the general nondeterministic one.

The equivalence of deterministic and non-deterministic automata
has been established for traditional tree automata [6]. A traditional
tree automaton is said to be deterministic (DFTA) if there are no
rules with the same left-hand side, and no ε-rules.

The construction of an equivalent automaton proceeds as follows.
LetA = (Q ,F ,Q f ,∆) be a non-deterministic tree automaton. Then
there is an equivalent DFTA, Ad = (Qd ,F ,Qd f ,∆d) such that (1)
every state in Qd is a non-empty set of original states in Q , and (2)
every rule in ∆d is computed with

f (s1, . . . ,sn)→ s′ ∈ ∆d iff
s ={q | q1 ∈ s1, . . . ,qn ∈ sn, f (q1, . . . ,qn) → q ∈ ∆}
s′=ε-closure(s)

Just as with regular-string expressions and their associated finite-
state automata, this power-set construction of an equivalent deter-
ministic tree automaton may, in the worst case, result in exponential
state explosion [6]. And just as with regular-string expressions, this
negative effect is offset by the fact that deterministic tree automata
are considerably faster at parsing certain regular-tree languages [6],
in the standard space vs. search trade-off.

We are not aware of any results pertaining to equivalence of deter-
ministic and non-deterministic simplified tree automata. Our SFTA
technology works strictly with non-deterministic machines—that
is, it manages non-determinacy at run time by performing back-
tracking search.

4 S-expressions, XML, and regular trees

Lisp s-expressions are frequently used to represent labelled trees,
using the encoding that an internal tree node is represented by a
list whose head is its label and whose tail is the list of its children;
leaf nodes are simply represented by non-list data. The following
schematics illustrate the mapping:
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(expt i j) ⇐⇒
i j

expt

(if a (cons a nil) b) ⇐⇒
a

a nil

cons b

if

(set! a (+ 1 2)) ⇐⇒
a

1 2

+

set!

In the domain of XML, the delimiting characters ( and ) are re-
placed with <tag attr-list> and </tag>, with tag serving as the
node’s label. This treatment slightly oversimplifies the way XML
documents are put together, but it exposes the features common
to labelled-tree languages at large, which is what the trx language
is intended to process. The XML community has developed a
plethora of language tools for describing regular-tree patterns as
well as transducers operating on the trees matched by these pat-
terns [12, 4, 6, 21, 3]. Although these tools are outside the scope of
this paper, their existence reaffirms the utility of convenient, robust
tools for regular-tree processing.

4.1 Variable-arity constructors

One issue that arises when considering tree structure in XML and
symbol-labelled s-expression trees is the possibility of variable-
arity constructors (that is, variable-rank tree labels). Both (+ 3
7) and (+ 2 6 3 1) are legal Scheme expressions, yet the + la-
bel must be assigned a fixed arity in order for a traditional tree-
automata to be able to match it. These cases arise in both XML and
s-expression trees, and when they do, we must resort to the more
powerful model of simplified tree automata.

4.2 Unlabelled tree nodes

Another issue we find in the context of interpreting s-expressions
as labelled trees is that in some s-expressions, not all tree nodes
are labelled. For example, consider the structure of a Scheme let
form, which has the following syntax:

(let ((var exp) ...) body ...)

The first child of a let node, the bindings list ((var exp) ...),
has no label. (As we discussed above, it is also variable-arity.) We
can find the same problem in the syntax of the individual clauses of
a cond expression, or even in the “default” syntax of Scheme func-
tion calls, which are not introduced by any kind of call keyword.

It is not technically difficult to handle unlabelled nodes within the
finite-automaton model; our implementation does so by introducing
special anonymous symbols that have unique names with respect to
the rest of the automaton’s label set. The critical point is that, to
handle this tree idiom, which occurs in common practice with s-
expressions, we must account for them in the design of our pattern
notation.

4.3 Factoring pattern, automaton and data

One theme in the design of trx is factoring the layers of the de-
sign. Whether the terms under consideration are s-expressions,
XML documents, or some other form of tree data, the basic pat-
tern notation and the underlying abstract automata models, which
specify the basic processing engine for tree terms, should remain
unaltered. We’ll return to this factoring in the discussion of the
implementation.

Another design concern was abstracting over the nuts and bolts
of finite-tree automata or other possible semantic engines for trx.
(E.g., is a pattern implemented as a non-deterministic traditional
FTA using search, as a deterministic traditional FTA without back-
tracking, or with an SFTA?) Where possible, we kept the notation
and its semantics independent of these implementation pragmatics
(adding variable-arity patterns in the pattern notation does restrict
the space of possible implementations, however, so this is not 100%
possible).

4.4 Escapes to Scheme

We’ve found it useful in previous little-language designs to pro-
vide mechanisms not only for embedding the little language within
Scheme, but for embedding general Scheme within the little lan-
guage. This, of course, dramatically changes the power of the pat-
tern model, allowing us to define pattern matchers whose top-level
control skeleton is an FTA, but who may invoke arbitrary compu-
tation at the “leaves” of the computation. Adding such a facility
has an impact on the implementation of the system, restricting our
ability to statically analyse patterns (a price we pay for the increased
computational power), and requiring the implementation to be writ-
ten so it can simply pass the embedded Scheme code through the
pattern compiler, to be dropped into place in the final output.

As we’ll see, the ability to invoke arbitrary Scheme at the leaves of
the pattern matcher in particular allow us to have trees whose leaf
nodes are not just symbols, but any kind of data. This is important
in the world of Scheme s-expressions, which are frequently com-
posed of more than symbols and parentheses—they may, for exam-
ple, contain records or booleans or strings. We might, in some con-
texts, wish to permit only leaves that are positive integers between
0 and 100—something which does not fit the basic tree-automata
model, which discriminates only on the symbols that label nodes,
including leaf nodes.

Similarly, when a user writes down a regular-tree expression to de-
scribe the syntax of the Scheme let form, he will want to capture
in the pattern the fact that the left-hand sides of the binding forms
can be any symbol at all. . . but only a symbol, not a general sub-
tree.1 Allowing escapes to general Scheme code permits us to write

1If he wants to capture the constraint that these bound identi-
fiers must be distinct from one another, he’s completely outside the
power of the regular-tree model. The price we pay for specialised
notations and restricted computational models is that we can’t solve
all possible problems. Note that our hypothetical programmer could
always use a more complex escape to Scheme to check this distinct-
identifier constraint, or defer it to a later check. This is analogous
to the way compilers detect some illegal programs while parsing
(i.e., syntax errors), leaving others for later static analysis to find
(e.g., type errors). This distinction happens for the same reason—
the expressiveness of context-free grammars and the power of the
associated push-down automata that recognise their languages are
restricted, making them unable to encode all the static constraints
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such patterns, yet remain in the tree-automaton/declarative-pattern
model for the most part. This functionality is conceptually aligned
with the Scheme’s own type system where types are typically de-
fined by means of general Scheme predicates which discriminate
between members and non-members of the type, e.g., functions
such as list?, string?, symbol?, and so forth.

4.5 Dynamic patterns

Besides inlining Scheme predicates to match tree leaves, we might
also want to escape to Scheme code within a pattern in order to
compute a sub-pattern. This allows users to dynamically stitch tree
automata together, or construct patterns which may have a run-time
dependency on particular computations or input data.

4.6 Collecting submatch data

We frequently want our patterns to do more than simply recognise
trees, reporting only a “yes” or a “no.” In many cases, we want to
use our patterns to select indicated parts of a tree. One mechanism
for doing so is to add elements to the pattern language for mark-
ing components of a tree that match particular pieces of a pattern.
On a successful match, the selected sub-trees are then returned to
the programmer as a result. String regular expressions frequently
have similar kinds of support for picking out elements of a matched
string. Providing submatches in the pattern notation complicates
the implementation of the pattern matcher; in particular, the pattern
optimiser has to be careful not to optimize away subpatterns that
contain a submatch.

5 The trx language

The syntax of trx patterns takes the form of the familiar s-expression
and borrows extensively from the SRE regular-expression notation
introduced in scsh [19, 18]. The grammar is given in figure 2.

A regular-tree expression (or pattern) denotes a set of trees. A pat-
tern which is simply a literal, such as the number 5, is a pattern
matching only the leaf tree 5. Similarly, the pattern ’fred (or,
equivalently, (quote fred)) matches the leaf which is the sym-
bol fred.

The pattern (@ symbol rte ...) matches a tree whose root is la-
belled with symbol, and whose children match the rte sub-patterns.
When symbol doesn’t conflict with one of the pattern keywords, the
@ can be elided. A tree with an unlabelled root can be matched with
a (^ rte ...) pattern.

We introduce choice with the pattern (| rte ...) which matches
any tree matched by any of the rte subforms.

The pattern (any) matches any tree. We can write a match which
matches no tree with the empty-choice pattern (|). This is not
particularly useful for user-written patterns, but could be useful for
patterns produced mechanically, either from higher-level macros or
dynamically in response to program input.

The sequence operators *, + and ? match zero-or-more, one-or-
more and zero-or-one trees matching their subpattern, respectively.

of a well-formed legal program. The role of a little language is to
make the common cases easy; the role of a general purpose lan-
guage (such as our escapes to Scheme) is to make the rest of the
cases possible.

What makes regular-tree patterns interesting is recursion in the pat-
terns. This is introduced with the rec and letrec forms. The
pattern (rec ident rte) matches a tree that matches rte, with the
proviso that free references to ident in rte must recursively match
the pattern, as well. Thus we can describe a pattern that matches
binary trees whose internal nodes are labelled + and whose leaves
are 42 with the pattern

(rec t (| 42 (@ + t t)))

This would match any of the trees 42, (+ 42 42), (+ 42 (+ 42
42)), (+ (+ 42 42) 42) and so forth.

The letrec form allows mutual recursion by binding the pattern
identifiers in a recursive scope. We can also bind pattern identifiers
with simple lexical scope with the let form.

The (submatch rte) form lets us mark a part of a larger pattern
to indicate to the pattern matcher that, in the event of a complete
match, the sub-trees matching rte should be retained for later re-
trieval. Note that a single submatch can match more than a single
tree term. For instance, the patterns

(rec t (| 42 (@ + (submatch t) t)))
(@ + (* (submatch 42)))

would produce, upon a successful match, a variable number of sub-
matches depending on the height and width of the tree term. The
matcher produces a list of terms for any single submatch form, or-
dered according to the pre-order position of submatched terms in
the original tree. Thus for pattern

(rec t (| ,number? (submatch (@ + t t))))

and tree term (+ (+ 1 2) (+ 3 4)), the list of saved items for
the submatch will consist of every internal node in the source tree:

((+ (+ 1 2) (+ 3 4))
(+ 1 2)
(+ 3 4))

Finally, we can escape to general Scheme code in two different
ways. The pattern ,exp allows us to write a Scheme expression
providing a general predicate which accepts or rejects trees. Thus
we can change our sum-of-42s example above to be a sum tree for
general numbers with the pattern

(rec t (| ,number? (@ + t t)))

or a sum tree of even numbers with the pattern

(rec t (| ,(λ (x) (and (number? x)
(even? x)))

(@ + t t)))

The pattern ,@scheme-exp, allows us to write a Scheme expression
that itself evaluates to a trx pattern value, which is then plugged into
the enclosing pattern. This allows us to dynamically construct trx
patterns, instead of restricting them to patterns that are completely
fixed at compile time. (Consequently, this feature has major impli-
cations on the compile-time handling of patterns—when it is used,
we must do a kind of “partial evaluation” of the pattern, deferring
the processing of dynamic components to run time. Fortunately, we
can statically determine if a particular pattern uses this feature of
the language, and so only need defer such processing with patterns
that do so. So the extra overhead of dynamic pattern construction is
only invoked as needed, making it a pay-as-you-go feature.)
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Figure 2 Syntax of trx regular-tree expressions.
rte ::= literal | ’symbol ;Literal atom

| (@ symbol rte ...) ;Tree with root labelled symbol
| (symbol rte ...) ;As for @, when no ambiguity.
| (^ rte ...) ;Tree with unlabelled root
| (any) ;Matches any tree
| (| rte ...) ;Choice
| (* rte) ;Matches a sequence of [0,∞) rte’s
| (+ rte) ;Matches a sequence of [1,∞) rte’s
| (? rte) ;Matches a sequence of [0,1] rte’s
| (rec ident rte) ;Recursively defined pattern
| (let ((ident rte) ...) rte) ;Lexical pattern binding
| (let* ((ident rte) ...) rte) ;Lexical pattern binding
| (letrec ((ident rte) ...) rte) ;Pattern with mutual recursion
| ident ;Reference to pattern bound by rec, let or letrec
| (submatch rte) ;Matched subtree saved for subsequent retrieval
| ,scheme-exp ;General predicate
| ,@scheme-exp ;Dynamically computed tree automaton

ident ::= symbol
literal ::= number | string | boolean | char

As an example putting multiple components of the language to-
gether, a pattern which specifies the syntax of the Scheme let ex-
pression is

(@ let (^ (* (^ ,symbol? (any))))
(+ (any)))

or, with components of the pattern let-bound for clarity,

(let* ((binding (^ ,symbol? (any)))
(bindings (^ (* binding)))
(body (+ (any))))

(@ let bindings body))

Notice how the unlabelled-tree patterns are used to match each
(var exp) binding form as well as the list of these bindings. As
an exercise, you may wish to extend the pattern to handle named-
let forms used for iteration.

6 Static semantics

Our informal description of the trx language has glossed over a dis-
tinction between the language’s various constructs. While an oper-
ator such as @ produces a pattern that matches a tree, the *, + and
? operators produce patterns that match a sequence of trees. These
sequence or “forest” patterns can appear anywhere in the language
a tree pattern can appear, with the restriction that a complete, top-
level pattern cannot be a sequence pattern. We cannot encode this
directly in the grammar due to the presence of the pattern-binding
forms (let, letrec and rec)—there’s no way to design the gram-
mar to guarantee that a particular identifier reference is made to a
tree-pattern binding and not a forest-pattern binding. This is the sort
of restriction that one typically manages in the post-parse static-
semantics phase of a compiler, in a type-system-like manner. This
is exactly what we do. The macros that process tree patterns check
them to ensure that the top-level pattern has a “tree-pattern” type.
Similarly, because identifier references are resolved lexically, refer-
ences to unbound identifiers are checked for and rejected at macro-
expansion time.

7 Examples

At last, we present a set of examples which work to illustrate the ca-
pabilities of the trx language. We embed patterns into Scheme code
by means of the Scheme form (trx rte). This is a Scheme expres-
sion whose body rte is not Scheme code, but rather a trx regular-tree
pattern. The trx form produces a tree-automaton value which can
be passed to the trx-match pattern matcher. It is implemented as
a macro that compiles its pattern body to a tree automaton, repre-
sented with an abstract data type. More details of the implemen-
tation are given in the following section. The matcher function is
invoked as (trx-match pat s-exp), taking a tree automaton pat
(produced by a (trx rte) form), and a tree s-exp to which it should
be applied. It returns a non-false value for a successful match, and
#f otherwise.

Example 1 We begin with a set of Scheme expressions that con-
struct nested lists of numbers. The number leaves are matched us-
ing the Scheme number? procedure. The example demonstrates
escaped Scheme code and the use of the rec operator.

(let ((p (trx (rec q (| (cons q q)
(cons ,number? q)
nil)))))

(trx-match p ’(cons 1 nil)) ; match
(trx-match p ’(cons nil nil)) ; match
(trx-match p ’(cons (cons a nil) ; fail

(cons 1 nil))))

Example 2 A somewhat more interesting use of escapes to
Scheme code involves user input. The language is similar to the
first example, except that numbers must be divisible by the user-
specified divisor.

(let* ((i (read))
(idiv? (λ (n) (= (modulo n i) 0)))
(p (trx (rec q (| (cons q q)

(cons ,idiv? q)
nil)))))

(trx-match p ’(cons nil nil)) ; match
(trx-match p ’(cons (cons a nil) ; fail

(cons 1 nil))))
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Example 3 The purpose of this example is to illustrate the use of
the letrec construct. The pattern below matches any Scheme ex-
pression that consists solely of applications of + and * such that + is
never applied to a + expression, and vice versa. In other words, the
constructors must alternate within the tree. This example also illus-
trates the use of variable-arity constructors and labels that collide
with reserved keywords.

(let ((p (trx (letrec ((m (| n (@ * (* a))))
(a (| n (@ + (* m))))
(n ,number?))

(| m a)))))
(trx-match p ’(* 2 (+ 3 4))) ; match
(trx-match p ’(* 2 (* 3 4)))); fail

Example 4 We now consider a pattern for recognizing XML-like
data sets capturing data entered into an online purchase-order form.

(trx (order (date ,string?)
(shipto (name ,string?)

(address ,string?))
(? (comment ,string?))
(+ (item (part ,number?)

(quantity ,number?)
(price ,number?)))))

The pattern will match

(order (date "2004-06-11")
(shipto (name "Bill")

(address "1 Main Street"))
(comment "Please, hurry!")
(item (part 111)

(quantity 1)
(price 1.00))

(item (part 222)
(quantity 2)
(price 2.00)))

but not

(order (date "2004-06-11")
(comment "Please, hurry!")
(shipto (name "Bill")

(address "1 Main Street"))
(item (part 111)

(quantity 1)
(price 1.00))

(item (part 222)
(quantity 2)
(price 2.00)))

or

(order (date "2004-06-11")
(shipto (name "Bill")

(address "1 Main Street"))
(comment "Please, hurry!"))

Example 5 Building on the previous example, we illustrate how
the submatch operator can be used to transduce tree terms. Specif-

ically, we want to match a sequence of orders, but we also want
to add a free gift from the company to every order in the sequence
which includes two or more distinct items. We augment the pre-
vious definition of an order-matching pattern to match “sequence-
of-orders” datasets. Figure 3 shows how we can match a suitable
sequence of orders against this new pattern, alter submatched terms,
and reconstitute them into a new list of orders.

Example 6 As a final example of trx, figure 4 shows the gram-
mar of trx, expressed as a trx pattern. It’s not an accident that
this is so straightforward to encode: the long-standing conven-
tion s-expression language designers use for their syntax design2

is exactly the labelled-tree model processed by tree automata. So
this example gives away one of the elements of our development
agenda. We are interested in the use of trx to provide more precise
syntax specification and error-checking for the kinds of languages
we like: the s-expression-based ones.

8 Implementation

We have implemented the trx system as a module in the scsh
Scheme environment [19]. The code is fairly portable; its most
significant element of non-portability is its use of a non-R5RS low-
level macro system. Our implementation can be subdivided into
following components:

• A macro embedding applications of the trx notation into
Scheme forms. Basically, the macro simply interfaces the trx
compiler to the underlying Scheme compiler.

• A set of Scheme data-type definitions encoding the abstract
syntax of the trx language as well as the resulting automata
values. This establishes a set of ADTs around which process-
ing of regular-tree patterns takes place.

• A pair of Scheme procedures for parsing tree patterns from
their s-expression concrete syntax into their representation us-
ing the internal AST structures; and for unparsing from an
AST value back to its external, printable s-expression repre-
sentation.

• A procedure that translates a trx AST into an automata value.
This is the heart of the trx compiler.

• Pattern-matching procedures. One of these procedures is
the pattern matcher; the other is a routine that extracts sub-
matched terms from a result of a successful match.

8.1 The trx macro

As mentioned above, the trx compiler is invoked on every occur-
rence of the trx macro in Scheme source code. In our imple-
mentation, we utilize Scheme 48’s low-level macro facility, the
Clinger/Rees “explicit renaming” macros [5], which allows both
full control of hygiene and permits macros to be written in general
Scheme code. The latter feature is particularly important, as the
trx machinery is fairly complex—at the complexity level of a small
compiler, as opposed to the kind of simple pattern-directed exten-
sions usually implemented via the R5RS high-level macro facility.
The macro simply invokes the rest of the machinery, which parses
the pattern into an AST, performs static-semantics checks, simpli-
fies the pattern, compiles it to a value in the automata ADT, and
finally renders the result automaton as a block of Scheme code.

2Barring certain regrettable exercises in syntactic excess, such
as the Common Lisp loop form.



28

Figure 3 A simple tree transducer.

(let ((pat (trx (order (date ,string?)
(shipto (name ,string?)

(address ,string?))
(? (comment ,string?))
(submatch (+ (item (part ,number?)

(quantity ,number?)
(price ,number?))))))))

(map (λ (order) (cond ((trx-match pat order) =>
(λ (match) (let ((items (trx-submatch match 1)))

(if (>= (length items) 2)
(cons ’(item (part 001)

(quantity 1)
(price 0))

items)
items))))

(else (error "Illegal order"))))
orders))

Figure 4 The trx grammar as a trx pattern.

(rec rte (| ,string? ,number? ,character? ; Literals
,(λ (x) (or (not x) (eq? x #t))) ; boolean?
(@ quote ,symbol?) ; ’symbol
(@ @ (* rte)) ; (@ rte ...)
(^ ,(λ (x) ; (symbol rte ...)

(and (symbol? x)
(not (member? x ’(quote @ ^ any or * + ?

rec let let* letrec submatch
unquote splicing-unquote)))))

(* rte))
(@ ^ (* rte)) ; (^ rte ...)
(@ any) ; (any)
(@ | (* rte)) ; (| rte ...)
(@ * rte) ; (* rte)
(@ + rte) ; (+ rte)
(@ ? rte) ; (? rte)
(@ rec ,symbol? rte) ; (rec id rte)
(@ let (^ (* (^ ,symbol? rte))) rte) ; (let ((id rte) ...) rte)
(@ letrec (^ (* (^ ,symbol? rte))) rte) ; (letrec ((id rte) ...) rte)
(@ submatch rte) ; (submatch rte)
(@ unquote (any)) ; ,scheme-exp
(@ unquote-splicing (any)))) ; ,@scheme-exp
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If the pattern contains dynamically-computed components, then
those parts of the pattern are not known at compile time. In these
cases, the macro expands into Scheme code that is essentially a
template for the AST—code which will compute the dynamic com-
ponents and then assemble the rest of the AST around them. This
AST-assembly code is then inserted into code which will invoke
the pattern compiler on the AST. Essentially, the macro arranges
for the compiler invocation it represents to be delayed to run time,
thus deferring production of the final automaton to run time. With
this exception of handling dynamic components, compiling a trx
pattern happens entirely at macro-expansion time (that is, compile
time). By run time, a source trx pattern has already been converted
to an equivalent automaton value.

8.2 Abstract syntax

Abstract syntax consists of a handful of record definitions that en-
code nodes of a trx abstract syntax tree (AST). Employing an AST
allows us to make the trx tool chain independent of the details of
our concrete notation; one could try out alternate syntaxes without
much work. Furthermore, processing that can be done on the AST
can be shared by distinct back-ends that might target different au-
tomata models or implementations of those automata.

The AST is defined using a set of record types. Some examples are

(define-record ast-sym-node
symbol ; Label of root
children ; Child patterns
private)

(define-record ast-seq-node
quantifier ; One of * + ?
child ; Child node
private)

(define-record ast-choice-node ; (| ...) node
children ; List of nodes
private)

(define-record ast-code-node ; ,<scheme> node
code ; The <scheme> exp (as an s-exp)
private)

Note that each of the records contains a special private field. This
field is used by the compiler to manage accounting information. For
instance, the private field tells us, among other things, whether a
node has already been visited by the compiler (which is not uncom-
mon due to prevalence of cycles).

Another interesting datatype that is there purely for the convenience
of the compiler developers is the AST “handle” node.

(define-record ast-handle
ref) ; a reference to actual AST

Handle nodes are useful when translating recursive patterns, i.e.,
patterns that begin with rec and letrec. When these patterns are
compiled it is common for one part of the pattern to refer to another
part of the pattern that has not been compiled yet. We address this
problem by referencing all recursive patterns through a handle node
which is first created without a reference field set and is later filled
with the reference to the actual abstract syntax tree.

8.3 Automata values

Once an AST is constructed, it must be converted to an automata
value. An automata value is represented with yet another record
datatype.

(define-record sfta
states ; Symbol list
alphabet ; Symbol list
labeled-rules
empty-rules
final-states)

The labelled rules are encoded with

(define-record label-rule
sym-name
in-state
out-state
final-state)

and empty rules with

(define-record empty-rule
final-state)

Note that the sfta record doesn’t have fields to support the full
requirements of the trx notation, such as dynamically-created au-
tomata, escapes to Scheme code, and submatches. We delegate
tracking of this information to another record datatype:

(define-record complex-fta
sfta ; Finite tree automaton
special-states ; State->inlined-code alist
submatch-states); Submatched states

The special-states field is an association list of states and sus-
pended lambda values that correspond to individuals chunks of
Scheme code inlined in the trx notation. The submatch-states
field is a list of states at which submatches are to be saved for later
retrieval.

Note that the simplified automata ADT permits multiple backends
for different models of execution. The one we have implemented
uses the automaton itself as a run-time value which is passed, along
with a subject tree, to a backtracking SFTA interpreter for execu-
tion, which proceeds in a top-down manner. One could consider,
alternatively, compiling an SFTA directly to Scheme code; this is
something we would like to do.

An earlier version of the system had support for both traditional
and simplified automata. The choice in the type of automata value
was guided by whether the source pattern included variable-arity
constructors. If it did, a simplified automaton would be produced;
otherwise, a traditional automaton would be produced by default.
Keeping traditional automata in the system allowed for the possi-
bility of “compiling away search” by expanding a non-deterministic
TFTA to a deterministic one, buying execution speed for the price
of extra compile time and potential state-space explosion. The im-
plementation left the choice of whether to search with a small non-
deterministic machine or do fast, non-backtracking execution with
an expanded deterministic one in the hands of the application pro-
grammer.

We subsequently dropped traditional automata as one of the alter-
native backend models of computation. (The factoring of the au-
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tomata ADT into the sfta and complex-fta records is, in fact, a
relic of this earlier implementation—both traditional and simplified
FTAs shared inlined-code and submatch annotations by means of
the common complex-fta record.) As mentioned in Section 3.2,
traditional automata are strictly less powerful than simplified tree
automata. Keeping two backends to the trx compiler did nothing
to expand the semantic power of the notation, while it did consid-
erably increase the complexity of our code. Simplifying the im-
plementation made it easier for us to focus on the design of the
language; we may revisit automata determinisation as an imple-
mentation technology at a later date.

8.4 Compilation

Thus far we have described the way the trx compiler is invoked
and the types of intermediate and final values it generates. We now
describe how these AST and automata ADT values are generated.

The source-level concrete-syntax pattern s-expression is parsed into
an AST with a simple recursive translation; the static semantics of
the AST are likewise checked with a simple recursive tree-walk that
“type checks” the identifier bindings and references.

Translation between ASTs and automata values is a bit more com-
plex. We provide a high-level description of the algorithm, which
generates a set of labelled and empty rules for an SFTA from a given
abstract-syntax tree.

In the case of a ast-sym-node, this entails generating a fresh state
that is the “out” state for the label, and a fresh state that is the “out”
state for the rightmost child of the AST node. We add empty transi-
tions leading to both of these states. We then obtain the label’s “in”
state by folding states, beginning with the rightmost child’s “out”
state, across the children nodes processing each one of the children
recursively. Given a label’s “out” and “in” states, we generate a
fresh final state and add the corresponding rule for that label.

When processing ast-seq-node nodes, we restrict the compiler
to generate only rules with the same “out” and “final” state. This
restriction is necessary to capture the fact that for patterns of the
form (* pattern), the final state after parsing one term matching
pattern is the same as the “out” state used in translating the term’s
left sibling. Translation of other AST datatypes is straightforward
and follows the same general template.

Macros must produce concrete s-expressions—that is, Scheme
source to be handed to the Scheme compiler. Automata values,
which are defined as records, do not qualify as such. As a final
step, then, the compiler translates the automaton, represented with
the ADT, into a Scheme expression describing the direct construc-
tion of that value, as a tree of calls to the record constructors. So the
trxmacro finally expands into Scheme code that, when executed at
run time, will construct the automaton (as an ADT) used to match
the pattern.

8.5 AST-to-AST optimizations

In addition to pattern-to-automaton translation, our compiler also
performs some simple optimizations on pattern ASTs. These opti-
mizations are beneficial because the reduced ASTs result in smaller
equivalent automata. Some example optimizations are:

• Propagating (any) matches
If an (any) match is encountered in one of the arms of a

choice clause, then the whole clause may be replaced with
an (any) node. This simplification can bubble up the tree.

• Propagating dead matches
A dead match (|) usually allows its containing form to be
reduced to a dead match, as well. This simplification also
bubbles up through the tree.

• Merging choice nodes
If (| ...) forms are nested, they can be flattened into a sin-
gle such form.

The presence of submatch forms in deleted code can allow an ob-
server to detect some of the transformations, so care must be taken
in these cases not to simplify away submatch forms that might bind
data in the original pattern.

8.6 Executing automata

Our implementation provides a single pattern matcher, the proce-
dure trx-match, that takes an tree automaton and an s-expression.
The result of a successful match is a match record that contains for
every submatch (in order of occurrence of the submatch clause in
the original pattern) a list of submatched terms. We provide a spe-
cial procedure (trx-submatch m i) for retrieval of submatched
information, where m is the match record, and i is the index of a
particular submatch form in the original pattern. Submatch forms
are assigned a match-record index in the top/down, left-to-right pre-
order of the pattern.

The implementation of trx-match is a simple SFTA interpreter,
which is a pretty direct transcription of the pseudocode of figure 1
into Scheme.

9 Related work

Trx closely follows the choices made in the design of rx low-level
macro and its associated sre regular-expression forms, originally
conceived for the scsh environment [18]. Similar high-level seman-
tic features, such as choice, repetition, submatches, and the inlin-
ing of Scheme code, have similar syntactic encodings in both lan-
guages. We were thus able to leverage the design work that went
into the sre system, and wel also hope that this will make it easier
for programmers familiar with the sre notation to read and write
trx patterns, mapping intuition gained from dealing with string-
matching patterns to problems in the completely different domain
of trees and their patterns.

Tree automata, which provide the foundation of trx’s semantics,
have enjoyed a consistent flow of research contributions over the
last three decades [20, 10, 8, 9]. A resurgence of interest in the
late 90s coincided with emergence of semi-structured and tree-
structured data, especially in reference to XML [1, 12, 2]. Inci-
dentally, the programming languages built to describe and manipu-
late tree-structured data have been consistently targeted at handling
XML [11, 7]. trx differentiates itself from these efforts by combin-
ing the benefits of a domain-specific language with the benefits of
being able to leverage the functionality of the host language. The
authors are not aware of another regular-tree pattern language that
is not a standalone domain-specific language.

While we have chosen to embed our little language within Scheme
due to the ease of inventing new constructs and translating them into
the host language, the functional-programming paradigm is equally
valuable to the parsing algorithm, its utility already recognized in
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the context of XML validation [13]. As evident from the descrip-
tion of the way tree automata process their input, the subsequent
application of automata rules to the top-level term and its subterms
is naturally recursive.

10 Future work

We are currently developing an SFTA-to-Scheme compiler that will
allow static trx patterns to be expanded directly into executable
Scheme code, rather than requiring an SFTA interpreter. Although
there is an existing SFTA-to-Scheme compiler [15], it operates on
a more restrictive language than trx. For instance, that language
does not handle patterns of the form (| (@ l1 ...) (@ l2 ...))
when the labels l1 and l2 are identical. We are currently investigat-
ing ways to overcome this limitation.

One clear limitation of trx is that it builds upon but a tiny fraction of
the research work available in the domain of tree automata, semi-
structured and tree-structured data, and XML processing. In the
future we would like to mine the designs of the existing Scheme-
based XML-processing tools SXML and SXSLT [14] to enhance
the feature set of trx. These systems already employ the functional-
programming paradigm to manipulate XML data and have a facility
for encoding XML data as s-expressions. Both of these features are
consistent with the design goals for trx.

We also wish to extend trx to incorporate functionality such as ML-
style pattern matching and richer functionality for tree matching
and transformation. For example, it would be very useful for certain
classes of tree structures (such as the mail-order structures given in
example 4), to have a pattern that matches, not a sequence of child
patterns occuring in a fixed order, but rather the set of child patterns
allowed to occur in any order. For example, we could specify that
an order node must have a date, shipto, optional comment, and item
child node—but that these children may occur in any order. This
would provide logarithmic compression of unordered-sequence pat-
terns, greatly simplifying these kinds of patterns. Some XML
pattern-matchers provide this kind of functionality; we’d like to add
it to the trx notation.

Finally, application of the notation to help write real programs will
provide the most valuable feedback on the design of the language,
exposing shortcomings and potential areas of extension. (In fact,
we’re already dissatisfied with the submatch facility and intend to
redesign it.) We look forward to gaining more experience with uses
of trx.

11 Conclusions

Now that the rest of the world has caught on to the benefits of work-
ing with semi-structured data with a fixed concrete representation,
the importance of tools that help operate on this kind of data is
only going to increase—it’s reasonable to assume that in the very
near future, a significant percentage of the world’s data is going
to be stored in XML format. The trx pattern language, or some
future revision of it, can help Scheme programmers describe and
operate on this data. Note that while our implementation of trx
provides for matching patterns against trees that come in the form
of s-expressions, neither the design nor the implementation is s-
expression specific. Using the notation and adapting our imple-
mentation to allow matching and transforming other kinds of la-
belled trees—such as XML—would not be difficult. Almost the
entire code base could be reused in a modular way. The implemen-
tor would only need to write a new SFTA interpreter (or compiler)
that allows SFTAs to operate upon the new tree structures.

Note also that, just as the Lisp community stole a 40-year march
on the rest of the world by adopting semi-structured data early,
we have other technologies that continue to bring advantage to
the Scheme-programming experience. Chief among these is the
ability of Scheme programmers to tightly integrate little languages
within Scheme by means of the powerful Scheme macro system.
This means that (1) domain-specific extensions can focus on their
domain-specific components without needing to re-invent the entire
wheel of a general-purpose programming language, and (2) differ-
ent components of a system written with different domain-specific
extensions can be closely coupled within the same program, rather
than needing to appear in two completely distinct programs written
in two completely distinct domain-specific languages.

This is exactly the story of trx—exploiting the domain-specific ex-
pressiveness of regular-tree patterns within the powerful, general-
purpose framework of the Scheme language.
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