
21

SchemeUnit and SchemeQL: Two Little Languages

Noel Welsh
LShift

Burbage House
83-85 Curtain Road

London, EC2A 3BS, UK

noel@lshift.net

Francisco Solsona
Universidad Nacional
Autónoma de México

Mexico City, Mexico 04510

solsona@acm.org

Ian Glover
Cambridge Positioning

Systems
62-64 Hills Road
Cambridge, UK

ian@manicai.net

ABSTRACT
We present two little languages implemented in S
heme:

S
hemeUnit, a language for writing unit tests, and S
hemeQL,

a language for manipulating relational databases. We dis-


uss their design and implementation and show how the fea-

tures of fun
tional languages in general, and S
heme in par-

ti
ular, 
ontribute to the ease of use and implementation of

our languages.

Keywords
S
heme, Little Language, SQL, Unit testing, S
hemeQL

1. INTRODUCTION
The domain spe
i�
 language, or little language, is a power-

ful te
hnique for in
reasing programmer produ
tivity. Mu
h

work in domain spe
i�
 languages has been done in fun
-

tional languages (e.g. [28, 13, 8℄). Our work is no di�erent

in this regard. Our 
ontribution is to fo
us on the interfa
e

of our languages and show how we 
an use the features of

fun
tional languages in general, and S
heme in parti
ular,

to improve the user experien
e. We des
ribe little languages

for unit testing and relational database manipulation. The

two languages have been used by the authors and others in

real appli
ations, and the 
ode is available from

http://s
hemati
s.sour
eforge.net/

2. THE SCHEMEUNIT FRAMEWORK
Unit testing 
on
erns testing individual elements of a pro-

gram in isolation. S
hemeUnit is a framework for de�ning,

organizing, and exe
uting unit tests written in the PLT di-

ale
t of S
heme[11℄. We drawn inspiration from two strands

of work: existing pra
ti
e in intera
tive environments and

the development of unit testing frameworks following the

growth of Extreme Programming.

In an intera
tive environment it is natural to write in a

\
ode a little, test a little" 
y
le: evaluating de�nitions and

Permission to make digital or hard copies, to republish, to post on servers
or to redistribute to lists all or part of this work is grantedwithout fee
provided that copies are not made or distributed for profit orcommercial
advantage and that copies bear this notice and the full citation on the
first page. To otherwise copy or redistribute requires priorspecific
permission.
Third Workshop on Scheme and Functional Programming. October 3,
2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 Noel Welsh, Francisco Solsona, and Ian Glover

then immediately testing them in the read-eval-print loop

(REPL). We take the simpli
ity and immedia
y of this 
y-


le as our model. By 
odifying these pra
ti
es we preserve

the test 
ases beyond the running time of the interpreter

allowing the tests to be run again when 
ode 
hanges.

Unit testing is one of the 
ore pra
ti
es of the Extreme Pro-

gramming[3℄ software development methodology. Unit test-

ing is not new to Extreme Programming but Extreme Pro-

gramming's emphasis on unit testing has spurred the devel-

opment of software frameworks for unit tests. The original

unit testing framework (SUnit) is written in SmallTalk[2℄.

Sin
e then unit testing frameworks have been written for

many languages[18℄. We draw inspiration from these frame-

works and �nd it enlightening to 
ompare the expressivity

of these frameworks with S
hemeUnit. In parti
ular we will


ompare S
hemeUnit to JUnit[4℄, an extremely popular unit

testing framework for the Java language (it has been down-

loaded over 340,000 times at the time of writing).

We start our dis
ussion by 
larifying the goals of S
heme-

Unit. We then des
ribe the framework's design and show

how our goals have in
uen
ed the design. We follow with

a 
omparison of S
hemeUnit and JUnit that illustrates how

the expressivity of S
heme leads to a 
leaner implementa-

tion and better user experien
e. We �nish with a dis
ussion

of related and future work.

2.1 Goals
We have three goals for S
hemeUnit. Firstly we want to

remain as 
lose as possible to the \
ode a little, test a little"


y
le we des
ribed above. Se
ondly we want to support the

main testing patterns we en
ounter in pra
ti
e. Finally we

want to support user extensions to the testing framework.

Throughout this paper we shall use an example of simple

intera
tive testing to illustrate our design. Suppose the user

is testing the invarian
e of write and read. The 
ode they

may exe
ute is given below:

(de�ne data (list 1 2 3 4))

(with-output-to-�le "test.dat"

(lambda () (write data)))

(with-input-from-�le "test.dat"

(lambda () (equal? data (read))))

(delete-�le "test.dat")



22

The programmer 
he
ks the test by inspe
ting the result of

the (equal? data (read)) expression. If the result is #t the

test has su

eeded.

We shall show how this example is 
oded in our framework

and take the simpli
ity of the above example as our goal.

2.2 Core Design
The test is the 
ore type in our framework. A test is either

a test 
ase, whi
h is a single a
tion to test, or a test suite,

whi
h is a 
olle
tion of tests.

test �! test-
ase j test-suite

test-
ase �! name � a
tion

test-suite �! name � tests

tests �! listof test

The hierar
hi
al arrangements of tests into suites helps the

programmer organize and maintain their tests.

We represent a test a
tion as a 
losure. Three ways spring

to mind to signal test su

ess or failure:

1. Indi
ate su

ess by returning a non-#f value and fail-

ure by returning #f.

2. Return a datatype indi
ating su

ess or failure and

additional information

3. Throw an ex
eption on failure and return normally for

su

ess

The �rst method has the advantage of simpli
ity but the dis-

advantage that we lose information about the 
ause of fail-

ure, so we dis
ard it immediately. The other two methods

are equivalent in terms of the information they 
an return

(we 
an en
ode arbitrary information in the return value or

the ex
eption). We have several reasons for 
hoosing the

third option over the se
ond. Firstly we wish to 
at
h ex-


eptions anyway to prevent an unexpe
ted error (i.e. ones

that we are not testing for) from halting the testing frame-

work. Se
ondly when using the se
ond method and testing

a sequen
e of expressions it is ne
essary to use 
ontinua-

tion passing style to propagate a test failure that o

urs in

an intermediate expression. In this 
ase we are simulating

ex
eptions! Therefore for simpli
ity of implementation and

use we 
hoose to throw an ex
eption to signal an error. We

also divide the types of ex
eption we 
at
h into those we


at
h as the result of a tested failure (whi
h we 
all fail-

ures) and those we 
at
h due to untested failures (whi
h we


all errors).

We provide a run-test-
ase fun
tion that takes a test-
ase

and returns a test-result :

(run-test-
ase test-
ase) ) test-result

test-result �! test-failure test-
ase � failure-exn

j test-error test-
ase � error-exn

j test-su

ess test-
ase � result

Finally, the two fun
tions fold-test and fold-test-results make

it easy to walk over tests.

(fold-test test-
olle
tor seed test) ) seed

(fold-test-results result-
olle
tor seed test) ) seed

seed �! �

test-
olle
tor �! (test �) �! �

result-
olle
tor �! (test-result �) �! �

2.3 Testing Patterns
Our example in the 
ore framework is:

(make-test-
ase

(assert binary-predi
ate a
tual expe
ted)

"write/read invarian
e"

(lambda ()

(let ((data (list 1 2 3 4)))

(dynami
-wind

(lambda ()

(with-output-to-�le "test.dat"

(lambda () (write data))))

(lambda ()

(with-input-from-�le "test.dat"

(lambda ()

(let ((a
tual (read)))

(if (not (equal? a
tual data))

(raise

(make-exn:test:assertion

(string-append

"write/read invarian
e failed with "

(format "a
tual ~a" a
tual)

" and "

(format "expe
ted ~a" data))))

#t)))))

(lambda () (delete-�le "test.dat"))))))

Clearly we have lost the simpli
ity of the original REPL! By

adding 
ommon testing patterns to S
hemeUnit we show

how we 
an regain this simpli
ity.

2.3.1 Assertions
Che
king a
tual output against expe
ted output is the most


ommon test pattern. We borrow the idea of assertion fun
-

tions from JUnit. An assert fun
tion tests a 
ondition, rais-

ing a failure ex
eption if the 
ondition is false. The failure

ex
eption 
ontains the lo
ation of the failed assertion, the

a
tual and expe
ted parameters, and an optional user spe
-

i�ed message string.

The 
ore fun
tionality 
an be provided by a single fun
tion:

(assert binary-predi
ate a
tual expe
ted [message℄)

We know from experien
e that it pays to provide assertions

for the most 
ommon 
ases, so S
hemeUnit provides a li-

brary of assertions:

� (assert binary-predi
ate a
tual expe
ted [message℄)

� (assert-equal? a
tual expe
ted [message℄)

� (assert-eqv? a
tual expe
ted [message℄)

� (assert-eq? a
tual expe
ted [message℄)

� (assert-true a
tual [message℄)



23

� (assert-false a
tual [message℄)

� (assert-pred unary-predi
ate a
tual [message℄)

� (assert-exn exn-predi
ate thunk [message℄)

� (fail [message℄)

Assertions are de�ned using the de�ne-assertion ma
ro:

(de�ne-assertion (name param . . . ) expr . . . )

The de�ne-assertion ma
ro expands into the de�nition of a

ma
ro and a fun
tion

1

that takes the given parameters and

an optional message string. If the result of the expressions

is #f the assertion raises a failure ex
eption 
ontaining the

all the information given above.

The de�ne-assertion ma
ro is exported so users 
an de�ne

their own domain-spe
i�
 assertions on par with those al-

ready provided. We hope over time to a

umulate libraries

of spe
ialized assertions.

2.3.2 State Management
Note that our example test uses state and hen
e requires

initialization and 
leanup 
ode. This is fairly 
ommon and

we would like to make is easier for the user to spe
ify these

a
tions. Borrowing again from JUnit we 
all this 
ode setup

and teardown a
tions and we augment test-
ase to optionally

in
lude them. So

test-
ase �! name � a
tion [� setup℄ [� teardown℄

2.3.3 Interface Enhancements
We use ma
ros to add the repetitive lambda statements

around the a
tion, setup, and teardown expressions. We

also wrap the 
all to a
tion with 
alls to setup and tear-

down in the ma
ro rather than requiring the test framework

to preform this a
tion.

Our example is now:

(let ((data (list 1 2 3 4)))

(make-test-
ase "write/read invarian
e"

(with-input-from-�le "test.dat"

(lambda ()

(assert-equal? (read) data)))

(with-output-to-�le "test.dat"

(lambda () (write data)))

(delete-�le "test.dat")))

This 
ode is almost identi
al to the original example typed at

the REPL. We have a
hieved our ease-of-use goal, and we

have done so by supporting testing patterns and allowing

user extensions to the testing framework.

1

Only ma
ros 
an get lo
ation information in PLT S
heme.

We de�ne the fun
tion variant as we have o

asionally found

uses for higher order assertions. The fun
tion variant has a

� appended to its name.

Figure 1: The S
hemeUnit graphi
al interfa
e

2.4 Interfaces
We provide textual and graphi
al interfa
es to S
hemeUnit.

An example run shows the user interfa
e in a
tion. The

following test suite

(test/text-ui

(make-test-suite "Example suite"

(make-test-
ase "Will su

eed"

(assert-equal? (+ 1 2) 3))

(make-test-
ase "Will fail"

(assert-equal? (+ 1 1) 3))

(make-test-
ase "Will 
ause error"

(assert-equal? (/ 1 0) 0))))

gives the output:

Error:

Will 
ause error

an error of type exn:appli
ation:divide-by-zero

o

urred with message: "/: division by zero"

Failure:

Will fail

assert-equal? failed at: top-level 8:7

Inputs: <2> <3>

1 su

ess(es) 1 error(s) 1 failure(s)

The graphi
al interfa
e is still in development. When 
om-

plete it will provide sour
e level highlighting and allow navi-

gation to error lo
ation using DrS
heme. An example of the


urrent graphi
al interfa
e is shown in Figure 1.

2.5 SchemeUnit versus JUnit
It is instru
tive to 
ompare S
hemeUnit with the popular

JUnit test framework, as doing so serves to illustrate the

expressive advantage of S
hemeUnit. Our dis
ussion 
enters

on a basi
 example from [25℄ based on a telephone 
lass. The

Java 
ode is:



24

publi
 
lass TelephoneNumberTests extends TestCase f

publi
 stati
 void main(String[℄ args) f

junit.textui.TestRunner.run(suite());

g

publi
 stati
 TestSuite suite() f

return new TestSuite(TelephoneNumberTests.
lass);

g

publi
 TelephoneNumberTests(String testname) f

super(testname);

g

publi
 void testSimpleStringFormatting()

throws Ex
eption f

// Build a 
omplete phone number

TelephoneNumber number ->

new TelephoneNumber("612", "630",

"1063", "1623");

assertEquals("Bad string",

"(612) 630-1063 x1623",

number.formatNumber());

g

publi
 void testNullAreaCode()

throws Ex
eption f

// Build a phone number without area 
ode

TelephoneNumber number ->

new TelephoneNumber(null, "630",

"1063", "1623");

assertEquals("Bad string",

"630-1063 x1623",

number.formatNumber());

gg

A translation of this to the S
hemeUnit syntax is

(require (lib "test.ss" "s
hemeunit")

(lib "text-ui.ss" "s
hemeunit"))

(test/text-ui

(make-test-suite "Telephone number tests"

(make-test-
ase "Simple format"

(assert-equal? "(612) 630-1063 x1623"

(format-number

(make-number 612 630 1063 1623))

"Bad String"))

(make-test-
ase "No area 
ode"

(assert-equal? "630-1063 x1623"

(format-number

(make-number (void) 630 1063 1623))

"Bad string"))))

There are several points to note about this example. One is

the amount of typing required for this short example. The

Java 
ode is far more verbose, most notably in the setup


ode. This is largely a result of the type de
larations and

noise keywords (like return and new) required by Java. To

our eyes the S
heme 
ode is mu
h more elegant though we

re
ognize this is a subje
tive judgment.

JUnit relies extensively on re
e
tion. Test 
ases are de�ned

by pre�xing the method name with test. This is an elegant

solution to the problem that Java has no �rst 
lass repre-

sentation of fun
tions but 
an lead to problems: JUnit uses

a 
ustom 
lass loader that 
an intera
t unpredi
tably with

other Java 
ode that makes extensive use of re
e
tion (e.g.

Java remote method 
alls). This makes testing diÆ
ult in

these environments. There is no su
h problem in S
heme.

In JUnit setup and teardown methods are similarly identi-

�ed by name and dis
overed by re
e
tion. Again �rst 
lass

fun
tions redu
e the 
omplexity of the S
hemeUnit frame-

work.

In general stru
turing the test suites by value rather than by

name makes for a simpler and more 
exible system. There

are fewer new 
onventions for the user to remember and

tests 
an be manipulated on the 
y.

2.6 Related and Future Work
SUnit has spawned a large and in
reasing number of testing

frameworks of whi
h S
hemeUnit is one. We shall brie
y


onsider those that are parti
ularly relevant to S
hemeUnit.

HUnit[14℄, an implementation for the Haskell Language, is

a re
ent addition to the family. There are broad similarities

between HUnit and S
hemeUnit. Both signal failure with

ex
eptions and both provide a number of 
onvenien
e asser-

tion fun
tions. HUnit re
ognizes the importan
e of interfa
e

and de�nes in�x operators that make test spe
i�
ation eas-

ier. The 
ombination of lazy evaluation and in�x operators

a
hieves a similar e�e
t to our ma
ros. We brie
y illustrate

HUnit below, along with the equivalent 
ode in S
hemeUnit:

test1 -> 3 ~->? (1 + 2)

tests -> TestList [TestLabel "Addition" test1℄

(de�ne tests

(make-test-suite

"All tests"

(make-test-
ase "Addition" (assert -> 3 (+ 1 2)))))

LIFT[20℄, CLUnit[1℄ (Common Lisp) and CurlUnit[5℄ (Curl)

are Lisp diale
t implementations of the SUnit framework.

All are broadly similar to S
hemeUnit. Both LIFT and

CLUnit have some stateful features to ease intera
tive de-

velopment of tests. De�ning a test in LIFT (with deftest)

impli
itly 
reates a test suite to whi
h later tests (
reated

with addtest) are automati
ally added. In CLUnit tests are


ategorized by name and stored in a global 
olle
tion. Tests

override existing tests with the same name and are removed

with the remove-test fun
tion. CurlUnit is a dire
t transla-

tion of JUnit to Curl so most of our earlier 
omments about

JUnit apply to CurlUnit.

The FORT[9℄ framework, implemented in O'Caml, takes a

di�erent approa
h to the SUnit family. Test results take

one of seven values in
luding unexpe
ted su

ess, expe
ted

failure, untested, and unresolved in addition to the more

usual pass and fail. Test results and returned by the normal

fun
tion return me
hanism so we envisage some diÆ
ulty

in 
onstru
ting a single test 
ase 
ontaining multiple test

expressions. The multitude of test results is an interesting

idea but we have yet to en
ounter a situation where they

are ne
essary. La
king a 
lear need we favor simpli
ity and

sti
k with our three result types.



25

As the Extreme Programming 
ommunity evolved from the

design pattern 
ommunity it is no surprise that testing pat-

terns[23℄[10℄ have been developed. We intend to analyze

these patterns and see how S
hemeUnit 
an provide dire
t

support for them.

A more advan
ed approa
h is to generate tests from spe
i-

�
ations (e.g. [6℄). This approa
h naturally leads to model


he
kers like ACL2[19℄ and SPIN[15℄ that prove 
orre
tness.

This is a powerful approa
h, though quite a leap from our

simple system.

S
hemeUnit only targets unit tests. In future we wish to

target fun
tional (whole system) testing, and testing of non-

fun
tional requirements su
h as performan
e. We are also

aim to extend S
hemeUnit to support domain spe
i�
 fun
-

tionality su
h as web site testing.

3. THE SCHEMEQL QUERY LANGUAGE
The International Standard Database Language[17℄ (SQL

1992, SQL'92 or just SQL) is a de
larative language for

manipulating data in database manager systems (DBMS).

SQL is the standard interfa
e to relational databases and

is implemented by all major (and most minor) DBMSs.

S
hemeQL integrates a database manipulation language into

the S
heme language o�ering an alternative to raw SQL.

Nowadays most database programmers already know SQL,

and S
hemeQL is designed to o�er a gentle slope[16℄ from

existing SQL knowledge to the higher level abstra
tions of-

fered by S
hemeQL.

We start by dis
ussing the limitation of embedded SQL and

why an alternative is desirable. We then des
ribe the design

and implementation of S
hemeQL. We follow with an ex-

tended example that shows how S
hemeQL builds on SQL

but provides extended fun
tionality that makes program-

ming in S
hemeQL easier than SQL. We �nish with a dis-


ussion of related and future work.

3.1 The Limitations of Embedded SQL
The traditional approa
h to mixing SQL with another lan-

guage is to embed the SQL as text strings. Even supposedly

modern languages like Java [12℄ 
ontinue this tradition. The

disadvantages of this approa
h are:

� SQL statements are not 
he
ked until exe
ution time.

It is easy to make grammati
al or type errors when

embedding SQL. For example, forgetting to in
lude a

spa
e when 
on
atenating two strings is a 
ommon er-

ror. Similarly one 
an write a SQL statement that uses

SQL 
onstru
ts where they aren't allowed, or uses the

wrong type for arguments to SQL fun
tions and so on.

All these errors will 
ause exe
ution time ex
eptions

that may a�e
t end users, whereas 
ompilation time

ex
eptions would have been 
aught and dealt with by

the programmer.

� SQL statements 
an not be manipulated like host lan-

guage statements. Ex
ept by using 
rude text pro-


essing one 
annot programati
aly 
ompose, abstra
t,

and re�ne SQL statements. Hen
e 
ode quality and

programmer produ
tivity su�er when using embedded

SQL

If SQL statements were �rst 
lass members of the program-

ming language we 
ould use our existing tools and language


onstru
ts to work with them, avoiding the problems given

above.

3.2 The SchemeQL Design: a better SQL
S
hemeQL embeds in S
heme a little language for 
reating

and manipulating SQL queries. S
hemeQL allows 
omplex

stru
tured statements to be treated as �rst 
lass 
itizens,

thus 
onsiderably raising the level of abstra
tion a program-

mer 
an use.

The S
hemeQL grammar is very s
hemish while following


losely, in spirit, the SQL grammar. This eases the imple-

mentation as SQL is a 
omplex mix between the relational

algebra and the relational 
al
ulus, but more importantly

allows the programmer to use their existing knowledge of

basi
 SQL 
onstru
tions and programming in S
heme. Fur-

thermore, by making S
hemeQL a set of synta
ti
 exten-

sions and pro
edures we 
an 
on
entrate on the design of

our little language, while retaining the whole power of a

real programming language, S
heme, following the steps of

other little languages [28℄, and [8℄.

SQL statements are divided into three main groups:

� Sele
tion (SELECT)

� Modi�
ation (INSERT, UPDATE, and DELETE)

� Data de�nition (CREATE TABLE)

Sele
tion (aka proje
tion) statements produ
e a result set.

Modi�
ation statements return a natural number represent-

ing the number of rows a�e
ted by the exe
ution of the

statement. Data de�nition statements are only interesting

for their side e�e
ts, su
h as 
reating a new table or view in

the database.

S
hemeQL has the same logi
al division, with the following

di�eren
es: result sets are represented by 
ursors, a lazy

stream of rows (whi
h basi
ally allows the programmer to

work with one row at the time), and instead of having a

one to one mapping from SQL statements to S
heme pro-


edures, we have a set of pro
edures to mimi
 the work of

a single SQL statement. This simpli�es the 
onstru
tion,


ombination, and re�nement of statements. For instan
e,

the full power of the SQL SELECT statement is a
hieved

by the appropriate 
ombination of several S
hemeQL forms.

Basi
 sele
tion in S
hemeQL follows this grammar:

sele
tion ::= (query <exp>)

| (query ((LITERAL <exp>)))

| (query <
ol-spe
> <table-spe
>)

| (query <
ol-spe
> <table-spe
>

<pred-spe
>)

<exp> ::= string-or-symbol



26

(passed verbatim to the DBMS)

<
ol-spe
> ::= ALL | (<
olumn> ...)

<
olumn> ::= string-or-symbol | Number

| (<table> string-or-symbol)

| (AS <
olumn> string-or-symbol)

| (LITERAL <exp>)

<table-spe
> ::= <table>

| (<a
tion> <table-spe
> <table-spe
>)

<table> ::= string-or-symbol

<a
tion> ::= ALIAS | INNERJOIN | STRAIGHTJOIN

| NATURALLEFTJOIN

<pred-spe
> ::= (<op> <
ol-spe
> <
ol-spe
-or-value>)

| ([AND|OR|NOT℄ <pred-spe
> ...)

<op> ::= < | <= | > | >= | = | <>

| Any DBMS defined binary operator

<
ol-spe
-or-value> ::= <
ol-spe
>

| Any value suitable for 
omparison

It is important to note, that the subforms in query, and

in most forms in S
hemeQL for that matter, are impli
itly

ba
kquoted. Thus, (query ALL ,(f x)) means \sele
t every-

thing from the table, or tables returned by the appli
ation

of S
heme pro
edure f, to the S
heme variable x".

3.2.1 More on Selection, and the SchemeQL Times
The query pro
edure alone does not provide all the fun
-

tionality a programmer may want when sele
ting data from

a database, and for a good reason: it would be as 
om-

plex as the SQL's SELECT statement. Instead of o�ering a

mu
h too 
omplex form, S
hemeQL provides a set of forms,

and pro
edures to spe
ialized, 
ompose, and otherwise han-

dle sele
tions. These forms are: query, distin
t!, group-by!,

order-by!, having!, limit!, union, interse
t, and di�eren
e.

<sele
tion> ::= (distin
t! <sele
tion>)

| (group-by! <sele
tion> <limit-
ol>)

| ... the other forms

<limit-
ol> ::= ([ASC|DESC℄ <
ol-spe
>) | <
ol-spe
>

The syntax of the rest of the forms is just minor variations

of that given above.

The reader may wonder what a S
hemeQL sele
tion exa
tly

does. A sele
tion in S
hemeQL is an internal S
heme stru
-

ture, that holds the information provided thus far to perform

the sele
tion, and that is why you 
an 
ontinue spe
ializing

it.

(query param . . . ) ) query-stru
t

This is what we 
alled the S
hemeQL 
ompilation time, for

it allows us to perform basi
 stati
 
he
king, based only on

the information already provided to perform the sele
tion.

Only when s
hemeql-exe
ute is 
alled is the sele
tion is per-

formed and a result set (also 
alled a 
ursor in S
hemeQL)

is returned.

(s
hemeql-exe
ute s
hemeql-stru
t [
onn℄) ) 
ursor

This is the S
hemeQL exe
ution time. The same s
enario

repeats itself for the data modi�
ation and data de�nition

forms in S
hemeQL.

Sin
e sometimes we want to immediately exe
ute a form,

S
hemeQL provides some useful shorthands for some forms

that 
ombine the generation of the internal stru
tures and

their exe
ution. Here are some su
h forms that we will use

later:

(dire
t-query 
onn param . . . ) ) 
ursor

(query-with-
urrent-
onne
tion param . . . ) ) 
ursor

(query/

 param . . . ) ) 
ursor

where 
onn is an open 
onne
tion to a DBMS, whi
h is 
re-

ated by a 
all to the S
hemeQL form 
onne
t-to-database,

and param ... are exa
tly those parameters valid for query.

3.2.2 SchemeQL Cursors
SQL result sets 
an be seen as tuples that form a table.

S
hemeQL 
ursors are pairs of values, (row promise), where

row is a list representing the �rst tuple in the result set, and

promise is a 
ursor holding a promise (that has to be for
ed)

to return the rest of the tuples in the result set.


ursor ! row � promise

row ! listof any

A library to work with 
ursors is provided as part of S
hemeQL.

Programmers most likely will use the following basi
 pro
e-

dures to work with 
ursors:

� (
ursor-
ar 
ursor): returns the �rst tuple in 
ursor.

� (
ursor-
dr 
ursor): returns the rest of 
ursor, another


ursor, similar to the original only that the next ele-

ment, if any, is on the 
ursor-
ar position of the re-

turned 
ursor.

� (
ursor-null? 
ursor): #t i� 
ursor is the empty 
ursor.

� (
ursor-map pro
 
ursor): returns another 
ursor, whose

�rst element is the appli
ation of pro
 to the �rst el-

ement in 
ursor, and whose se
ond element holds the

promise to apply pro
 to the rest of 
ursor.

� (
ursor->list 
ursor N): returns a list 
ontaining the

�rst N, or less if there are not enough, rows in 
ursor.

� (�nite-
ursor->list 
ursor): returns a list 
ontaining

all the elements of 
ursor.

It is worth noting that 
ursors in SQL are a 
ompletely

di�erent 
on
ept, and are used to retrieve a small number of

rows at a time out of a larger query. S
hemeQL also provides

support for them, through the pro
edures open-
ursor, whi
h

re
eives a query and optional information to 
reate di�erent

kinds

2

of 
ursors, the initial size of the set, and the starting

row. Two other pro
edures work on the result of open-
ursor:

roll-
ursor!, that 
hanges the orientation of the given 
ursor,

and 
lose-
ursor!, whi
h 
loses the given 
ursor.

One important feature of this way of handling SQL 
ur-

sors is that the resulting set of tuples is represented as an

2

Kinds as those de�ned by Open Database Conne
tivity

(ODBC) [27℄, whi
h are: FORWARD ONLY, STATIC, KEYSET

DRIVEN, and DYNAMIC.



27

S
hemeQL 
ursor, and thus 
an be handled in the same way

as the result of regular queries. We will not go into more

detail here for spa
e reasons.

3.2.3 The Rest of SQL
Most of the \usual" SQL fun
tionality is already part of

S
hemeQL. Transa
tions, for instan
e, 
an be handled in

two di�erent ways. The �rst one, is by using the (transa
-

tion exp . . . ) form whi
h exe
utes all the expressions given

in order, and if no ex
eption o

urs then it 
ommits the

blo
k, otherwise, it sends a rollba
k to the DBMS, and pass

along the ex
eption. The transa
tion form tries to set the

transa
tion isolation level to the highest possible, ideally to

serializable level.

The se
ond way allows the programmer to sele
t the iso-

lation level required and is represented by two pro
edures:

begin-transa
tion and end-transa
tion. The begin-transa
tion

form swit
hes to manual 
ommit mode, and sets the isola-

tion level to the highest supported by the DBMS, or to the

requested one if given. Then end-transa
tion either 
ommits

or rolls ba
k the transa
tion blo
k, depending on the argu-

ment supplied by the programmer. The transa
tion form is

more s
heme-like, sin
e the other two 
an lead to the 
om-

mon error of opening a transa
tion, exe
uting a blo
k of

expressions, and never 
losing the transa
tion again.

S
hemeQL supports basi
 user and table management, and


onne
tion management that allows simultaneous 
onne
-

tions to di�erent databases. Even non-standard, yet very

useful and regularly employed, SQL extensions su
h as CRE-

ATE DATABASE and USE DATABASE are supported, though

no SQL standard pro
edure depends internally on these ex-

tensions.

3.3 The SchemeQL Implementation
S
hemeQL is layered upon SrPersist

3

and takes full advan-

tage of SrPersist's knowledge of the parti
ular DBMS in use.

SrPersist provides a safety 
he
k for every SQL statement

sent to the DBMS, in addition to the S
hemeQL's error de-

te
tion, and thus we 
an o�er a hierar
hi
al approa
h to

error handling.

S
hemeQL together with SrPersist is a highly portable li-

brary sin
e ODBC is the de fa
to standard for database


onne
tivity and is widely supported (although it should

be noted that many ODBC drivers have di�erent levels of


onforman
e

4

). In this regard S
hemeQL o�ers two spe
i�


and 
ru
ial bene�ts. Firstly it hides the tedious and ugly

details of the ODBC 
onforman
e levels from the S
heme

programmer. Se
ondly, and more importantly, it removes

the 
omplexity of standard ODBC manipulation, whi
h is

probably the biggest drawba
k of ODBC when 
ompared to

other DBMS drivers.

3

SrPersist is an ODBC library for PLT S
heme. More in-

formation on SrPersist 
an be found at:

http://www.plt-s
heme.org/software/srpersist/

4

At the time of writing there have been several major re-

leases, from 1.0 through 3.51, and SrPersist supports them

all.

Even though, for portability reasons, we use SrPersist, S
hemeQL

allows the use of di�erent DBMS drivers. ODBC drivers are

known to do extensive error 
he
king, and so it is possible

to have a database spe
i�
 driver outperforming a generi


ODBC driver. SQL support and basi
 error 
he
king fa
ili-

ties are independent of the driver in use.

3.4 SchemeQL in action
All examples below are based around the following database

stru
ture. Suppose you own a software 
ompany, and the

following tables are a snippet of your employees database.

personnel salaries

id name lid

1 Noel 1

2 Ian 1

3 Fran
is
o 1

4 Simon 2

5 James 3

6 Brian 4

7 Dennis 4

id salary

1 30'000

2 30'000

3 30'000

4 30'000

5 45'000

6 45'000

7 45'000

languages

id lang

1 S
heme

2 Haskell

3 Java

4 C

We start with the most 
ommon sort of query, whi
h is a

SELECT statement su
h as the following statement to get

the names of all the programmers:

SELECT name FROM personnel

In S
hemeQL this query has almost exa
tly the same stru
-

ture as its SQL equivalent:

(query (name) personnel)

Now suppose we wish to get all the ids of those employees

who program in S
heme. In SQL we'd write:

SELECT personnel.id

FROM personnel, languages

WHERE personnel.lid = languages.id

AND languages.lang = 'S
heme'

In S
hemeQL we write

(query ((personnel id))

(personnel languages)

((= (personnel lid) (languages id))

(= (languages lang) "'S
heme'")))

Again the two queries have a very similar stru
ture. Now

suppose we want to get all Java programmers. Immediately

we see an opportunity for 
ode reuse if we parameterize the

above queries on the language. This is trivial in S
hemeQL

as we 
an use abstra
tion fa
ilities provided by S
heme:



28

(de�ne (programmers language)

(query ((personnel id))

(personnel languages)

((= (personnel lid) (languages id))

(= (languages lang) ,language))))

Remember that most subforms in S
hemeQL are ba
kquoted.

There is no way to do this in standard SQL, though individ-

ual DBMSs may provide parameterized queries. To do this

in embedded SQL we 
ould append strings:

(de�ne (programmers language)

(string-append

"SELECT id "

"FROM personnel, languages"

"WHERE personnel.lid = languages.lid "

"AND languages.lang = " language))

We note that this method is error-prone as it is easy, for

example, to forget to in
lude a spa
e between strings as

we have done above (between languages, and the keyword

WHERE ).

Now suppose you want to get the ids of all C programmers

who are earning 45'000. This is the interse
tion of all C

programmers, whi
h we already know how to do, with all

programmers who are earning 45'000. In SQL we 
an write:

SELECT id

FROM personnel, languages

WHERE personnel.lid = languages.lid

AND languages.lang = 'C'

INTERSECT ( SELECT id

FROM salaries

WHERE salary = '45000' )

In S
hemeQL we 
an form the two sets separately and then

perform the interse
tion:

(let ((
-programmers (programmers "'C'"))

(high-earners (query (id) (salaries) (= salary "45000"))))

(interse
t 
-programmers high-earners))

Noti
e how we have reused the programmers fun
tion de-

�ned above and then 
omposed a query from parts. We


annot do this in SQL.

That does it! Impressed by the produ
tivity of your fun
-

tional programmers you de
ide to �re all the Java and C

programmers and use the extra money to give a raise to

your �ne S
heme programmers (you �nd the Haskell pro-

grammers produ
tive but inexpli
ably lazy). Coin
identally

this also give us an opportunity to show further query 
om-

position and 
ursor handling in S
hemeQL.

First we de�ne the sets of interest: the S
hemers, who are

getting a raise, the Haskell programmers, who just stay as

they are, and everyone else, who are getting the opportunity

to explore other interests.

(de�ne s
hemers (programmers "'S
heme'"))

(de�ne haskellers (programmers "'Haskell'"))

(de�ne �red

(let ((all (query (id) personnel)))

(s
hemeql-exe
ute

(di�eren
e all (union s
hemers haskellers)))))

Now all programmer who have been �red are removed from

the salaries table:

(
ursor-map

(lambda (programmer)

(let ((id (
ar programmer)))

(delete/

 salaries (= id ,id))))

(result-
ursor �red))

Finally, to give the S
heme programmers a raise:

(
ursor-map

(lambda (id)

(update/

 salaries

((salary (LITERAL "salary � 2")))

(= id ,(
ar id))))

(result-
ursor (s
hemeql-exe
ute s
hemers)))

The above operations 
annot be performed in pure SQL as

query results 
annot be used as the input to modi�
ation

statements. We give below equivalent statements to perform

the above a
tions. Where an a
tion requires repetition of a

number of very similar statements (eg, when DELETEing

the imperative programmers) we only give an example.

SELECT personnel.id

FROM personnel

EXCEPT (SELECT personnel.id

FROM personnel,languages

WHERE personnel.lid = languages.lid

AND languages.lang = 'S
heme'

UNION

SELECT personnel.id

FROM personnel,languages

WHERE personnel.lid = languages.lid

AND languages.lang = 'Haskell');

DELETE FROM salaries

WHERE id = 4;

SELECT personnel.id

FROM personnel

INTERSECT (SELECT personnel.id

FROM personnel,languages

WHERE personnel.lid = languages.lid

AND languages.lang = 'S
heme');

UPDATE salaries

SET salary = salary � 2

WHERE id = 1;

3.5 Related and Future Work
Haskell/DB, a 
ompiler embedded in Haskell that dynami-


ally generates SQL queries, was developed as an instan
e of

the more general design pattern for embedding 
lient-server

style servi
es into Haskell detailed in[22℄. Some of the ben-

e�ts this te
hnique o�ers are:

� Programmers need to know only one language,



29

� it allows language extensions in the form of libraries

to be presented,

� it is possible to impose spe
i�
 typing rules,

� integration with other domain spe
i�
 libraries (e.g.

CGI, mail) is possible, and �nally

� this approa
h o�ers a strategi
 advantage, for it em-

powers programmers to use the language infrastru
-

ture, su
h as the module, and type systems.

S
hemeQL has all of these bene�ts ex
ept for stati
 typing.

The implementation of Haskell/DB, presented in[22℄ uses

A
tiveX Data Obje
ts (ADO) to 
onne
t to the DBMS. In

this regard Haskell/DB is limited to the Windows platform.

S
hemeQL does not share this limitation as it uses SrPersist,

whi
h 
an intera
t with any ODBC driver.

Our approa
h is to de�ne a limited domain spe
i�
 language

that 
an be translated into SQL. Another approa
h is to

expand the database query language into a full programming

language[29℄. This approa
h has many bene�ts but requires

the underlying DBMS to 
hange.

It is 
lear that stru
tured data is taking over. The Exten-

sible Markup Language [26℄ (XML) is now 
onsidered the

universal format for stru
tured do
uments and data on the

Web. With XML arises the need for eÆ
ient query lan-

guages to exploit stru
tured data. XML Query [24℄ is a

working group aiming to 
reate a set of query fa
ilities to

extra
t data from XML, or viewing XML �les as databases.

Unfortunately there is not yet any dire
t point of 
omparison

between XML and 
urrent database te
hnology. This will

remain one of the most interesting topi
s of resear
h in the

years to 
ome. Whether or not a language like S
hemeQL

will be able to enter the XML realm is a question we 
annot

answer yet.

In the immediate future we will be adding support for spe-


i�
 DBMS drivers and SQL diale
ts (e.g. Ora
le, Post-

greSQL, et
.). We will also attempt to standardize the

S
hemeQL syntax as a S
heme Request for Implementa-

tion[21℄ (SRFI).

4. SCHEMEUNIT AND SCHEMEQL
S
hemeUnit and S
hemeQL have both been designed with

a `gentle-slope' philosophy: start with an already familiar

base and then build additional fun
tionality as independent


omponents on that base. In S
hemeUnit this is evident in

the way test 
ode mimi
s the \
ode a little, test a little"


y
le and adds fa
ilities to organize and rerun tests. In

S
hemeQL the starting point is the SQL SELECT statement

upon whi
h the query ma
ro is modeled. The 
ombinators

interse
t, di�eren
e and so on are then introdu
ed as ways of

modifying the basi
 query.

S
hemeUnit and S
hemeQL both take advantage of S
heme's

ma
ro fa
ilities to present a 
leaner interfa
e to the user. In

both languages ma
ros are used to avoid repetitious lambda

statements. In S
hemeUnit this is in the 
reation of test


ases. In S
hemeQL this is in 
ursor 
reation. Ma
ros are

also used for other purposes: in S
hemeUnit to allow user-

extensions via the de�ne-assertion ma
ro and in S
hemeQL

to provide impli
it ba
kquoting on forms. These simple uses

of ma
ros go a long way to improving the user experien
e.

S
hemeUnit is used extensively to test itself and S
hemeQL.

5. CONCLUSIONS
A language is a user interfa
e just like a graphi
al interfa
e

and deserves as mu
h attention from the language designer

as a GUI would get from it's designer.

We have des
ribed S
hemeUnit, a little language for writing

tests in S
heme, and have illustrated how we have used the

features of fun
tional languages in general, and S
heme in

parti
ular, to simplify the interfa
e. Via 
omparison with

the \
ode a little, test a little" 
y
le and the JUnit frame-

work we have shown that S
hemeUnit a
hieves an admirable

level of simpli
ity without sa
ri�
ing expressive power.

S
hemeQL, our little language for database intera
tion, has

been shown to be a feasible alternative to embedded SQL.

By building on the programmer's knowledge of SQL and

extending it with modular 
ombinators we a
hieve tighter

integration with the S
heme language, a better, more mod-

ular, parameterization of SQL statements and improved ex-

pressibility and abstra
tion.

PLT S
heme, the host language for both our little languages

gives us a 
ertain number of extra, and free advantages that

makes them usable, through its DrS
heme programming en-

vironment[11℄: a syntax-sensitive editor, a syntax 
he
ker,

an stepper, and intera
tion with other libraries, and plugins.

� Sin
e our little languages 
onsists entirely of tree-stru
ture

expressions, the editor's features are inherited. Users

only needs to add the keywords in our little languages

to DrS
heme (to have them indented appropriately.)

� No modi�
ation is needed to work with the syntax


he
ker, and the stepper sin
e these two work trans-

parently over pro
edures, and ma
ros.

� Sin
e all of the host language is available to users, a

program 
an load, or enable a 
ertain number of li-

braries, plugins, or other embedded little languages as

needed with no extra fuss.

The only extra advantage we are not exploiting is the va-

lidity 
he
king available through the MrFlow 
omponent of

DrS
heme though it should not be hard to expand the 
on-

stru
tions of our little languages to type de�nitions, as in [8℄.

Finally we note that our language evaluation has been quali-

tative; based on our experien
es using the languages in ques-

tion. We are aware of some work in quantitative evalua-

tion[7℄ and this resear
h will 
ontribute to a better under-

standing of what makes good language design.

6. ACKNOWLEDGMENTS
We are indebted to the following individuals:



30

Ryan Culpepper, who 
reated the graphi
al interfa
e to S
heme-

Unit and has 
ontributed greatly to its design.

Paul Ste
kler, Shriram Krishnamurthi, Matt Jadud, MJ Ray

and the anonymous reviewers who o�ered 
omments on the

draft versions of this paper.

7. REFERENCES
[1℄ F. A. Adrian. Clunit.

http://www.an
ar.org/CLUnit/do
s/CLUnit.html,

2002.

[2℄ K. Be
k. Kent Be
k's Guide to Better Smalltalk,


hapter 21. SIGS Referen
e Library. Cambridge

University Press, 1999.

http://www.xprogramming.
om/testfram.htm.

[3℄ K. Be
k. Extreme Programming Explained.

Addison-Wesley, 2000.

[4℄ K. Be
k and E. Gamma. Test infe
ted: Programmers

love writing tests. Java Report, 3(7), July 1998.

[5℄ J. Beekmann. Curlunit.

http://
urlunit.sour
eforge.net/, 2002.

[6℄ Y. Cheon and G. T. Leavens. A simple and pra
ti
al

approa
h to unit testing: The jml and junit way.

Te
hni
al Report 01-12, Department of Computer

S
ien
e, Iowa State University, November 2001.

[7℄ S. Clarke. Evaluating a new programming language.

In G. Kadoda, editor, Pro
eeding of the 13th

Workshop of the Psy
hology of Programming Interest

Group, volume 13, April 2001.

[8℄ J. Clements, P. Graunke, S. Krishnamurthi, and

M. Felleisen. Little languages and their programming

environments. In Pro
eedings of the Monterey

Workshop, 2001.

[9℄ P. Doane. Fort: Framework for o'
aml regression

testing. http://www.sour
eforge.net/proje
ts/fort,

2002.

[10℄ M. Feathers. The `self'-shunt unit testing pattern.

http://www.obje
tmentor.
om/-

resour
es/arti
les/SelfShunPtrn.pdf,

2001.

[11℄ R. Findler, J. Clements, C. Flanagan,

S. Krishnamurthi, P. Ste
kler, and M. Felleisen.

Drs
heme: A programming environment for s
heme.

Journal of Fun
tional Programming, 2001.

[12℄ M. Fisher, R. Cattell, G. Hamilton, S. White, and

M. Hapner. JDBC API, Tutorial, and Referen
e,

Se
ond Edition: Universal Data A

ess for the Java 2

Platform. The Java Series. Addison-Wesley Longman,

1999.

[13℄ P. Graham. On Lisp. Prenti
e Hall, 1993.

[14℄ D. Herington. Hunit. http://hunit.sour
eforge.net/,

2002.

[15℄ G. J. Holzmann. The model 
he
ker spin. IEEE

Transa
tions on Software Engineering, 23(5), May

1997.

[16℄ M. Hostetter, D. Kranz, C. Seed, C. Terman, and

S. Ward. Curl: A gentle slope language for the web.

World Wide Web Journal, II(2), 1997.

http://www.w3j.
om/6/.

[17℄ Database language sql. International Organisation for

Standardization (ISO), 1992.

[18℄ R. Je�eries. Software downloads.

http://www.xprogramming.
om/software.html.

[19℄ M. Kaufmann, P. Manolios, and J. S. Moore, editors.

Computer-Aided Reasoning: ACL2 Case Studies.

Kluwer A
ademi
 Publishers, June 2000.

[20℄ G. King. Lift - the lisp framework for testing.

Te
hni
al report, University of Massa
husetts, 2001.

[21℄ S. Krishnamurthi, D. Mason, and M. Sperber. S
heme

request for implementation. http://sr�.s
hemers.org/,

1998.

[22℄ D. Leijen and E. Meijer. Domain spe
i�
 embedded


ompilers. In 2nd USENIX Conferen
e on

Domain-Spe
i�
 Languages (DSL). USENIX, O
tober

1999.

[23℄ T. Ma
kinnon, S. Freeman, and P. Craig.

Endo-testing: Unit testing with mo
k obje
ts. In

G. Su

i and M. Mar
hesi, editors, Extreme

Programming Examined. Addison-Wesley, 2001.

[24℄ M. Mar
hiori. Xml query.

http://www.w3.org/XML/Query, 2000.

[25℄ M. T. Nygard and T. Karsjens. Test infe
t your

enterprise javabeans. JavaWorld, May 2000.

[26℄ L. Quin. Extensible markup language (xml).

http://www.w3.org/XML/, 1997.

[27℄ R. E. Sanders. ODBC 3.5 developer's guide.

M
Graw-Hill, 1998.

[28℄ O. Shivers. A universal s
ripting framework, or

lambda: The ultimate \little language". In J. Ja�ar

and R. H. C. Yap, editors, Con
urren
y and

Parallelism: Programming, Networking, and Se
urity,

volume 1179 of Le
ture Notes in Computer S
ien
e,

pages 254{265. Springer, 1996.

[29℄ V. Tennen, P. Buneman, and S. Naqvi. Stru
tural

re
ursion as a query language. In Pro
eedings of 3rd

International Workshop on Database Programming

Languages, 1991.

http://db.
is.upenn.edu/Publi
ations/.


