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ABSTRACT

We present two little languages implemented in Scheme:
SchemeUnit, a language for writing unit tests, and SchemeQL,
a language for manipulating relational databases. We dis-
cuss their design and implementation and show how the fea-
tures of functional languages in general, and Scheme in par-
ticular, contribute to the ease of use and implementation of
our languages.
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1. INTRODUCTION

The domain specific language, or little language, is a power-
ful technique for increasing programmer productivity. Much
work in domain specific languages has been done in func-
tional languages (e.g. [28, 13, 8]). Our work is no different
in this regard. Our contribution is to focus on the interface
of our languages and show how we can use the features of
functional languages in general, and Scheme in particular,
to improve the user experience. We describe little languages
for unit testing and relational database manipulation. The
two languages have been used by the authors and others in
real applications, and the code is available from

http://schematics.sourceforge.net/

2. THE SCHEMEUNIT FRAMEWORK

Unit testing concerns testing individual elements of a pro-
gram in isolation. SchemeUnit is a framework for defining,
organizing, and executing unit tests written in the PLT di-
alect of Scheme[11]. We drawn inspiration from two strands
of work: existing practice in interactive environments and
the development of unit testing frameworks following the
growth of Extreme Programming.

In an interactive environment it is natural to write in a
“code a little, test a little” cycle: evaluating definitions and
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then immediately testing them in the read-eval-print loop
(REPL). We take the simplicity and immediacy of this cy-
cle as our model. By codifying these practices we preserve
the test cases beyond the running time of the interpreter
allowing the tests to be run again when code changes.

Unit testing is one of the core practices of the Extreme Pro-
gramming[3] software development methodology. Unit test-
ing is not new to Extreme Programming but Extreme Pro-
gramming’s emphasis on unit testing has spurred the devel-
opment of software frameworks for unit tests. The original
unit testing framework (SUnit) is written in SmallTalk[2].
Since then unit testing frameworks have been written for
many languages[18]. We draw inspiration from these frame-
works and find it enlightening to compare the expressivity
of these frameworks with SchemeUnit. In particular we will
compare SchemeUnit to JUnit[4], an extremely popular unit
testing framework for the Java language (it has been down-
loaded over 340,000 times at the time of writing).

We start our discussion by clarifying the goals of Scheme-
Unit. We then describe the framework’s design and show
how our goals have influenced the design. We follow with
a comparison of SchemeUnit and JUnit that illustrates how
the expressivity of Scheme leads to a cleaner implementa-
tion and better user experience. We finish with a discussion
of related and future work.

21 Goals

We have three goals for SchemeUnit. Firstly we want to
remain as close as possible to the “code a little, test a little”
cycle we described above. Secondly we want to support the
main testing patterns we encounter in practice. Finally we
want to support user extensions to the testing framework.

Throughout this paper we shall use an example of simple
interactive testing to illustrate our design. Suppose the user
is testing the invariance of write and read. The code they
may execute is given below:

(define data (list 1 2 3 4))

(with-output-to-file "test.dat"
(lambda () (write data)))

(with-input-from-file "test.dat"
(lambda () (equal? data (read))))

(delete-file "test.dat")



The programmer checks the test by inspecting the result of
the (equal? data (read)) expression. If the result is #t the
test has succeeded.

We shall show how this example is coded in our framework
and take the simplicity of the above example as our goal.

2.2 CoreDesign

The test is the core type in our framework. A test is either
a test case, which is a single action to test, or a test suite,
which is a collection of tests.

test —  test-case | test-suite
test-case —— mname X action
test-suite —— name X tests

tests —— listof test

The hierarchical arrangements of tests into suites helps the
programmer organize and maintain their tests.

We represent a test action as a closure. Three ways spring
to mind to signal test success or failure:

1. Indicate success by returning a non-#f value and fail-
ure by returning #f.

2. Return a datatype indicating success or failure and
additional information

3. Throw an exception on failure and return normally for
success

The first method has the advantage of simplicity but the dis-
advantage that we lose information about the cause of fail-
ure, so we discard it immediately. The other two methods
are equivalent in terms of the information they can return
(we can encode arbitrary information in the return value or
the exception). We have several reasons for choosing the
third option over the second. Firstly we wish to catch ex-
ceptions anyway to prevent an unexpected error (i.e. ones
that we are not testing for) from halting the testing frame-
work. Secondly when using the second method and testing
a sequence of expressions it is necessary to use continua-
tion passing style to propagate a test failure that occurs in
an intermediate expression. In this case we are simulating
exceptions! Therefore for simplicity of implementation and
use we choose to throw an exception to signal an error. We
also divide the types of exception we catch into those we
catch as the result of a tested failure (which we call fail-
ures) and those we catch due to untested failures (which we
call errors).

We provide a run-test-case function that takes a test-case
and returns a test-result:

(run-test-case test-case) = test-result
test-result ——  test-failure test-case x failure-exn
| test-error test-case X error-exn

| test-success test-case X result

Finally, the two functions fold-test and fold-test-results make
it easy to walk over tests.
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(fold-test test-collector seed test) = seed
(fold-test-results result-collector seed test) = seed

seed — «
test-collector — (test ) — «
result-collector —  (test-result a) — «

2.3 Testing Patterns

Our example in the core framework is:

(make-test-case
(assert binary-predicate actual expected)
"write/read invariance"
(lambda ()
(let ((data (list 1 2 3 4)))
(dynamic-wind
(lambda ()
(with-output-to-file "test.dat"
(lambda () (write data))))
(lambda ()
(with-input-from-file "test.dat"
(lambda ()
(let ((actual (read)))
(if (not (equal? actual data))
(raise
(make-exn:test:assertion
(string-append
"write/read invariance failed with "
(format "actual “a" actual)
n and n
(format "ezpected “a" data))))

#1)))))
(lambda () (delete-file "test.dat"))))))

Clearly we have lost the simplicity of the original REPL! By
adding common testing patterns to SchemeUnit we show
how we can regain this simplicity.

2.3.1 Assertions

Checking actual output against expected output is the most
common test pattern. We borrow the idea of assertion func-
tions from JUnit. An assert function tests a condition, rais-
ing a failure exception if the condition is false. The failure
exception contains the location of the failed assertion, the
actual and expected parameters, and an optional user spec-
ified message string.

The core functionality can be provided by a single function:

(assert binary-predicate actual expected [message])

We know from experience that it pays to provide assertions
for the most common cases, so SchemeUnit provides a li-
brary of assertions:

e (assert binary-predicate actual expected [message])

assert-equal? actual expected [message])

(
(

o (assert-eqv? actual expected [message])
(assert-eq? actual expected [message])
(

assert-true actual [message])



o (assert-false actual [message])
o (assert-pred unary-predicate actual [message])
o (assert-exn exn-predicate thunk [message])

o (fail [message])

Assertions are defined using the define-assertion macro:

(define-assertion (name param ...) expr ...)

The define-assertion macro expands into the definition of a
macro and a function® that takes the given parameters and
an optional message string. If the result of the expressions
is #f the assertion raises a failure exception containing the
all the information given above.

The define-assertion macro is exported so users can define
their own domain-specific assertions on par with those al-
ready provided. We hope over time to accumulate libraries
of specialized assertions.

2.3.2 Sate Management
Note that our example test uses state and hence requires
initialization and cleanup code. This is fairly common and
we would like to make is easier for the user to specify these
actions. Borrowing again from JUnit we call this code setup
and teardown actions and we augment test-case to optionally
include them. So

test-case

— name X action [x setup] [x teardown]

2.3.3 Interface Enhancements

We use macros to add the repetitive lambda statements
around the action, setup, and teardown expressions. We
also wrap the call to action with calls to setup and tear-
down in the macro rather than requiring the test framework
to preform this action.

Our example is now:

(let ((data (list 1 2 3 4)))
(make-test-case "write/read invariance"
(with-input-from-file "test.dat"
(lambda ()
(assert-equal? (read) data)))
(with-output-to-file "test.dat"
(lambda () (write data)))
(delete-file "test.dat")))

This code is almost identical to the original example typed at
the REPL. We have achieved our ease-of-use goal, and we
have done so by supporting testing patterns and allowing
user extensions to the testing framework.

!Only macros can get location information in PLT Scheme.
We define the function variant as we have occasionally found
uses for higher order assertions. The function variant has a
* appended to its name.

23

" s, ~ ¥ &

== i
=Sammary— || Problems...
Tast bissts

|-A|ur'l ey [

Successes (2/5)
Shauh e ofayLuCoRed ed
Alpo okay s ucoed ed

Failures {1,353}

This case rhowhd faif felled with messagpe
Asstation of #aprimitiverequal e {aled on
rnpul 4 and § with realt #f

Errors (2/5)

Thiz causes srror caused an excepson
COL. expeciy € ArgUments, given ;4
Anprier orrer corted an Exception
whoa: made n ke

Eum & ure

B all - .|

Figure 1: The SchemeUnit graphical interface

2.4 Interfaces
We provide textual and graphical interfaces to SchemeUnit.
An example run shows the user interface in action. The
following test suite

(test/text-ui
(make-test-suite " Ezample suite"

(make-test-case " Will succeed"
(assert-equal? (+ 1 2) 3))

(make-test-case " Will fail"
(assert-equal? (+ 1 1) 3))

(make-test-case " Will cause error"
(assert-equal? (/ 1 0) 0))))

gives the output:

Error:

Will cause error

an error of type exn:application:divide-by-zero
occurred with message: "/: division by zero"
Failure:

Will fail

assert-equal? failed at:
Inputs: <2> <3>

top-level 8:7

1 success(es) 1 error(s) 1 failure(s)

The graphical interface is still in development. When com-
plete it will provide source level highlighting and allow navi-
gation to error location using DrScheme. An example of the
current graphical interface is shown in Figure 1.

2.5 SchemeUnit versus JUnit

It is instructive to compare SchemeUnit with the popular
JUnit test framework, as doing so serves to illustrate the
expressive advantage of SchemeUnit. Our discussion centers
on a basic example from [25] based on a telephone class. The
Java code is:



public class TelephoneNumberTests extends TestCase {
public static void main(String[] args) {
junit.textui. TestRunner.run(suite());
}
public static TestSuite suite() {
return new TestSuite(TelephoneNumberTests.class);

public TelephoneNumberTests(String testname) {
super(testname);

public void testSimpleStringFormatting()
throws Exception {
// Build a complete phone number
TelephoneNumber number ->
new TelephoneNumber(" 612", "630",
"1063", "1623");
assertEquals(" Bad string",
"(612) 630-1063 £1623",
number.formatNumber());

}
public void testNullAreaCode()
throws Exception {
// Build a phone number without area code
TelephoneNumber number ->
new TelephoneNumber(null, "630",
"1063", "1623");
assertEquals(" Bad string",
"630-1063 £1623",
number.formatNumber());

H

A translation of this to the SchemeUnit syntax is

(require (lib "test.ss" "schemeunit")
(lib "texrt-ui.ss" "schemeunit"))

(test/text-ui
(make-test-suite " Telephone number tests"

(make-test-case "Simple format"
(assert-equal? " (612) 630-1063 z1625"
(format-number
(make-number 612 630 1063 1623))
"Bad String"))

(make-test-case "No area code"
(assert-equal? "630-1063 z1623"
(format-number
(make-number (void) 630 1068 1623))
"Bad string"))))

There are several points to note about this example. One is
the amount of typing required for this short example. The
Java code is far more verbose, most notably in the setup
code. This is largely a result of the type declarations and
noise keywords (like return and new) required by Java. To
our eyes the Scheme code is much more elegant though we
recognize this is a subjective judgment.

JUnit relies extensively on reflection. Test cases are defined
by prefixing the method name with test. This is an elegant
solution to the problem that Java has no first class repre-
sentation of functions but can lead to problems: JUnit uses
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a custom class loader that can interact unpredictably with
other Java code that makes extensive use of reflection (e.g.
Java remote method calls). This makes testing difficult in
these environments. There is no such problem in Scheme.

In JUnit setup and teardown methods are similarly identi-
fied by name and discovered by reflection. Again first class
functions reduce the complexity of the SchemeUnit frame-
work.

In general structuring the test suites by value rather than by
name makes for a simpler and more flexible system. There
are fewer new conventions for the user to remember and
tests can be manipulated on the fly.

2.6 Rdated and Future Work

SUnit has spawned a large and increasing number of testing
frameworks of which SchemeUnit is one. We shall briefly
consider those that are particularly relevant to SchemeUnit.

HUnit[14], an implementation for the Haskell Language, is
a recent addition to the family. There are broad similarities
between HUnit and SchemeUnit. Both signal failure with
exceptions and both provide a number of convenience asser-
tion functions. HUnit recognizes the importance of interface
and defines infix operators that make test specification eas-
ier. The combination of lazy evaluation and infix operators
achieves a similar effect to our macros. We briefly illustrate
HUnit below, along with the equivalent code in SchemeUnit:

testl -> 8 7->7 (1 4 2)
tests -> TestList [TestLabel "Addition" test1]

(define tests
(make-test-suite
"All tests"
(make-test-case "Addition" (assert -> 8 (+ 1 2)))))

LIFT[20], CLUnit[1] (Common Lisp) and CurlUnit[5] (Curl)
are Lisp dialect implementations of the SUnit framework.
All are broadly similar to SchemeUnit. Both LIFT and
CLUnit have some stateful features to ease interactive de-
velopment of tests. Defining a test in LIFT (with deftest)
implicitly creates a test suite to which later tests (created
with addtest) are automatically added. In CLUnit tests are
categorized by name and stored in a global collection. Tests
override existing tests with the same name and are removed
with the remove-test function. CurlUnit is a direct transla-
tion of JUnit to Curl so most of our earlier comments about
JUnit apply to CurlUnit.

The FORT[9] framework, implemented in O’Caml, takes a
different approach to the SUnit family. Test results take
one of seven values including unexpected success, expected
failure, untested, and unresolved in addition to the more
usual pass and fail. Test results and returned by the normal
function return mechanism so we envisage some difficulty
in constructing a single test case containing multiple test
expressions. The multitude of test results is an interesting
idea but we have yet to encounter a situation where they
are necessary. Lacking a clear need we favor simplicity and
stick with our three result types.



As the Extreme Programming community evolved from the
design pattern community it is no surprise that testing pat-
terns[23][10] have been developed. We intend to analyze
these patterns and see how SchemeUnit can provide direct
support for them.

A more advanced approach is to generate tests from speci-
fications (e.g. [6]). This approach naturally leads to model
checkers like ACL2[19] and SPIN[15] that prove correctness.
This is a powerful approach, though quite a leap from our
simple system.

SchemeUnit only targets unit tests. In future we wish to
target functional (whole system) testing, and testing of non-
functional requirements such as performance. We are also
aim to extend SchemeUnit to support domain specific func-
tionality such as web site testing.

3. THE SCHEMEQL QUERY LANGUAGE

The International Standard Database Language[17] (SQL
1992, SQL’92 or just SQL) is a declarative language for
manipulating data in database manager systems (DBMS).
SQL is the standard interface to relational databases and
is implemented by all major (and most minor) DBMSs.
SchemeQL integrates a database manipulation language into
the Scheme language offering an alternative to raw SQL.

Nowadays most database programmers already know SQL,
and SchemeQL is designed to offer a gentle slope[16] from
existing SQL knowledge to the higher level abstractions of-
fered by SchemeQL.

We start by discussing the limitation of embedded SQL and
why an alternative is desirable. We then describe the design
and implementation of SchemeQL. We follow with an ex-
tended example that shows how SchemeQL builds on SQL
but provides extended functionality that makes program-
ming in SchemeQL easier than SQL. We finish with a dis-
cussion of related and future work.

3.1 ThelLimitations of Embedded SQL

The traditional approach to mixing SQL with another lan-
guage is to embed the SQL as text strings. Even supposedly
modern languages like Java [12] continue this tradition. The
disadvantages of this approach are:

e SQL statements are not checked until execution time.
It is easy to make grammatical or type errors when
embedding SQL. For example, forgetting to include a
space when concatenating two strings is a common er-
ror. Similarly one can write a SQL statement that uses
SQL constructs where they aren’t allowed, or uses the
wrong type for arguments to SQL functions and so on.
All these errors will cause execution time exceptions
that may affect end users, whereas compilation time
exceptions would have been caught and dealt with by
the programmer.

e SQL statements can not be manipulated like host lan-
guage statements. Except by using crude text pro-
cessing one cannot programaticaly compose, abstract,
and refine SQL statements. Hence code quality and
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programmer productivity suffer when using embedded

SQL

If SQL statements were first class members of the program-
ming language we could use our existing tools and language
constructs to work with them, avoiding the problems given
above.

3.2 The SchemeQL Design: abetter SQL

SchemeQL embeds in Scheme a little language for creating
and manipulating SQL queries. SchemeQL allows complex
structured statements to be treated as first class citizens,
thus considerably raising the level of abstraction a program-
mer can use.

The SchemeQL grammar is very schemish while following
closely, in spirit, the SQL grammar. This eases the imple-
mentation as SQL is a complex mix between the relational
algebra and the relational calculus, but more importantly
allows the programmer to use their existing knowledge of
basic SQL constructions and programming in Scheme. Fur-
thermore, by making SchemeQL a set of syntactic exten-
sions and procedures we can concentrate on the design of
our little language, while retaining the whole power of a
real programming language, Scheme, following the steps of
other little languages [28], and [8].

SQL statements are divided into three main groups:

e Selection (SELECT)
e Modification (INSERT, UPDATE, and DELETE)
e Data definition (CREATE TABLE)

Selection (aka projection) statements produce a result set.
Modification statements return a natural number represent-
ing the number of rows affected by the execution of the
statement. Data definition statements are only interesting
for their side effects, such as creating a new table or view in
the database.

SchemeQL has the same logical division, with the following
differences: result sets are represented by cursors, a lazy
stream of rows (which basically allows the programmer to
work with one row at the time), and instead of having a
one to one mapping from SQL statements to Scheme pro-
cedures, we have a set of procedures to mimic the work of
a single SQL statement. This simplifies the construction,
combination, and refinement of statements. For instance,
the full power of the SQL SELECT statement is achieved
by the appropriate combination of several SchemeQL forms.
Basic selection in SchemeQL follows this grammar:

selection ::= (query
|  (query
| (query
| (query

<exp>)

((LITERAL <exp>)))
<col-spec> <table-spec>)
<col-spec> <table-spec>
<pred-spec>)

<exp> ::= string-or-symbol



(passed verbatim to the DBMS)
<col-spec> ALL | (<column> ...)
<column> ::= string-or-symbol | Number
| (<table> string-or-symbol)
| (AS <column> string-or-symbol)
| (LITERAL <exp>)
<table-spec> ::= <table>

| (<action> <table-spec> <table-spec>)

<table> 1:= string-or-symbol
<action> ::= ALIAS | INNERJOIN | STRAIGHTJOIN
| NATURALLEFTJOIN

<pred-spec>
| ([AND|OR|NOT] <pred-spec> ...)

<op> = [ <= > >=]=1]<>
| Any DBMS defined binary operator
<col-spec-or-value> ::= <col-spec>

| Any value suitable for comparison

It is important to note, that the subforms in query, and
in most forms in SchemeQL for that matter, are implicitly
backquoted. Thus, (query ALL ,(f x)) means “select every-
thing from the table, or tables returned by the application
of Scheme procedure f, to the Scheme variable z”.

3.2.1 Moreon Section, and the SchemeQL Times

The query procedure alone does not provide all the func-
tionality a programmer may want when selecting data from
a database, and for a good reason: it would be as com-
plex as the SQL’s SELECT statement. Instead of offering a
much too complex form, SchemeQL provides a set of forms,
and procedures to specialized, compose, and otherwise han-
dle selections. These forms are: query, distinct!, group-by!,
order-by!, having!, limit!, union, intersect, and difference.

::= (distinct! <selection>)
| (group-by! <selection> <limit-col>)
| ... the other forms

::= ([ASC|DESC] <col-spec>)

<selection>

<limit-col>

The syntax of the rest of the forms is just minor variations
of that given above.

The reader may wonder what a SchemeQL selection exactly
does. A selection in SchemeQL is an internal Scheme struc-
ture, that holds the information provided thus far to perform
the selection, and that is why you can continue specializing
it.

(query param ...) = query-struct
This is what we called the SchemeQL compilation time, for
it allows us to perform basic static checking, based only on
the information already provided to perform the selection.
Only when schemeql-execute is called is the selection is per-
formed and a result set (also called a cursor in SchemeQL)
is returned.

(schemeql-execute schemeql-struct [conn]) = cursor
This is the SchemeQL ezxecution time. The same scenario
repeats itself for the data modification and data definition
forms in SchemeQL.

| <col-spec>

::= (<op> <col-spec> <col-spec-or-value>)
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Since sometimes we want to immediately execute a form,
SchemeQL provides some useful shorthands for some forms
that combine the generation of the internal structures and
their execution. Here are some such forms that we will use
later:

(direct-query conn param ...) = cursor
(query-with-current-connection param ...) = cursor
(query/cc param ...) = cursor

where conn is an open connection to a DBMS, which is cre-
ated by a call to the SchemeQL form connect-to-database,
and param ... are exactly those parameters valid for query.

3.2.2 SchemeQL Cursors

SQL result sets can be seen as tuples that form a table.
SchemeQL cursors are pairs of values, (row promise), where
row is a list representing the first tuple in the result set, and
promise is a cursor holding a promise (that has to be forced)
to return the rest of the tuples in the result set.

cursor —
row —

row X promise
listof any

A library to work with cursors is provided as part of SchemeQL.

Programmers most likely will use the following basic proce-
dures to work with cursors:

e (cursor-car cursor): returns the first tuple in cursor.

(cursor-cdr cursor): returns the rest of cursor, another
cursor, similar to the original only that the nezt ele-
ment, if any, is on the cursor-car position of the re-
turned cursor.

e (cursor-null? cursor): #tiff cursor is the empty cursor.

e (cursor-map proc cursor): returns another cursor, whose
first element is the application of proc to the first el-
ement in cursor, and whose second element holds the
promise to apply proc to the rest of cursor.

e (cursor->list cursor N): returns a list containing the
first N, or less if there are not enough, rows in cursor.

e (finite-cursor->list cursor): returns a list containing
all the elements of cursor.

It is worth noting that cursors in SQL are a completely
different concept, and are used to retrieve a small number of
rows at a time out of a larger query. SchemeQL also provides
support for them, through the procedures open-cursor, which
receives a query and optional information to create different
kinds® of cursors, the initial size of the set, and the starting
row. Two other procedures work on the result of open-cursor:
roll-cursor!, that changes the orientation of the given cursor,
and close-cursor!, which closes the given cursor.

One important feature of this way of handling SQL cur-
sors is that the resulting set of tuples is represented as an

?Kinds as those defined by Open Database Connectivity
(ODBC) [27], which are: FORWARD ONLY, STATIC, KEYSET
DRIVEN, and DYNAMIC.



SchemeQL cursor, and thus can be handled in the same way
as the result of regular queries. We will not go into more
detail here for space reasons.

3.2.3 TheRest of SQL

Most of the “usual” SQL functionality is already part of
SchemeQL. Transactions, for instance, can be handled in
two different ways. The first one, is by using the (transac-
tion exp ...) form which executes all the expressions given
in order, and if no exception occurs then it commits the
block, otherwise, it sends a rollback to the DBMS, and pass
along the exception. The transaction form tries to set the
transaction isolation level to the highest possible, ideally to
serializable level.

The second way allows the programmer to select the iso-
lation level required and is represented by two procedures:
begin-transaction and end-transaction. The begin-transaction
form switches to manual commit mode, and sets the isola-
tion level to the highest supported by the DBMS, or to the
requested one if given. Then end-transaction either commits
or rolls back the transaction block, depending on the argu-
ment supplied by the programmer. The transaction form is
more scheme-like, since the other two can lead to the com-
mon error of opening a transaction, executing a block of
expressions, and never closing the transaction again.

SchemeQL supports basic user and table management, and
connection management that allows simultaneous connec-
tions to different databases. Even non-standard, yet very
useful and regularly employed, SQL extensions such as CRE-
ATE DATABASE and USE DATABASE are supported, though
no SQL standard procedure depends internally on these ex-
tensions.

3.3 The SchemeQL Implementation

SchemeQL is layered upon SrPersist® and takes full advan-
tage of SrPersist’s knowledge of the particular DBMS in use.
SrPersist provides a safety check for every SQL statement
sent to the DBMS, in addition to the Scheme(QL’s error de-
tection, and thus we can offer a hierarchical approach to
error handling.

SchemeQL together with SrPersist is a highly portable li-
brary since ODBC is the de facto standard for database
connectivity and is widely supported (although it should
be noted that many ODBC drivers have different levels of
conformance®). In this regard SchemeQL offers two specific
and crucial benefits. Firstly it hides the tedious and ugly
details of the ODBC conformance levels from the Scheme
programmer. Secondly, and more importantly, it removes
the complexity of standard ODBC manipulation, which is
probably the biggest drawback of ODBC when compared to
other DBMS drivers.

3SrPersist is an ODBC library for PLT Scheme. More in-
formation on SrPersist can be found at:

http://www.plt-scheme.org/software/srpersist/
*At the time of writing there have been several major re-

leases, from 1.0 through 3.51, and SrPersist supports them
all.
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Even though, for portability reasons, we use SrPersist, SchemeQL
allows the use of different DBMS drivers. ODBC drivers are
known to do extensive error checking, and so it is possible

to have a database specific driver outperforming a generic
ODBC driver. SQL support and basic error checking facili-

ties are independent of the driver in use.

3.4 SchemeQL in action

All examples below are based around the following database
structure. Suppose you own a software company, and the
following tables are a snippet of your employees database.

personnel salaries

id | name lid id | salary
1 | Noel 1 1 | 30°000
2 | Ian 1 2 | 30’000
3 | Francisco | 1 3 | 30°000
4 | Simon 2 4 | 30°000
5 | James 3 5 | 45’000
6 | Brian 4 6 | 45’000
7 | Dennis 4 7 | 45°000

languages

id | lang

1 | Scheme

2 | Haskell

3 | Java

4 | C

We start with the most common sort of query, which is a
SELECT statement such as the following statement to get
the names of all the programmers:

SELECT name FROM personnel

In SchemeQL this query has almost exactly the same struc-
ture as its SQL equivalent:

(query (name) personnel)

Now suppose we wish to get all the ¢ds of those employees
who program in Scheme. In SQL we’d write:

SELECT personnel.id
FROM personnel, languages
WHERE personnel.lid = languages.id
AND languages.lang = 'Scheme’

In SchemeQL we write

(query ((personnel id))
(personnel languages)
((= (personnel lid) (languages id))
(= (languages lang) " ’Scheme™)))

Again the two queries have a very similar structure. Now
suppose we want to get all Java programmers. Immediately
we see an opportunity for code reuse if we parameterize the
above queries on the language. This is trivial in SchemeQL
as we can use abstraction facilities provided by Scheme:



(define (programmers language)
(query ((personnel id))
(personnel languages)
((= (personnel lid) (languages id))
(= (languages lang) ,language))))

Remember that most subforms in SchemeQL are backquoted.

There is no way to do this in standard SQL, though individ-
ual DBMSs may provide parameterized queries. To do this
in embedded SQL we could append strings:

(define (programmers language)
(string-append
"SELECT id "
"FROM personnel, languages"
"WHERE personnel.lid = languages.lid "
"AND languages.lang = " language))

We note that this method is error-prone as it is easy, for
example, to forget to include a space between strings as
we have done above (between languages, and the keyword
WHERE).

Now suppose you want to get the ids of all C programmers
who are earning 45’000. This is the intersection of all C
programmers, which we already know how to do, with all
programmers who are earning 45°000. In SQL we can write:

SELECT id
FROM personnel, languages
WHERE personnel.lid = languages.lid
AND languages.lang = ’'C’
INTERSECT ( SELECT id
FROM salaries
WHERE salary = 45000 )

In SchemeQL we can form the two sets separately and then
perform the intersection:

(let ((c-programmers (programmers "’C™))
(high-earners (query (id) (salaries) (= salary "45000"))))
(intersect c-programmers high-earners))

Notice how we have reused the programmers function de-
fined above and then composed a query from parts. We
cannot do this in SQL.

That does it! Impressed by the productivity of your func-
tional programmers you decide to fire all the Java and C
programmers and use the extra money to give a raise to
your fine Scheme programmers (you find the Haskell pro-
grammers productive but inexplicably lazy). Coincidentally
this also give us an opportunity to show further query com-
position and cursor handling in SchemeQL.

First we define the sets of interest: the Schemers, who are
getting a raise, the Haskell programmers, who just stay as
they are, and everyone else, who are getting the opportunity
to explore other interests.

(define schemers (programmers " ’Scheme™))
(define haskellers (programmers " ’Haskell™))
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(define fired
(let ((all (query (id) personnel)))
(schemeql-execute
(difference all (union schemers haskellers)))))

Now all programmer who have been fired are removed from
the salaries table:

(cursor-map
(lambda (programmer)
(let ((id (car programmer)))
(delete/cc salaries (= id ,id))))
(result-cursor fired))

Finally, to give the Scheme programmers a raise:

(cursor-map
(lambda (id)
(update/cc salaries
((salary (LITERAL "salary = 2")))
(= id ,(car id))))
(result-cursor (schemeql-execute schemers)))

The above operations cannot be performed in pure SQL as
query results cannot be used as the input to modification
statements. We give below equivalent statements to perform
the above actions. Where an action requires repetition of a
number of very similar statements (eg, when DELETEing
the imperative programmers) we only give an example.

SELECT personnel.id
FROM personnel
EXCEPT (SELECT personnel.id
FROM personnel,languages
WHERE personnel.lid = languages.lid
AND languages.lang = ’Scheme’
UNION
SELECT personnel.id
FROM personnel,languages
WHERE personnel.lid = languages.lid
AND languages.lang = 'Haskell’);
DELETE FROM salaries
WHERE id = 4;
SELECT personnel.id
FROM personnel
INTERSECT (SELECT personnel.id
FROM personnel,languages
WHERE personnel.lid = languages.lid
AND languages.lang = ’Scheme’);
UPDATE salaries
SET salary = salary * 2
WHERE id = 1

3.5 Related and Future Work

Haskell/DB, a compiler embedded in Haskell that dynami-
cally generates SQL queries, was developed as an instance of
the more general design pattern for embedding client-server
style services into Haskell detailed in[22]. Some of the ben-
efits this technique offers are:

e Programmers need to know only one language,



e it allows language extensions in the form of libraries
to be presented,

e it is possible to impose specific typing rules,

e integration with other domain specific libraries (e.g.
CGI, mail) is possible, and finally

e this approach offers a strategic advantage, for it em-
powers programmers to use the language infrastruc-
ture, such as the module, and type systems.

SchemeQL has all of these benefits except for static typing.

The implementation of Haskell/DB, presented in[22] uses
ActiveX Data Objects (ADO) to connect to the DBMS. In
this regard Haskell/DB is limited to the Windows platform.
SchemeQL does not share this limitation as it uses SrPersist,
which can interact with any ODBC driver.

Our approach is to define a limited domain specific language
that can be translated into SQL. Another approach is to
expand the database query language into a full programming
language[29]. This approach has many benefits but requires
the underlying DBMS to change.

It is clear that structured data is taking over. The Exten-
sible Markup Language [26] (XML) is now considered the
universal format for structured documents and data on the
Web. With XML arises the need for efficient query lan-
guages to exploit structured data. XML Query [24] is a
working group aiming to create a set of query facilities to
extract data from XML, or viewing XML files as databases.
Unfortunately there is not yet any direct point of comparison
between XML and current database technology. This will
remain one of the most interesting topics of research in the
years to come. Whether or not a language like SchemeQL
will be able to enter the XML realm is a question we cannot
answer yet.

In the immediate future we will be adding support for spe-
cific DBMS drivers and SQL dialects (e.g. Oracle, Post-
greSQL, etc.). We will also attempt to standardize the
SchemeQL syntax as a Scheme Request for Implementa-
tion[21] (SRFI).

4. SCHEMEUNIT AND SCHEMEQL
SchemeUnit and SchemeQL have both been designed with
a ‘gentle-slope’ philosophy: start with an already familiar
base and then build additional functionality as independent
components on that base. In SchemeUnit this is evident in
the way test code mimics the “code a little, test a little”
cycle and adds facilities to organize and rerun tests. In
SchemeQL the starting point is the SQL SELECT statement
upon which the query macro is modeled. The combinators
intersect, difference and so on are then introduced as ways of
modifying the basic query.

SchemeUnit and SchemeQL both take advantage of Scheme’s
macro facilities to present a cleaner interface to the user. In
both languages macros are used to avoid repetitious lambda
statements. In SchemeUnit this is in the creation of test
cases. In SchemeQL this is in cursor creation. Macros are
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also used for other purposes: in SchemeUnit to allow user-
extensions via the define-assertion macro and in SchemeQL
to provide implicit backquoting on forms. These simple uses
of macros go a long way to improving the user experience.

SchemeUnit is used extensively to test itself and SchemeQL.

5. CONCLUSIONS

A language is a user interface just like a graphical interface
and deserves as much attention from the language designer
as a GUI would get from it’s designer.

We have described SchemeUnit, a little language for writing
tests in Scheme, and have illustrated how we have used the
features of functional languages in general, and Scheme in
particular, to simplify the interface. Via comparison with
the “code a little, test a little” cycle and the JUnit frame-
work we have shown that SchemeUnit achieves an admirable
level of simplicity without sacrificing expressive power.

SchemeQL, our little language for database interaction, has
been shown to be a feasible alternative to embedded SQL.
By building on the programmer’s knowledge of SQL and
extending it with modular combinators we achieve tighter
integration with the Scheme language, a better, more mod-
ular, parameterization of SQL statements and improved ex-
pressibility and abstraction.

PLT Scheme, the host language for both our little languages
gives us a certain number of extra, and free advantages that
makes them usable, through its DrScheme programming en-
vironment[11]: a syntax-sensitive editor, a syntax checker,
an stepper, and interaction with other libraries, and plugins.

e Since our little languages consists entirely of tree-structure

expressions, the editor’s features are inherited. Users
only needs to add the keywords in our little languages
to DrScheme (to have them indented appropriately.)

e No modification is needed to work with the syntax
checker, and the stepper since these two work trans-
parently over procedures, and macros.

e Since all of the host language is available to users, a
program can load, or enable a certain number of li-
braries, plugins, or other embedded little languages as
needed with no extra fuss.

The only extra advantage we are not exploiting is the va-
lidity checking available through the MrFlow component of
DrScheme though it should not be hard to expand the con-
structions of our little languages to type definitions, as in [8].

Finally we note that our language evaluation has been quali-
tative; based on our experiences using the languages in ques-
tion. We are aware of some work in quantitative evalua-
tion[7] and this research will contribute to a better under-
standing of what makes good language design.
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