
21

SchemeUnit and SchemeQL: Two Little Languages

Noel Welsh
LShift

Burbage House
83-85 Curtain Road

London, EC2A 3BS, UK

noel@lshift.net

Francisco Solsona
Universidad Nacional
Autónoma de México

Mexico City, Mexico 04510

solsona@acm.org

Ian Glover
Cambridge Positioning

Systems
62-64 Hills Road
Cambridge, UK

ian@manicai.net

ABSTRACT
We present two little languages implemented in Sheme:

ShemeUnit, a language for writing unit tests, and ShemeQL,

a language for manipulating relational databases. We dis-

uss their design and implementation and show how the fea-

tures of funtional languages in general, and Sheme in par-

tiular, ontribute to the ease of use and implementation of

our languages.

Keywords
Sheme, Little Language, SQL, Unit testing, ShemeQL

1. INTRODUCTION
The domain spei� language, or little language, is a power-

ful tehnique for inreasing programmer produtivity. Muh

work in domain spei� languages has been done in fun-

tional languages (e.g. [28, 13, 8℄). Our work is no di�erent

in this regard. Our ontribution is to fous on the interfae

of our languages and show how we an use the features of

funtional languages in general, and Sheme in partiular,

to improve the user experiene. We desribe little languages

for unit testing and relational database manipulation. The

two languages have been used by the authors and others in

real appliations, and the ode is available from

http://shematis.soureforge.net/

2. THE SCHEMEUNIT FRAMEWORK
Unit testing onerns testing individual elements of a pro-

gram in isolation. ShemeUnit is a framework for de�ning,

organizing, and exeuting unit tests written in the PLT di-

alet of Sheme[11℄. We drawn inspiration from two strands

of work: existing pratie in interative environments and

the development of unit testing frameworks following the

growth of Extreme Programming.

In an interative environment it is natural to write in a

\ode a little, test a little" yle: evaluating de�nitions and

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is grantedwithout fee
provided that copies are not made or distributed for profit orcommercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires priorspecific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 Noel Welsh, Francisco Solsona, and Ian Glover

then immediately testing them in the read-eval-print loop

(REPL). We take the simpliity and immediay of this y-

le as our model. By odifying these praties we preserve

the test ases beyond the running time of the interpreter

allowing the tests to be run again when ode hanges.

Unit testing is one of the ore praties of the Extreme Pro-

gramming[3℄ software development methodology. Unit test-

ing is not new to Extreme Programming but Extreme Pro-

gramming's emphasis on unit testing has spurred the devel-

opment of software frameworks for unit tests. The original

unit testing framework (SUnit) is written in SmallTalk[2℄.

Sine then unit testing frameworks have been written for

many languages[18℄. We draw inspiration from these frame-

works and �nd it enlightening to ompare the expressivity

of these frameworks with ShemeUnit. In partiular we will

ompare ShemeUnit to JUnit[4℄, an extremely popular unit

testing framework for the Java language (it has been down-

loaded over 340,000 times at the time of writing).

We start our disussion by larifying the goals of Sheme-

Unit. We then desribe the framework's design and show

how our goals have inuened the design. We follow with

a omparison of ShemeUnit and JUnit that illustrates how

the expressivity of Sheme leads to a leaner implementa-

tion and better user experiene. We �nish with a disussion

of related and future work.

2.1 Goals
We have three goals for ShemeUnit. Firstly we want to

remain as lose as possible to the \ode a little, test a little"

yle we desribed above. Seondly we want to support the

main testing patterns we enounter in pratie. Finally we

want to support user extensions to the testing framework.

Throughout this paper we shall use an example of simple

interative testing to illustrate our design. Suppose the user

is testing the invariane of write and read. The ode they

may exeute is given below:

(de�ne data (list 1 2 3 4))

(with-output-to-�le "test.dat"

(lambda () (write data)))

(with-input-from-�le "test.dat"

(lambda () (equal? data (read))))

(delete-�le "test.dat")

22

The programmer heks the test by inspeting the result of

the (equal? data (read)) expression. If the result is #t the

test has sueeded.

We shall show how this example is oded in our framework

and take the simpliity of the above example as our goal.

2.2 Core Design
The test is the ore type in our framework. A test is either

a test ase, whih is a single ation to test, or a test suite,

whih is a olletion of tests.

test �! test-ase j test-suite

test-ase �! name � ation

test-suite �! name � tests

tests �! listof test

The hierarhial arrangements of tests into suites helps the

programmer organize and maintain their tests.

We represent a test ation as a losure. Three ways spring

to mind to signal test suess or failure:

1. Indiate suess by returning a non-#f value and fail-

ure by returning #f.

2. Return a datatype indiating suess or failure and

additional information

3. Throw an exeption on failure and return normally for

suess

The �rst method has the advantage of simpliity but the dis-

advantage that we lose information about the ause of fail-

ure, so we disard it immediately. The other two methods

are equivalent in terms of the information they an return

(we an enode arbitrary information in the return value or

the exeption). We have several reasons for hoosing the

third option over the seond. Firstly we wish to ath ex-

eptions anyway to prevent an unexpeted error (i.e. ones

that we are not testing for) from halting the testing frame-

work. Seondly when using the seond method and testing

a sequene of expressions it is neessary to use ontinua-

tion passing style to propagate a test failure that ours in

an intermediate expression. In this ase we are simulating

exeptions! Therefore for simpliity of implementation and

use we hoose to throw an exeption to signal an error. We

also divide the types of exeption we ath into those we

ath as the result of a tested failure (whih we all fail-

ures) and those we ath due to untested failures (whih we

all errors).

We provide a run-test-ase funtion that takes a test-ase

and returns a test-result :

(run-test-ase test-ase)) test-result

test-result �! test-failure test-ase � failure-exn

j test-error test-ase � error-exn

j test-suess test-ase � result

Finally, the two funtions fold-test and fold-test-results make

it easy to walk over tests.

(fold-test test-olletor seed test)) seed

(fold-test-results result-olletor seed test)) seed

seed �! �

test-olletor �! (test �) �! �

result-olletor �! (test-result �) �! �

2.3 Testing Patterns
Our example in the ore framework is:

(make-test-ase

(assert binary-prediate atual expeted)

"write/read invariane"

(lambda ()

(let ((data (list 1 2 3 4)))

(dynami-wind

(lambda ()

(with-output-to-�le "test.dat"

(lambda () (write data))))

(lambda ()

(with-input-from-�le "test.dat"

(lambda ()

(let ((atual (read)))

(if (not (equal? atual data))

(raise

(make-exn:test:assertion

(string-append

"write/read invariane failed with "

(format "atual ~a" atual)

" and "

(format "expeted ~a" data))))

#t)))))

(lambda () (delete-�le "test.dat"))))))

Clearly we have lost the simpliity of the original REPL! By

adding ommon testing patterns to ShemeUnit we show

how we an regain this simpliity.

2.3.1 Assertions
Cheking atual output against expeted output is the most

ommon test pattern. We borrow the idea of assertion fun-

tions from JUnit. An assert funtion tests a ondition, rais-

ing a failure exeption if the ondition is false. The failure

exeption ontains the loation of the failed assertion, the

atual and expeted parameters, and an optional user spe-

i�ed message string.

The ore funtionality an be provided by a single funtion:

(assert binary-prediate atual expeted [message℄)

We know from experiene that it pays to provide assertions

for the most ommon ases, so ShemeUnit provides a li-

brary of assertions:

� (assert binary-prediate atual expeted [message℄)

� (assert-equal? atual expeted [message℄)

� (assert-eqv? atual expeted [message℄)

� (assert-eq? atual expeted [message℄)

� (assert-true atual [message℄)

23

� (assert-false atual [message℄)

� (assert-pred unary-prediate atual [message℄)

� (assert-exn exn-prediate thunk [message℄)

� (fail [message℄)

Assertions are de�ned using the de�ne-assertion maro:

(de�ne-assertion (name param . . .) expr . . .)

The de�ne-assertion maro expands into the de�nition of a

maro and a funtion

1

that takes the given parameters and

an optional message string. If the result of the expressions

is #f the assertion raises a failure exeption ontaining the

all the information given above.

The de�ne-assertion maro is exported so users an de�ne

their own domain-spei� assertions on par with those al-

ready provided. We hope over time to aumulate libraries

of speialized assertions.

2.3.2 State Management
Note that our example test uses state and hene requires

initialization and leanup ode. This is fairly ommon and

we would like to make is easier for the user to speify these

ations. Borrowing again from JUnit we all this ode setup

and teardown ations and we augment test-ase to optionally

inlude them. So

test-ase �! name � ation [� setup℄ [� teardown℄

2.3.3 Interface Enhancements
We use maros to add the repetitive lambda statements

around the ation, setup, and teardown expressions. We

also wrap the all to ation with alls to setup and tear-

down in the maro rather than requiring the test framework

to preform this ation.

Our example is now:

(let ((data (list 1 2 3 4)))

(make-test-ase "write/read invariane"

(with-input-from-�le "test.dat"

(lambda ()

(assert-equal? (read) data)))

(with-output-to-�le "test.dat"

(lambda () (write data)))

(delete-�le "test.dat")))

This ode is almost idential to the original example typed at

the REPL. We have ahieved our ease-of-use goal, and we

have done so by supporting testing patterns and allowing

user extensions to the testing framework.

1

Only maros an get loation information in PLT Sheme.

We de�ne the funtion variant as we have oasionally found

uses for higher order assertions. The funtion variant has a

� appended to its name.

Figure 1: The ShemeUnit graphial interfae

2.4 Interfaces
We provide textual and graphial interfaes to ShemeUnit.

An example run shows the user interfae in ation. The

following test suite

(test/text-ui

(make-test-suite "Example suite"

(make-test-ase "Will sueed"

(assert-equal? (+ 1 2) 3))

(make-test-ase "Will fail"

(assert-equal? (+ 1 1) 3))

(make-test-ase "Will ause error"

(assert-equal? (/ 1 0) 0))))

gives the output:

Error:

Will ause error

an error of type exn:appliation:divide-by-zero

ourred with message: "/: division by zero"

Failure:

Will fail

assert-equal? failed at: top-level 8:7

Inputs: <2> <3>

1 suess(es) 1 error(s) 1 failure(s)

The graphial interfae is still in development. When om-

plete it will provide soure level highlighting and allow navi-

gation to error loation using DrSheme. An example of the

urrent graphial interfae is shown in Figure 1.

2.5 SchemeUnit versus JUnit
It is instrutive to ompare ShemeUnit with the popular

JUnit test framework, as doing so serves to illustrate the

expressive advantage of ShemeUnit. Our disussion enters

on a basi example from [25℄ based on a telephone lass. The

Java ode is:

24

publi lass TelephoneNumberTests extends TestCase f

publi stati void main(String[℄ args) f

junit.textui.TestRunner.run(suite());

g

publi stati TestSuite suite() f

return new TestSuite(TelephoneNumberTests.lass);

g

publi TelephoneNumberTests(String testname) f

super(testname);

g

publi void testSimpleStringFormatting()

throws Exeption f

// Build a omplete phone number

TelephoneNumber number ->

new TelephoneNumber("612", "630",

"1063", "1623");

assertEquals("Bad string",

"(612) 630-1063 x1623",

number.formatNumber());

g

publi void testNullAreaCode()

throws Exeption f

// Build a phone number without area ode

TelephoneNumber number ->

new TelephoneNumber(null, "630",

"1063", "1623");

assertEquals("Bad string",

"630-1063 x1623",

number.formatNumber());

gg

A translation of this to the ShemeUnit syntax is

(require (lib "test.ss" "shemeunit")

(lib "text-ui.ss" "shemeunit"))

(test/text-ui

(make-test-suite "Telephone number tests"

(make-test-ase "Simple format"

(assert-equal? "(612) 630-1063 x1623"

(format-number

(make-number 612 630 1063 1623))

"Bad String"))

(make-test-ase "No area ode"

(assert-equal? "630-1063 x1623"

(format-number

(make-number (void) 630 1063 1623))

"Bad string"))))

There are several points to note about this example. One is

the amount of typing required for this short example. The

Java ode is far more verbose, most notably in the setup

ode. This is largely a result of the type delarations and

noise keywords (like return and new) required by Java. To

our eyes the Sheme ode is muh more elegant though we

reognize this is a subjetive judgment.

JUnit relies extensively on reetion. Test ases are de�ned

by pre�xing the method name with test. This is an elegant

solution to the problem that Java has no �rst lass repre-

sentation of funtions but an lead to problems: JUnit uses

a ustom lass loader that an interat unpreditably with

other Java ode that makes extensive use of reetion (e.g.

Java remote method alls). This makes testing diÆult in

these environments. There is no suh problem in Sheme.

In JUnit setup and teardown methods are similarly identi-

�ed by name and disovered by reetion. Again �rst lass

funtions redue the omplexity of the ShemeUnit frame-

work.

In general struturing the test suites by value rather than by

name makes for a simpler and more exible system. There

are fewer new onventions for the user to remember and

tests an be manipulated on the y.

2.6 Related and Future Work
SUnit has spawned a large and inreasing number of testing

frameworks of whih ShemeUnit is one. We shall briey

onsider those that are partiularly relevant to ShemeUnit.

HUnit[14℄, an implementation for the Haskell Language, is

a reent addition to the family. There are broad similarities

between HUnit and ShemeUnit. Both signal failure with

exeptions and both provide a number of onveniene asser-

tion funtions. HUnit reognizes the importane of interfae

and de�nes in�x operators that make test spei�ation eas-

ier. The ombination of lazy evaluation and in�x operators

ahieves a similar e�et to our maros. We briey illustrate

HUnit below, along with the equivalent ode in ShemeUnit:

test1 -> 3 ~->? (1 + 2)

tests -> TestList [TestLabel "Addition" test1℄

(de�ne tests

(make-test-suite

"All tests"

(make-test-ase "Addition" (assert -> 3 (+ 1 2)))))

LIFT[20℄, CLUnit[1℄ (Common Lisp) and CurlUnit[5℄ (Curl)

are Lisp dialet implementations of the SUnit framework.

All are broadly similar to ShemeUnit. Both LIFT and

CLUnit have some stateful features to ease interative de-

velopment of tests. De�ning a test in LIFT (with deftest)

impliitly reates a test suite to whih later tests (reated

with addtest) are automatially added. In CLUnit tests are

ategorized by name and stored in a global olletion. Tests

override existing tests with the same name and are removed

with the remove-test funtion. CurlUnit is a diret transla-

tion of JUnit to Curl so most of our earlier omments about

JUnit apply to CurlUnit.

The FORT[9℄ framework, implemented in O'Caml, takes a

di�erent approah to the SUnit family. Test results take

one of seven values inluding unexpeted suess, expeted

failure, untested, and unresolved in addition to the more

usual pass and fail. Test results and returned by the normal

funtion return mehanism so we envisage some diÆulty

in onstruting a single test ase ontaining multiple test

expressions. The multitude of test results is an interesting

idea but we have yet to enounter a situation where they

are neessary. Laking a lear need we favor simpliity and

stik with our three result types.

25

As the Extreme Programming ommunity evolved from the

design pattern ommunity it is no surprise that testing pat-

terns[23℄[10℄ have been developed. We intend to analyze

these patterns and see how ShemeUnit an provide diret

support for them.

A more advaned approah is to generate tests from spei-

�ations (e.g. [6℄). This approah naturally leads to model

hekers like ACL2[19℄ and SPIN[15℄ that prove orretness.

This is a powerful approah, though quite a leap from our

simple system.

ShemeUnit only targets unit tests. In future we wish to

target funtional (whole system) testing, and testing of non-

funtional requirements suh as performane. We are also

aim to extend ShemeUnit to support domain spei� fun-

tionality suh as web site testing.

3. THE SCHEMEQL QUERY LANGUAGE
The International Standard Database Language[17℄ (SQL

1992, SQL'92 or just SQL) is a delarative language for

manipulating data in database manager systems (DBMS).

SQL is the standard interfae to relational databases and

is implemented by all major (and most minor) DBMSs.

ShemeQL integrates a database manipulation language into

the Sheme language o�ering an alternative to raw SQL.

Nowadays most database programmers already know SQL,

and ShemeQL is designed to o�er a gentle slope[16℄ from

existing SQL knowledge to the higher level abstrations of-

fered by ShemeQL.

We start by disussing the limitation of embedded SQL and

why an alternative is desirable. We then desribe the design

and implementation of ShemeQL. We follow with an ex-

tended example that shows how ShemeQL builds on SQL

but provides extended funtionality that makes program-

ming in ShemeQL easier than SQL. We �nish with a dis-

ussion of related and future work.

3.1 The Limitations of Embedded SQL
The traditional approah to mixing SQL with another lan-

guage is to embed the SQL as text strings. Even supposedly

modern languages like Java [12℄ ontinue this tradition. The

disadvantages of this approah are:

� SQL statements are not heked until exeution time.

It is easy to make grammatial or type errors when

embedding SQL. For example, forgetting to inlude a

spae when onatenating two strings is a ommon er-

ror. Similarly one an write a SQL statement that uses

SQL onstruts where they aren't allowed, or uses the

wrong type for arguments to SQL funtions and so on.

All these errors will ause exeution time exeptions

that may a�et end users, whereas ompilation time

exeptions would have been aught and dealt with by

the programmer.

� SQL statements an not be manipulated like host lan-

guage statements. Exept by using rude text pro-

essing one annot programatialy ompose, abstrat,

and re�ne SQL statements. Hene ode quality and

programmer produtivity su�er when using embedded

SQL

If SQL statements were �rst lass members of the program-

ming language we ould use our existing tools and language

onstruts to work with them, avoiding the problems given

above.

3.2 The SchemeQL Design: a better SQL
ShemeQL embeds in Sheme a little language for reating

and manipulating SQL queries. ShemeQL allows omplex

strutured statements to be treated as �rst lass itizens,

thus onsiderably raising the level of abstration a program-

mer an use.

The ShemeQL grammar is very shemish while following

losely, in spirit, the SQL grammar. This eases the imple-

mentation as SQL is a omplex mix between the relational

algebra and the relational alulus, but more importantly

allows the programmer to use their existing knowledge of

basi SQL onstrutions and programming in Sheme. Fur-

thermore, by making ShemeQL a set of syntati exten-

sions and proedures we an onentrate on the design of

our little language, while retaining the whole power of a

real programming language, Sheme, following the steps of

other little languages [28℄, and [8℄.

SQL statements are divided into three main groups:

� Seletion (SELECT)

� Modi�ation (INSERT, UPDATE, and DELETE)

� Data de�nition (CREATE TABLE)

Seletion (aka projetion) statements produe a result set.

Modi�ation statements return a natural number represent-

ing the number of rows a�eted by the exeution of the

statement. Data de�nition statements are only interesting

for their side e�ets, suh as reating a new table or view in

the database.

ShemeQL has the same logial division, with the following

di�erenes: result sets are represented by ursors, a lazy

stream of rows (whih basially allows the programmer to

work with one row at the time), and instead of having a

one to one mapping from SQL statements to Sheme pro-

edures, we have a set of proedures to mimi the work of

a single SQL statement. This simpli�es the onstrution,

ombination, and re�nement of statements. For instane,

the full power of the SQL SELECT statement is ahieved

by the appropriate ombination of several ShemeQL forms.

Basi seletion in ShemeQL follows this grammar:

seletion ::= (query <exp>)

| (query ((LITERAL <exp>)))

| (query <ol-spe> <table-spe>)

| (query <ol-spe> <table-spe>

<pred-spe>)

<exp> ::= string-or-symbol

26

(passed verbatim to the DBMS)

<ol-spe> ::= ALL | (<olumn> ...)

<olumn> ::= string-or-symbol | Number

| (<table> string-or-symbol)

| (AS <olumn> string-or-symbol)

| (LITERAL <exp>)

<table-spe> ::= <table>

| (<ation> <table-spe> <table-spe>)

<table> ::= string-or-symbol

<ation> ::= ALIAS | INNERJOIN | STRAIGHTJOIN

| NATURALLEFTJOIN

<pred-spe> ::= (<op> <ol-spe> <ol-spe-or-value>)

| ([AND|OR|NOT℄ <pred-spe> ...)

<op> ::= < | <= | > | >= | = | <>

| Any DBMS defined binary operator

<ol-spe-or-value> ::= <ol-spe>

| Any value suitable for omparison

It is important to note, that the subforms in query, and

in most forms in ShemeQL for that matter, are impliitly

bakquoted. Thus, (query ALL ,(f x)) means \selet every-

thing from the table, or tables returned by the appliation

of Sheme proedure f, to the Sheme variable x".

3.2.1 More on Selection, and the SchemeQL Times
The query proedure alone does not provide all the fun-

tionality a programmer may want when seleting data from

a database, and for a good reason: it would be as om-

plex as the SQL's SELECT statement. Instead of o�ering a

muh too omplex form, ShemeQL provides a set of forms,

and proedures to speialized, ompose, and otherwise han-

dle seletions. These forms are: query, distint!, group-by!,

order-by!, having!, limit!, union, interset, and di�erene.

<seletion> ::= (distint! <seletion>)

| (group-by! <seletion> <limit-ol>)

| ... the other forms

<limit-ol> ::= ([ASC|DESC℄ <ol-spe>) | <ol-spe>

The syntax of the rest of the forms is just minor variations

of that given above.

The reader may wonder what a ShemeQL seletion exatly

does. A seletion in ShemeQL is an internal Sheme stru-

ture, that holds the information provided thus far to perform

the seletion, and that is why you an ontinue speializing

it.

(query param . . .)) query-strut

This is what we alled the ShemeQL ompilation time, for

it allows us to perform basi stati heking, based only on

the information already provided to perform the seletion.

Only when shemeql-exeute is alled is the seletion is per-

formed and a result set (also alled a ursor in ShemeQL)

is returned.

(shemeql-exeute shemeql-strut [onn℄)) ursor

This is the ShemeQL exeution time. The same senario

repeats itself for the data modi�ation and data de�nition

forms in ShemeQL.

Sine sometimes we want to immediately exeute a form,

ShemeQL provides some useful shorthands for some forms

that ombine the generation of the internal strutures and

their exeution. Here are some suh forms that we will use

later:

(diret-query onn param . . .)) ursor

(query-with-urrent-onnetion param . . .)) ursor

(query/ param . . .)) ursor

where onn is an open onnetion to a DBMS, whih is re-

ated by a all to the ShemeQL form onnet-to-database,

and param ... are exatly those parameters valid for query.

3.2.2 SchemeQL Cursors
SQL result sets an be seen as tuples that form a table.

ShemeQL ursors are pairs of values, (row promise), where

row is a list representing the �rst tuple in the result set, and

promise is a ursor holding a promise (that has to be fored)

to return the rest of the tuples in the result set.

ursor ! row � promise

row ! listof any

A library to work with ursors is provided as part of ShemeQL.

Programmers most likely will use the following basi proe-

dures to work with ursors:

� (ursor-ar ursor): returns the �rst tuple in ursor.

� (ursor-dr ursor): returns the rest of ursor, another

ursor, similar to the original only that the next ele-

ment, if any, is on the ursor-ar position of the re-

turned ursor.

� (ursor-null? ursor): #t i� ursor is the empty ursor.

� (ursor-map pro ursor): returns another ursor, whose

�rst element is the appliation of pro to the �rst el-

ement in ursor, and whose seond element holds the

promise to apply pro to the rest of ursor.

� (ursor->list ursor N): returns a list ontaining the

�rst N, or less if there are not enough, rows in ursor.

� (�nite-ursor->list ursor): returns a list ontaining

all the elements of ursor.

It is worth noting that ursors in SQL are a ompletely

di�erent onept, and are used to retrieve a small number of

rows at a time out of a larger query. ShemeQL also provides

support for them, through the proedures open-ursor, whih

reeives a query and optional information to reate di�erent

kinds

2

of ursors, the initial size of the set, and the starting

row. Two other proedures work on the result of open-ursor:

roll-ursor!, that hanges the orientation of the given ursor,

and lose-ursor!, whih loses the given ursor.

One important feature of this way of handling SQL ur-

sors is that the resulting set of tuples is represented as an

2

Kinds as those de�ned by Open Database Connetivity

(ODBC) [27℄, whih are: FORWARD ONLY, STATIC, KEYSET

DRIVEN, and DYNAMIC.

27

ShemeQL ursor, and thus an be handled in the same way

as the result of regular queries. We will not go into more

detail here for spae reasons.

3.2.3 The Rest of SQL
Most of the \usual" SQL funtionality is already part of

ShemeQL. Transations, for instane, an be handled in

two di�erent ways. The �rst one, is by using the (transa-

tion exp . . .) form whih exeutes all the expressions given

in order, and if no exeption ours then it ommits the

blok, otherwise, it sends a rollbak to the DBMS, and pass

along the exeption. The transation form tries to set the

transation isolation level to the highest possible, ideally to

serializable level.

The seond way allows the programmer to selet the iso-

lation level required and is represented by two proedures:

begin-transation and end-transation. The begin-transation

form swithes to manual ommit mode, and sets the isola-

tion level to the highest supported by the DBMS, or to the

requested one if given. Then end-transation either ommits

or rolls bak the transation blok, depending on the argu-

ment supplied by the programmer. The transation form is

more sheme-like, sine the other two an lead to the om-

mon error of opening a transation, exeuting a blok of

expressions, and never losing the transation again.

ShemeQL supports basi user and table management, and

onnetion management that allows simultaneous onne-

tions to di�erent databases. Even non-standard, yet very

useful and regularly employed, SQL extensions suh as CRE-

ATE DATABASE and USE DATABASE are supported, though

no SQL standard proedure depends internally on these ex-

tensions.

3.3 The SchemeQL Implementation
ShemeQL is layered upon SrPersist

3

and takes full advan-

tage of SrPersist's knowledge of the partiular DBMS in use.

SrPersist provides a safety hek for every SQL statement

sent to the DBMS, in addition to the ShemeQL's error de-

tetion, and thus we an o�er a hierarhial approah to

error handling.

ShemeQL together with SrPersist is a highly portable li-

brary sine ODBC is the de fato standard for database

onnetivity and is widely supported (although it should

be noted that many ODBC drivers have di�erent levels of

onformane

4

). In this regard ShemeQL o�ers two spei�

and ruial bene�ts. Firstly it hides the tedious and ugly

details of the ODBC onformane levels from the Sheme

programmer. Seondly, and more importantly, it removes

the omplexity of standard ODBC manipulation, whih is

probably the biggest drawbak of ODBC when ompared to

other DBMS drivers.

3

SrPersist is an ODBC library for PLT Sheme. More in-

formation on SrPersist an be found at:

http://www.plt-sheme.org/software/srpersist/

4

At the time of writing there have been several major re-

leases, from 1.0 through 3.51, and SrPersist supports them

all.

Even though, for portability reasons, we use SrPersist, ShemeQL

allows the use of di�erent DBMS drivers. ODBC drivers are

known to do extensive error heking, and so it is possible

to have a database spei� driver outperforming a generi

ODBC driver. SQL support and basi error heking faili-

ties are independent of the driver in use.

3.4 SchemeQL in action
All examples below are based around the following database

struture. Suppose you own a software ompany, and the

following tables are a snippet of your employees database.

personnel salaries

id name lid

1 Noel 1

2 Ian 1

3 Franiso 1

4 Simon 2

5 James 3

6 Brian 4

7 Dennis 4

id salary

1 30'000

2 30'000

3 30'000

4 30'000

5 45'000

6 45'000

7 45'000

languages

id lang

1 Sheme

2 Haskell

3 Java

4 C

We start with the most ommon sort of query, whih is a

SELECT statement suh as the following statement to get

the names of all the programmers:

SELECT name FROM personnel

In ShemeQL this query has almost exatly the same stru-

ture as its SQL equivalent:

(query (name) personnel)

Now suppose we wish to get all the ids of those employees

who program in Sheme. In SQL we'd write:

SELECT personnel.id

FROM personnel, languages

WHERE personnel.lid = languages.id

AND languages.lang = 'Sheme'

In ShemeQL we write

(query ((personnel id))

(personnel languages)

((= (personnel lid) (languages id))

(= (languages lang) "'Sheme'")))

Again the two queries have a very similar struture. Now

suppose we want to get all Java programmers. Immediately

we see an opportunity for ode reuse if we parameterize the

above queries on the language. This is trivial in ShemeQL

as we an use abstration failities provided by Sheme:

28

(de�ne (programmers language)

(query ((personnel id))

(personnel languages)

((= (personnel lid) (languages id))

(= (languages lang) ,language))))

Remember that most subforms in ShemeQL are bakquoted.

There is no way to do this in standard SQL, though individ-

ual DBMSs may provide parameterized queries. To do this

in embedded SQL we ould append strings:

(de�ne (programmers language)

(string-append

"SELECT id "

"FROM personnel, languages"

"WHERE personnel.lid = languages.lid "

"AND languages.lang = " language))

We note that this method is error-prone as it is easy, for

example, to forget to inlude a spae between strings as

we have done above (between languages, and the keyword

WHERE).

Now suppose you want to get the ids of all C programmers

who are earning 45'000. This is the intersetion of all C

programmers, whih we already know how to do, with all

programmers who are earning 45'000. In SQL we an write:

SELECT id

FROM personnel, languages

WHERE personnel.lid = languages.lid

AND languages.lang = 'C'

INTERSECT (SELECT id

FROM salaries

WHERE salary = '45000')

In ShemeQL we an form the two sets separately and then

perform the intersetion:

(let ((-programmers (programmers "'C'"))

(high-earners (query (id) (salaries) (= salary "45000"))))

(interset -programmers high-earners))

Notie how we have reused the programmers funtion de-

�ned above and then omposed a query from parts. We

annot do this in SQL.

That does it! Impressed by the produtivity of your fun-

tional programmers you deide to �re all the Java and C

programmers and use the extra money to give a raise to

your �ne Sheme programmers (you �nd the Haskell pro-

grammers produtive but inexpliably lazy). Coinidentally

this also give us an opportunity to show further query om-

position and ursor handling in ShemeQL.

First we de�ne the sets of interest: the Shemers, who are

getting a raise, the Haskell programmers, who just stay as

they are, and everyone else, who are getting the opportunity

to explore other interests.

(de�ne shemers (programmers "'Sheme'"))

(de�ne haskellers (programmers "'Haskell'"))

(de�ne �red

(let ((all (query (id) personnel)))

(shemeql-exeute

(di�erene all (union shemers haskellers)))))

Now all programmer who have been �red are removed from

the salaries table:

(ursor-map

(lambda (programmer)

(let ((id (ar programmer)))

(delete/ salaries (= id ,id))))

(result-ursor �red))

Finally, to give the Sheme programmers a raise:

(ursor-map

(lambda (id)

(update/ salaries

((salary (LITERAL "salary � 2")))

(= id ,(ar id))))

(result-ursor (shemeql-exeute shemers)))

The above operations annot be performed in pure SQL as

query results annot be used as the input to modi�ation

statements. We give below equivalent statements to perform

the above ations. Where an ation requires repetition of a

number of very similar statements (eg, when DELETEing

the imperative programmers) we only give an example.

SELECT personnel.id

FROM personnel

EXCEPT (SELECT personnel.id

FROM personnel,languages

WHERE personnel.lid = languages.lid

AND languages.lang = 'Sheme'

UNION

SELECT personnel.id

FROM personnel,languages

WHERE personnel.lid = languages.lid

AND languages.lang = 'Haskell');

DELETE FROM salaries

WHERE id = 4;

SELECT personnel.id

FROM personnel

INTERSECT (SELECT personnel.id

FROM personnel,languages

WHERE personnel.lid = languages.lid

AND languages.lang = 'Sheme');

UPDATE salaries

SET salary = salary � 2

WHERE id = 1;

3.5 Related and Future Work
Haskell/DB, a ompiler embedded in Haskell that dynami-

ally generates SQL queries, was developed as an instane of

the more general design pattern for embedding lient-server

style servies into Haskell detailed in[22℄. Some of the ben-

e�ts this tehnique o�ers are:

� Programmers need to know only one language,

29

� it allows language extensions in the form of libraries

to be presented,

� it is possible to impose spei� typing rules,

� integration with other domain spei� libraries (e.g.

CGI, mail) is possible, and �nally

� this approah o�ers a strategi advantage, for it em-

powers programmers to use the language infrastru-

ture, suh as the module, and type systems.

ShemeQL has all of these bene�ts exept for stati typing.

The implementation of Haskell/DB, presented in[22℄ uses

AtiveX Data Objets (ADO) to onnet to the DBMS. In

this regard Haskell/DB is limited to the Windows platform.

ShemeQL does not share this limitation as it uses SrPersist,

whih an interat with any ODBC driver.

Our approah is to de�ne a limited domain spei� language

that an be translated into SQL. Another approah is to

expand the database query language into a full programming

language[29℄. This approah has many bene�ts but requires

the underlying DBMS to hange.

It is lear that strutured data is taking over. The Exten-

sible Markup Language [26℄ (XML) is now onsidered the

universal format for strutured douments and data on the

Web. With XML arises the need for eÆient query lan-

guages to exploit strutured data. XML Query [24℄ is a

working group aiming to reate a set of query failities to

extrat data from XML, or viewing XML �les as databases.

Unfortunately there is not yet any diret point of omparison

between XML and urrent database tehnology. This will

remain one of the most interesting topis of researh in the

years to ome. Whether or not a language like ShemeQL

will be able to enter the XML realm is a question we annot

answer yet.

In the immediate future we will be adding support for spe-

i� DBMS drivers and SQL dialets (e.g. Orale, Post-

greSQL, et.). We will also attempt to standardize the

ShemeQL syntax as a Sheme Request for Implementa-

tion[21℄ (SRFI).

4. SCHEMEUNIT AND SCHEMEQL
ShemeUnit and ShemeQL have both been designed with

a `gentle-slope' philosophy: start with an already familiar

base and then build additional funtionality as independent

omponents on that base. In ShemeUnit this is evident in

the way test ode mimis the \ode a little, test a little"

yle and adds failities to organize and rerun tests. In

ShemeQL the starting point is the SQL SELECT statement

upon whih the query maro is modeled. The ombinators

interset, di�erene and so on are then introdued as ways of

modifying the basi query.

ShemeUnit and ShemeQL both take advantage of Sheme's

maro failities to present a leaner interfae to the user. In

both languages maros are used to avoid repetitious lambda

statements. In ShemeUnit this is in the reation of test

ases. In ShemeQL this is in ursor reation. Maros are

also used for other purposes: in ShemeUnit to allow user-

extensions via the de�ne-assertion maro and in ShemeQL

to provide impliit bakquoting on forms. These simple uses

of maros go a long way to improving the user experiene.

ShemeUnit is used extensively to test itself and ShemeQL.

5. CONCLUSIONS
A language is a user interfae just like a graphial interfae

and deserves as muh attention from the language designer

as a GUI would get from it's designer.

We have desribed ShemeUnit, a little language for writing

tests in Sheme, and have illustrated how we have used the

features of funtional languages in general, and Sheme in

partiular, to simplify the interfae. Via omparison with

the \ode a little, test a little" yle and the JUnit frame-

work we have shown that ShemeUnit ahieves an admirable

level of simpliity without sari�ing expressive power.

ShemeQL, our little language for database interation, has

been shown to be a feasible alternative to embedded SQL.

By building on the programmer's knowledge of SQL and

extending it with modular ombinators we ahieve tighter

integration with the Sheme language, a better, more mod-

ular, parameterization of SQL statements and improved ex-

pressibility and abstration.

PLT Sheme, the host language for both our little languages

gives us a ertain number of extra, and free advantages that

makes them usable, through its DrSheme programming en-

vironment[11℄: a syntax-sensitive editor, a syntax heker,

an stepper, and interation with other libraries, and plugins.

� Sine our little languages onsists entirely of tree-struture

expressions, the editor's features are inherited. Users

only needs to add the keywords in our little languages

to DrSheme (to have them indented appropriately.)

� No modi�ation is needed to work with the syntax

heker, and the stepper sine these two work trans-

parently over proedures, and maros.

� Sine all of the host language is available to users, a

program an load, or enable a ertain number of li-

braries, plugins, or other embedded little languages as

needed with no extra fuss.

The only extra advantage we are not exploiting is the va-

lidity heking available through the MrFlow omponent of

DrSheme though it should not be hard to expand the on-

strutions of our little languages to type de�nitions, as in [8℄.

Finally we note that our language evaluation has been quali-

tative; based on our experienes using the languages in ques-

tion. We are aware of some work in quantitative evalua-

tion[7℄ and this researh will ontribute to a better under-

standing of what makes good language design.

6. ACKNOWLEDGMENTS
We are indebted to the following individuals:

30

Ryan Culpepper, who reated the graphial interfae to Sheme-

Unit and has ontributed greatly to its design.

Paul Stekler, Shriram Krishnamurthi, Matt Jadud, MJ Ray

and the anonymous reviewers who o�ered omments on the

draft versions of this paper.

7. REFERENCES
[1℄ F. A. Adrian. Clunit.

http://www.anar.org/CLUnit/dos/CLUnit.html,

2002.

[2℄ K. Bek. Kent Bek's Guide to Better Smalltalk,

hapter 21. SIGS Referene Library. Cambridge

University Press, 1999.

http://www.xprogramming.om/testfram.htm.

[3℄ K. Bek. Extreme Programming Explained.

Addison-Wesley, 2000.

[4℄ K. Bek and E. Gamma. Test infeted: Programmers

love writing tests. Java Report, 3(7), July 1998.

[5℄ J. Beekmann. Curlunit.

http://urlunit.soureforge.net/, 2002.

[6℄ Y. Cheon and G. T. Leavens. A simple and pratial

approah to unit testing: The jml and junit way.

Tehnial Report 01-12, Department of Computer

Siene, Iowa State University, November 2001.

[7℄ S. Clarke. Evaluating a new programming language.

In G. Kadoda, editor, Proeeding of the 13th

Workshop of the Psyhology of Programming Interest

Group, volume 13, April 2001.

[8℄ J. Clements, P. Graunke, S. Krishnamurthi, and

M. Felleisen. Little languages and their programming

environments. In Proeedings of the Monterey

Workshop, 2001.

[9℄ P. Doane. Fort: Framework for o'aml regression

testing. http://www.soureforge.net/projets/fort,

2002.

[10℄ M. Feathers. The `self'-shunt unit testing pattern.

http://www.objetmentor.om/-

resoures/artiles/SelfShunPtrn.pdf,

2001.

[11℄ R. Findler, J. Clements, C. Flanagan,

S. Krishnamurthi, P. Stekler, and M. Felleisen.

Drsheme: A programming environment for sheme.

Journal of Funtional Programming, 2001.

[12℄ M. Fisher, R. Cattell, G. Hamilton, S. White, and

M. Hapner. JDBC API, Tutorial, and Referene,

Seond Edition: Universal Data Aess for the Java 2

Platform. The Java Series. Addison-Wesley Longman,

1999.

[13℄ P. Graham. On Lisp. Prentie Hall, 1993.

[14℄ D. Herington. Hunit. http://hunit.soureforge.net/,

2002.

[15℄ G. J. Holzmann. The model heker spin. IEEE

Transations on Software Engineering, 23(5), May

1997.

[16℄ M. Hostetter, D. Kranz, C. Seed, C. Terman, and

S. Ward. Curl: A gentle slope language for the web.

World Wide Web Journal, II(2), 1997.

http://www.w3j.om/6/.

[17℄ Database language sql. International Organisation for

Standardization (ISO), 1992.

[18℄ R. Je�eries. Software downloads.

http://www.xprogramming.om/software.html.

[19℄ M. Kaufmann, P. Manolios, and J. S. Moore, editors.

Computer-Aided Reasoning: ACL2 Case Studies.

Kluwer Aademi Publishers, June 2000.

[20℄ G. King. Lift - the lisp framework for testing.

Tehnial report, University of Massahusetts, 2001.

[21℄ S. Krishnamurthi, D. Mason, and M. Sperber. Sheme

request for implementation. http://sr�.shemers.org/,

1998.

[22℄ D. Leijen and E. Meijer. Domain spei� embedded

ompilers. In 2nd USENIX Conferene on

Domain-Spei� Languages (DSL). USENIX, Otober

1999.

[23℄ T. Makinnon, S. Freeman, and P. Craig.

Endo-testing: Unit testing with mok objets. In

G. Sui and M. Marhesi, editors, Extreme

Programming Examined. Addison-Wesley, 2001.

[24℄ M. Marhiori. Xml query.

http://www.w3.org/XML/Query, 2000.

[25℄ M. T. Nygard and T. Karsjens. Test infet your

enterprise javabeans. JavaWorld, May 2000.

[26℄ L. Quin. Extensible markup language (xml).

http://www.w3.org/XML/, 1997.

[27℄ R. E. Sanders. ODBC 3.5 developer's guide.

MGraw-Hill, 1998.

[28℄ O. Shivers. A universal sripting framework, or

lambda: The ultimate \little language". In J. Ja�ar

and R. H. C. Yap, editors, Conurreny and

Parallelism: Programming, Networking, and Seurity,

volume 1179 of Leture Notes in Computer Siene,

pages 254{265. Springer, 1996.

[29℄ V. Tennen, P. Buneman, and S. Naqvi. Strutural

reursion as a query language. In Proeedings of 3rd

International Workshop on Database Programming

Languages, 1991.

http://db.is.upenn.edu/Publiations/.

